
Web Service Security
Overview, analysis and challenges

El Houssain BEN MESSAOUD and Ouafaa DIOURI
Université Mohammed V Agdal

Ecole Mohammedia des Ingénieurs
Laboratoire SIR

Avenue Ibn Sina B.P. 765 Agdal Rabat Maroc

Abstract

The web services (WS) technology became the reference
architecture during the last few years for the integration
of heterogeneous systems. As it is nowadays critical for
business to make applications communicate over the
internet. WS has take essential position for building and
integrating e-business applications and to allow
Information system technologies to communicate in an
interoperable manner. New WS extra standards have been
developed through the cooperation of several
standardization organizations. This technology has also
some limits specially security issues. We will try
throughout this paper to provide an overview and an
analysis of the standards in the field of web services
security as well as to analyze the issues that are not yet
addressed.

Treating Web Services security means treating aspects
like authentication, authorization, integrity and
confidentiality and how they can be guaranteed in WS
architecture. Also an overview related standards called
WS-Security, including how they combine to address
security pains especially in a business to business Web
Services scenario.

Keywords: Web Services, SOAP, WS Security,
authentication, threats, policies.

1 Introduction
Forty years ago, computers began to be connected
to the Internet and data transfer among computers
was already common. Since then, Internet has
evolved to form a huge information space, in which
users can move transparently from one machine to
another. In the field of application programs, a
similar development is ongoing. Distributed
computing has been used as long as there have been
computer networks. But at present, distributed
applications are increasingly viewed and
constructed as one vast computing medium.
Applications which interact between different
machines to provide orchestrated services have now
been deployed on a large scale. This evolution is
allowed by new protocols built upon HTTP that are

designed to enable interaction between programs
[1].
Systems composed by loosely coupled, dynamically
bound elements are much more flexible and have
therefore better chances to dominate the next
generation of information systems [2]. These
distributed pieces of software are called web
services and are deployed and used by many
companies to integrate those information systems.
Despite these advantages, web services
technologies, faces security limitations because of
regular threat risks. This can decrease trust in
information exchange based on this technology and
compromise wide adoption in critical business
applications.

The promised interoperability of web services also
introduce security concerns that do not exist in
traditional distributed messaging techniques like
RMI and CORBA. This is because the SOAP based
XML messages can bypass easily traditional
firewalls and this could lead to gain access to
sensitive systems for non authorized users just
using the interfaces provided by the WSDL files for
service description for example.

The object of this paper is to explain the principles
of web services architecture. It presents the
concepts, standards, and the required infrastructure.
It discusses and analyzes the limitations of this
architecture from the security view giving also light
on the challenges surrounding this aspect related to
this technology.

1.1 Organization of the document
The paper is organized as follows:
 Chapter 1 Enterprise architecture: introduces

the different types of architectures in modern
computing that motivate how and why remote
services are emerging and what are the possible
limits and problems.

 Chapter 2 Web service : provides an overview
of the techniques for implementing web
services as well as a listing of several WS-*
specifications

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 124

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

 Chapter 3 Web service security: gives an
overview about vulnerabilities of the web
services applications. Then detailed the models
and standards of WS security stack, how they
interact and which protocols are used to
achieve security requirements

 Chapter 4 Analysis : presents a personal
analysis about the presents standards from
different point of views

 Chapter 5 Challenges and opportunities: is the
conclusion of this paper based on the analysis
presented below.

2 Enterprise Architecture
Application architecture is an essential instrument
for an application development cycle. The degree of
abstraction used in the documentation of
application architecture could vary. While some
provide only highly abstract physical and logical
representations of the technical patterns, others
include more detail, such as common data models,
communication flow diagrams and aspects of
infrastructure [1].

In larger IT infrastructures, we need to define a
high level architecture. These specifications will
help to control and manage IT infrastructure when
numerous, -disparate application architectures co
exist and sometimes even integrate. In such a
heterogeneous context, the underlying hosting
platforms must be able to meet complex demands.
Further, enterprise architectures often contain a
long-term vision of how the organization plans to
evolve its technology and environments [1] [6].

2.1 Client-Server Architecture
The “client-server architecture” refers to an
environment in which the client and server had each
particular functions as well as different
implementation. This architecture is composed by
multiple fat clients where each of them needed to
connect to a database on a central server. Client-
side software hosted the essential part of the
processing, including all presentation-related and
most data access logic [1].

Figure 1 Two -tier client-server architecture

2.2 Distributed Internet Architecture
Regarding the lack of flexibility and the costs of the
two-tier client server architecture, Component-
based applications became popular. The multi-tier
client-server applications as shown on Figure 2
divide the monolithic client executable into
components designed to different degrees of
compliance with object orientation. Applications
can be deployed more easily when the application
logic is located in numerous components because
the logic is essentially centralized on servers.
Sharing and managing pools of database
connections by server-side components located on
special applications servers reduces concurrent
usage on the database server. These improvements
brought also disadvantages with them: higher
complexity and more costly development and
administration processes [1].

Figure 2 Multi-tier client-server architecture

Moreover, the client-server remote procedure call
(RPC) has partially replaced the client-server
database connections. RPC technologies like
CORBA and DCOM enabled remote
communications between components distributed
between clients and servers. Problems appeared
which were similar to those implied by client-server
architectures, such as resources and persistent
connections management. Additionally, the
maintenance effort had to be increased due to the
middleware layer. Servers and transaction monitors
needed much attention in large environments.

2.3 Web Services Architecture
“Web Services, is considered a universal
client/server architecture that allows disparate
systems to communicate with each other without
using proprietary client libraries”. The client and
the server could be in heterogeneous technologies
[3].

Web Services systems enable a high level of
decoupling as well as dynamic binding of services.
Such systems are composed by services which
contain description and messages. Services are
found by applications using service discovery [2].
The Web Services architecture is particularly
adapted for e-business architectures.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 125

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

2.4 Service-Oriented Architecture (SOA)
SOA presents a new method to create distributed
applications where basic services can be published,
discovered and bound together so as to build more
complex composed services representing greater
added value. Applications interact with services
through an interface endpoint and not at the
implementation level. Thus, applications become
more flexible due to their ability to interact with
any implementation of a contract [4]. The
implementation of a SOA platform is based
generally on Web service technology.

3 Web Services

3.1 Web Services definition
We can find several complementary definitions of
Web Services. Some of them are:

“A web service is any piece of software that makes
itself available over the internet and uses a
standardized XML messaging system. XML is used
to encode all communications to a web service. For
example, a client invokes a web service by sending
an XML message, and then waits for a
corresponding XML response. Because all
communication is in XML, web services are not
tied to any operating system or programming
language--Java can talk with Perl; Windows
applications can talk with Unix applications” [5].

“Web Services are self-contained, modular,
distributed, dynamic applications that can be
described, published, located, or invoked over the
network to create products, processes, and supply
chains. These applications can be local, distributed,
or Web based. Web services are built on top of
open standards such as TCP/IP, HTTP, Java,
HTML, and XML” [7].

“A web service is a collection of open protocols and
standards used for exchanging data between
applications or systems. Software applications
written in various programming languages and
running on various platforms can use web services
to exchange data over computer networks like the
Internet in a manner similar to inter-process
communication on a single computer. This
interoperability (e.g., between Java and Python, or
Windows and Linux applications) is due to the use
of open standards” [8].

Thus, web services are platform-independent, based
on XML messages and internet protocols. The idea

is to distribute services over the Internet and to
make them available for clients. These services can
be implemented with any language.

3.2 Web services characteristics & Benefits
From [4] and [8] we can derive the following
characteristics of web services:

XML-based: Web Services rely on XML for data
representation and transportation. The use of XML
avoids any network, operating system or platform
binding.

Loose coupling: There is no direct link between a
web service and its users. Alterations of the WS
interface do not deteriorate the user’s capability of
interacting with the service. Implementing a loosely
coupled architecture facilitates software system
management and helps the integration of different
systems.

Adaptability: Ability to be work in a synchronous
or asynchronous manner: In synchronous scenario,
the client sends his request and then waits for the
response without being able to execute other
operations during this period. In contrast,
asynchronous scenario allows clients to request a
service and in parallel execute other operations
without waiting for the result (“fire and forget”
model).

Reusability: A Web service is a component which
is remotely accessed using HTTP. Web Services
provide a means to make a pre-existing code
reusable and available through Internet.

Interoperability: Web Services enable the share of
data and the communication between heterogeneous
applications. For example, .NET applications can
interact with Java web services and vice versa.
Thus, application integration becomes platform and
technology independent.

Standardized Protocol: Web Services uses industry
standard protocols for the communication. All the
four layers (Service Transport, XML Messaging,
Service Description and Service Discovery layers)
use well defined protocols in the Web Services
protocol stack. This offers to organizations a
reduction in their costs of applications integration
with a best quality.

Automatic Discovery: Web Services automatic
discovery mechanism allows businesses to easily
find the Service Providers and retrieve web service

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 126

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

descriptions that have been previously published.
Client can query, based on search criteria, the
service registry for web service matching his needs.

3.3 Web Services Architecture
Web services architecture is composed of three
major components:

Service provider: It encapsulates the
implementation of the service and makes it
available on the Internet for consumers.

Service requestor: The consumer of the web
service. It invokes an existing web service by
opening a network connection and sending an
XML-SOAP request containing the right
parameters based on the description of the needed
service and the address of the service provider.

Service registry: It is a centralized directory of
services where providers or developers can publish
new services or find existing ones.

The next figure gives a logical view of web services
by illustrating the relationship between the web
services components and operations. First, the web
service provider publishes its web services with the
discovery component. Next, the web service
consumer looks for desired web services using the
registry of the discovery component. Finally, the
web services client invokes the web services by
using the information obtained from the discovery
component.

Figure 3 (taken from [9])

3.4 The Web Service Protocol Stack
Web services are built by using various related
technologies. Figure 4 illustrates the stack of
standards on which web services are generally
based on.

Figure 4 The Web Services technology stack (inspired from [4])

Service transport: The service transport layer
delivers messages between applications. This layer
usually implements hypertext transfer protocol
(HTTP), Simple Mail Transfer Protocol (SMTP) or
file transfer protocol (FTP).

XML messaging: This layer is responsible for
encoding messages in a common XML format so
that messages can be understood at both parties.
This layer includes XML-RPC and SOAP [8].

Simple object access protocol (SOAP): SOAP is a
simple XML-based messaging protocol responsible
for transferring data between different web services.
SOAP allows communication among interacting
web services by implementing a request/response
model [4].

Service description WSDL: The purpose of this
layer is to define the public interface of a specific
web service and its description. WSDL is based on
XML [8].

Service discovery: The service discovery layer
registers services into a common repository and
provides an easy publish/find mechanism. This
layer is often implemented via Universal
Description, Discovery, and Integration (UDDI)
[8].

Service orchestration: The service orchestration
layer is in charge of the execution logic of web
services based applications by determining their
control flows (e.g. conditional, sequential, parallel
and exceptional execution). This layer enables
enterprises to define and realize complex business
processes [4].

More layers can compose the full stack of web
services like for example specifying quality of
services (QoS) aspects.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 127

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

To resume, a web service implementation is created
using a specific programming language. This
service is published using his WSDL interface. This
service can be invoked by a consumer “client”
using this interface. Web services are presented to
clients as a set of methods that provide business
logic on behalf of the provider. Web services must
be deployed on a server container to be available
for consumers as an online resource. The
application developers have not to care about
creating or parsing SOAP messages. That task is
performed by the web service’s APIs runtime
system. Web service can work over heterogeneous
platforms. For example, a Java-based Web Service
built and deployed on IBM AIX operating system
can be accessed from Visual Basic program which
runs on Windows.

4 Web service security
Security became an indispensable requirement for
computer systems, ensuring that, access and
information sharing occur without damaging the
systems and that its information will not be exposed
to malicious users. The Main security properties
are:

 Confidentiality: ensures that information
will be readable only by authorized users.

 Integrity: ensures that information cannot
be changed, accidentally or intentionally,
for users who do not have this right.

 Authenticity: it ensures that the user is
communicating is really who he claims to
be.

 Non-repudiation: ensures that the user
cannot deny his involvement in the
occurrence of a transaction.

 Availability: ensures that legitimate users
have access to information and resources
all the time.

We will try in this chapter to first list and discuss
the major vulnerabilities of web services. There
classification and then speak about security
standards that give the ability to prevent the attacks
caused by these vulnerabilities.

4.1 Vulnerabilities
Service Web Services are an integral part of next
generation Web applications. The development and
use of these services is growing at an incredible
rate, and so too security issues surrounding them.

Both providers and consumers need to assess Web
Services’ security.

In this section, we present the terminology for WS
vulnerabilities, their classification, and give detail
of the major known attacks with some
countermeasures.

4.1.1 Some definitions
When thinking about security, it is helpful to think
in terms of assets, threats, vulnerabilities, and
attacks [11].

 Asset. An asset is something related to your
application that is worth protecting. Sensitive
data, intellectual property, and access to critical
operations are all assets. For example, user
credit card numbers are an asset worth
protecting in your application.

 Threat. A threat is any potential occurrence,
malicious or otherwise, that could harm an
asset. In other words, a threat is any bad thing
that can happen to your assets.

 Vulnerability. Vulnerability is a weakness that
makes a threat possible. This may be because
of poor design, configuration mistakes, or
inappropriate and insecure coding techniques.
Weak input validation is an example of an
application layer vulnerability, which can result
in input attacks.

 Attack. An attack is an action that exploits
vulnerability or enacts a threat. Examples of
attacks include sending malicious input to an
application, or flooding a network in an attempt
to deny service.

To summarize, a threat is a potential event that can
adversely affect an asset, whereas a successful
attack exploits vulnerabilities in your system. The
attacks can be divided to multiple categories as
shown in the next sections.

4.1.2 Web service risk factors
SOAP web services have two main risk factors
[14]:

 Distributed systems risks: Risks to the services
themselves similar to risks that exist in web
applications and component applications, such
as malicious input attacks like SQL Injection.
These risks arise from being distributed on a
network. Network firewalls (which examine
only a packet’s header) are largely blind to web
services risks due to the fact that web services

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 128

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

are deployed on commonly available open
ports.

 Message risks: Risks to the document and data
that is exchanged among the service requesters
and providers. The document may participate
in a multi-hop transaction or be subject to
inspection by a variety of intermediaries, each
operating in different security zones, including
separate policy, geographic, technical, and
organizational domains. The message’s
payload may also, of course, contain sensitive
data.

4.1.3 Web Services Attack Classification
In this section we briefly overview the list of web
services attack classifications. As the open
architecture of web service present multiple attack
surfaces in every layer. They can be classified in
some categories:

 Message Alteration
 Non Authorized access
 Spoofing
 Denial of Service
 Replays attacks

Table 1 : Web services security threat framework
Webservice
Layer

Attacks and
threats

Category

Transit
layer

Transit
snifing/spoofing

Spoofing

WS-Routing
security concernes

Message
Alteration

Replay attacks Replays attacks
Engine
layer

Buffer overflow Denial of service
XM parsing attacks
(complex/recursive)

Denial of service

Large payload Denial of service
Deploymen
t layer

Fault code leaks Non Authorized
access

Permissions and
access issues

Non Authorized
access

Poor policies Non Authorized
access

User code
layer

Parameters
tampering

Message
Alteration

WSDL probing Message
Alteration

SQL/XPATH
injection

Message
Alteration

Virus/spyware/mal
ware injection

Message
Alteration

Brute force Non Authorized
access

Data type mismatch Message
Alteration

Session tampering Replays attacks
Authorization
violation

Non Authorized
access

4.1.4 Example of vulnerabilities

Here we present a list of some security issues in the
domain of Web Services. The list does not claim to
be complete; it merely is a selection of the most
impressive attacks with example of each category
[14]:

4.1.4.1 Message Alteration
These threats affect message integrity. An attacker
will modify parts message. For example, an
attacker may insert extra information into a
message. The attacks may affect message header
and/or body parts.
An attacker may also affect message integrity by
manipulating its attachments. For example, an
attacker may delete an attachment, or insert an
attachment into a message.

Figure 5: Message alteration attack

XML injection is a good example:

4.1.4.1.1 XML Injection
An XML Injection attack tries to modify the XML
structure of a SOAP message by inserting content
containing XML tags. Such attacks are possible if
the special characters "<" and ">" are not escaped
appropriately.
At the Web Service server side, this content is
regarded as part of the SOAP message structure and
can lead to undesired behavior.
Example:
<SOAP-ENV:Body>
<SOAPSDK4:MethodName
xmlns:SOAPSDK4=“http://urltoapp/…”>
<SOAPSDK4:username>administrator</SOAPSD
K4:username>
 <SOAPSDK4:password>’ OR
‘1’=‘1</SOAPSDK4:password>
 </SOAP-ENV:Body>

Here the parameters in the SOAP envelope have
been injected with SQL to bypass authentication by
always returning true (I.e SELECT * from
UserTable where username=‘administrator’ and
password=‘’ OR ‘1’=‘1’;

As the SOAP message obviously violates the Web
Service schema, it should be rejected.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 129

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

An important step in detecting such attacks is a
strict schema validation on the SOAP message,
including data type validation.

4.1.4.2 Non authorized access

4.1.4.2.1 Man-in-the-middle

In this kind of assault it is possible for an attacker
to compromise a SOAP intermediary and then
intercepts messages between the web service
requester and the receiver. The parties will think
that they are communicating with each other. The
attacker may just have access to the messages or
may modify them. Mutual authentication
techniques can be used to alleviate the threats of
this attack.

Figure 6: Man-in-the middle attack

4.1.4.3 Spoofing

Spoofing is a complex attack that exploits trust
relationships. The attacker assumes the identity of a
trusted entity in order to sabotage the security of the
target entity. Usually, spoofing is used as a
technique to launch other form of attacks such as
forged messages. Strong authentication techniques
are needed to defend against such attacks.

Figure 7: Spoofing attack

Metadata Spoofing attack is a good example:

4.1.4.3.1 Metadata Spoofing

Web Service client retrieves all information
regarding a Web Service invocation (i.e. message

format, network location, security requirements
etc.) from the metadata documents provided by the
Web Service server. Currently, this metadata
usually is distributed using communication
protocols like HTTP or mail. WSDL Spoofing is
the modification of the network endpoints and the
references to security policies. A modified endpoint
enables the attacker to easily establish a man-in-the-
middle attack for eavesdropping or data
modification. If additionally a spoofed security
policy with lower or no security requirements is
used, such attacks are possible despite the use of
WS-Security. The solution is that all metadata
documents must be carefully checked for
authenticity.

4.1.4.4 Denial of Service

Denial of service (DoS) attacks focus on preventing
legitimate users of a service from the ability to use
the service. Such attacks target at eliminating a
service's availability by exhausting the resources of
the service's host system, like memory, processing
resources or network bandwidth. In the webservice
world, it is based generally on XML parsing that is
expensive (Extremely large / complex XML
documents, deeply nested tags…). This can lead to
create extremely large memory footprints or
exhaust CPU treatment capacity.

4.1.4.4.1 Oversize Payload

One classic way to perform such a Resource
Exhaustion attack is to query a service using a very
large request message. This is called an Oversize
Payload attack. It is quite easy to perform, due to
the high memory consumption of XML processing.
The total memory usage caused by processing one
SOAP message is much higher than just the
message size. An obvious countermeasure against
Oversize Payload attacks consists in restriction of
the total buffer size for incoming SOAP messages.

Example: A Web Service was attacked using a
large SOAP message document, which consisted of
a long list of elements considered as parameter
values of the Web Service operation:

<Envelope>
<Body>
<getArrayLength>
<item>x</item>
<item>x</item>
<item>x</item>
...
</getArrayLength>
</Body>
</Envelope>

The SOAP message had a
total size of approx. 1.8
MB. The message
processing induced a full
CPU load for more than
one minute and an
additional memory usage of
more than 50 MB.
Enlarging the message to
approx. 1.9 MB could
resulte in an out-of-memory
exception.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 130

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

4.1.4.5 Replay Attacks

In this attack an intruder intercepts a message and
then replays it back to a targeted agent. Appropriate
authentication techniques coupled with techniques
such as time stamp and sequence numbering the
messages can defend against replay attacks.

4.1.4.5.1 Session replay

An attacker steals messages off of the network and
replays them in order to steal a user's session to
accomplish authorized operations for this user by
an authorized manner.

4.2 Web services security

To secure Web services, a range of XML-based
security mechanisms are needed to solve problems
related to authentication, role-based access control,
distributed security policy enforcement, message
layer security that accommodate the presence of
intermediaries. This is a principal condition to make
Web services widely adopted, since no company
wants to risk exposing their applications and
business flows with no damage. Standardization
organizations are proposing specifications in order
to make these services more secure as traditional
Security techniques doesn’t provide security against
Application level communication as they works on
the Lower levels of the OSI stack of message
transfer specially on transport layer. The most
important standards are:

 XML Encryption
 XML Signature
 WS-Security
 WS-Policy
 WS-Security Policy
 WS Trust

Here we will present first the security requirements
for the web service architecture, the different
security approaches and models, give the detail of
the security standards and protocols and summarize
all of that.

4.2.1 Web Services Security Requirements

There are many security challenges for adopting
Web services. The objective is to create an
environment, where message level transactions can
be conducted securely in an end-to-end fashion
during transit and data storage. The requirements
for providing end-to-end security for Web services
are summarized in [15]:

Tab 2: Web service security requirements

Requirement Explanation
Authentication Authentication is needed in order to

verify the identities of the requester
and provider agents. In some cases,
the use of mutual authentication may
be needed since the participants may
not necessarily be directly connected
by a single hop. Several methods can
be used to authenticate services (can
be combined) including: passwords,
certificates, Lightweight Directory
Access Protocol (LDAP), Kerberos,
and Public Key Infrastructure (PKI)

Authorization Authorization is needed in order to
control access to resources. Once
authenticated, authorization
mechanisms control the requester
access to the requested resources on
the system

Data Integrity
and Data
Confidentiality

Data integrity techniques ensure that
information has not been altered, or
modified during transmission without
detection. Data confidentiality
ensures that the data is only
accessible by the intended parties.
Data encryption and digital signature
techniques are used for this purpose.
It must be verified in End-to-End
manner

Non-
Repudiation

It is a security service that protects a
party to a transaction against false
denial of the occurrence of that
transaction by another party. It used
to resolve probable disagreement.

Audit Trails

Audit trails are needed in order to
trace user access and behavior. They
can ensure system integrity through
verification. It is often not possible to
prevent the violation of obligations.
Instead, if an audit guard detects a
policy violation, some form of
retribution or remediation must be
enacted.

Distributed
Security
Policies

The architecture must be able to
provide a security policy and enforce
it across heterogeneous platforms
with varying constrains and privileges

4.2.2 Web services Security Model
The most used Web service security model is
described next. It helps to achieve securing the
integrity and confidentiality of the messages and for
ensuring that the service provider acts only on
requests in messages that express the claims
required by his policy and all of that as an end-to-
end security mechanism.

The model requires that a Web service can demand
that an incoming message prove a set of claims
(e.g., name, key, permission, role, etc.). The service
may ignore or reject any message arriving without

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 131

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

having the required claims. The required claims and
related information are called policy.

A requester can send messages with proof of the
required claims by associating security tokens with
the messages in order to prove that their sender has
the claim to demand the action. When a requester
does not have the required claims, the requester or a
component on its behalf can try to obtain the
necessary claims by contacting other Web services
called “Security Token Services”. These
components may in turn require their own set of
claims. Security token services broker trust between
different trust domains [13].

Figure 8: Web Service Security Model

4.2.3 Protocols and standards
Concretely, Web service security specification
includes a message security model that provides the
basis for the other security specifications. Layered
on this, WS-Security propose a policy layer which
includes a Web service endpoint policy (WS-
Policy), a trust model (WS-Trust), and a privacy
model (WS-Privacy). Together these initial
specifications provide the foundation upon which
secure interoperable Web services across trust
domains are established. For example, WS-Security
describes how to attach signature and encryption
headers to SOAP messages. It also describes how to
attach security tokens to messages. Next we will
see how all that works [15] [14].

4.2.3.1 WS-Security
Developed at
OASIS, this
standard defines a
SOAP extension
providing quality of
protection through
message integrity,
message
confidentiality, and
message
authentication.

Figure 9 : WSS integration in a

SOAP Message

It provides a general mechanism to associate
security-tokens with messages (UsernameToken,
BinarySecureToken, XML Tokens), describes how
to encode binary security tokens in messages and
includes enhancements to SOAP to provide quality
of protection mechanisms. Additionally, it also
describes how to include opaque encrypted keys.

The WSS specification defines an end to end
security framework that provides support for
intermediary security processing. Message integrity
is provided by using XML Signature in conjunction
with security tokens to ensure that messages are
transmitted without modifications. Message
confidentiality is granted by using XML Encryption
in conjunction with security tokens to keep portions
of SOAP messages confidential.
The WS-Security header is denoted in the XML
message as
<wsse:Security>
...
</wsse:Security>
WS-Security allows the service requester or
provider to encrypt and sign parts of a given
message. This allows for a flexible integration
where sensitive data may be encrypted and signed,
but because message-level security is not an all or
nothing proposition, the expense and complexity of
these security mechanisms may be limited to
specific message parts. The WS-Security header
contains timestamp, encryption, digital signature,
and security token data to provide message security
services [14]. These notions are exposed here:

4.2.3.1.1 Timestamp
The timestamp is included in the header for the
service provider to evaluate the length of time since
the claims (for example, authentication claims)
were made in the message and when the message is
read by the service provider. In an asynchronous
system such as an enterprise service bus or more
elaborate SOA orchestrations, significant time may
elapse between the time a message is generated by a
service and the time it reaches the implementation
consumer. One of the main uses of the WS-Security
message timestamp is to introduce some entropy in
the message to protect against replay attacks.
The timestamp also allows the service to stamp an
expiration date on the message’s claims so that the
service provider knows to accept claims only within
a given time parameter. For example, when
authorizing a payment on a credit card, a payment
system may hold a sum of money against a credit
card for a period of time; if the transaction is not
completed within the given time, a new
authorization may need to be generated.
The timestamp is represented in the XML message
in the WS-Security header [14]:

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 132

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

<wsse:Security>
<wsu:Timestamp>
 <wsu:Created >2006-08-
09T06:12:03Z</wsu:Created>
 <wsu:Expires >2006-08-
09T08:12:03Z</wsu:Expires>
</wsu:Timestamp>

</wsse:Security>

4.2.3.1.2 WS-Security token types
WS-Security headers may contain three different
types of security tokens: username, binary, and
XML tokens [14]:
 Username token: The username token is the

most basic type of security token in WS-
Security. The username token is a simple XML
description of the username the service claims
to represent. The basic username token is
unsigned, making it a weak assurance option
for protecting messages. The username token is
made stronger by signing it as part of the
message and by adding a password, either in
the form of a plaintext password (which would
be a poor choice for messages passed over any
communications channel that is not highly
secure, or arguably even over channels that are
considered to be very secure) or as a password
digest.

 Binary token: X.509 digital certificates and
Kerberos tickets are binary security tokens that
are encoded as binary and represented in XML
documents passed between the services. These
token types allow security architects to
integrate their existing identity and access
management systems, such as PKI, LDAP, and
Active Directory, into their webservices
applications. While X.509 and Kerberos can
provide higher assurance than username
tokens, they do add complexity to applications.
The balance that the software security architect
must seek is evaluating the number of systems
that are to be integrated that already use
security credentials from X.509 and Kerberos
systems.

 XML security tokens (SAML): WS-Security and
SAML both provide some similar solutions in
web services security, and in some cases may
be used instead of each other. WS-Security is
able to leverage SAML as an XML security
token type. SAML’s security model
uses assertions that are mediated between an
assertion producer and assertion consumer,
which is conceptually similar to what the WS-*
model calls claims. WS-Security provides the
framework to bind SAML tokens to SOAP
messages.

4.2.3.2 XML Digital Signatures
It specifies a process for generating and validating
digital signatures expressed in XML, ensuring the
integrity and authenticity in XML documents. XML
signatures are designed for use in XML

transactions. It is a standard that was jointly
developed by W3C and the IETF (RFC 2807, RFC
3275). The standard defines a schema for capturing
the result of a digital signature operation applied to
arbitrary data and its processing. XML signatures
add authentication, data integrity, and support for
non-repudiation to the signed data.
XML Signature has the ability to sign only specific
portions of the XML tree rather than the complete
document. This flexibility can ensure the integrity
of certain portions of an XML document, while
leaving open the possibility for other portions of the
document to change.

4.2.3.3 XML Encryption
This standard specifies a process for encrypting
data and representing the result in XML such that it
is only discernable to the intended recipients and
opaque to all others. The data may be arbitrary data
(including an XML document), an XML element,
or XML element content. The result of encrypting
data is an XML Encryption element which contains
or references the cipher data.
It provides end-to-end security for applications that
need to exchange data in XML format in a secure
way, without concern that they can have their
contents revealed and misused by non authorized
parties.

4.2.3.4 SAML
SAML is an OASIS standard. It means Extensible
Markup Language standard (XML) that supports
Single Sign On. It defines a standardized XML
format for credential and security assertion data
SAML can be used in business-to-business and
business-to-consumer transactions. There are three
basic SAML components: assertions, protocol, and
binding. Assertions can be one of three types:
authentication, attribute, and authorization.
Authentication assertion validates the identity of the
user. The attribute assertion contains specific
information about the user. While, the authorization
assertion identifies what the user is authorized to
do.
The protocol defines how SAML request and
receives assertions. There are several available
binding for SAML. There are bindings that define
how SAML message exchanges are mapped to
SOAP, HTTP, SMTP and FTP among others. So
the authentication and authorization information
can be moved around systems within or between
organizations SAML is platform-independent and
language independent. A key objective of SAML is
to allow organizations to exchange date regardless
of the security system they use [16].

4.2.3.5 WS-Policy
The WS-Policy Framework defines a general
purpose model and corresponding syntax to
describe and communicate Web services policies to
allow Service consumers can discover the

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 133

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

information they need to know to be able to access
services from a Service Provider.

WS Security policy is an extension of WS-Policy
dedicated to describe the security requirements. It
defines a model and syntax to describe and
communicate security policy assertions within a
larger Policy Framework covers assertions for
security tokens, data integrity, confidentiality,
visibility, security headers and the age of a
message.

4.2.3.6 WS-Secure Conversation
It Defines mechanisms for establishing and sharing
security contexts, and deriving keys from security
contexts, to enable a secure conversation by
allowing the creation of sessions where several
SOAP messages can be exchanged without theneed
to renew the authentication and authorization
foreach (Holgersson and Soderstrom, 2005). This
standard is built on top of the WS-Security and
WS-Policy models to provide secure
communication between services on optimizing
resource use. For example, a signature may be
checked to establish the context, and that context is
set for either a period of time or an amount of
messages.
The initialization process for WS-
SecureConversation creates a
SecurityContextToken (SCT), which may be
created through WS-Trust. The SCT is passed with
each subsequent message, as opposed to passing a
normal security token with each message that must
be independently checked. The lifespan for an SCT
typically specifies a number of messages or a time
span.

4.2.3.7 WS-Trust
Defines how trust relationships are established,
allowing Web services interoperate safely. This can
be accomplished using the secure messaging
mechanisms of WS-Security to define additional
primitives and extensions for the issuance,
exchange and validation of security tokens. WS-
Trust also enables the exchange of credentials
within different trust domains.

In WS-Trust, a Security Token Server (STS) is used
to handle Request Security Token RST calls. The
security tokens supported by WS-Trust are the
same tokens supported by WS-Security: Username,
X.509, Kerberos, and SAML. In addition, since the
tokens are represented in XML, the message can
contain proprietary and homegrown security tokens
such as session cookies and mainframe tokens.

4.2.3.8 XACML
XACML is an Extensible Markup Language
standard (XML) based technology, developed by
OASIS for writing access control polices for
disparate devices and applications.

XACML includes an access control language and
request/response language that let developers write
policies that determine what users can access on a
network or over the Web. XACML can be used to
connect disparate access control policy engines.

4.2.4 WS security standards - the big picture
The WS-Security specification determines the use
of XML Encryption and XML Signature in SOAP
to secure communication. It is used either as an
alternative or an extension to using HTTPS to
secure the message exchanges. It covers two types
of mechanisms
 Communication Protection mechanisms: like

XML encryption and XML signature for the
integrity and confidentiality of the exchange,
and also timestamping protecting from replay
attacks.

 Access Control Mechanisms: for example
using SAML, which defines how identity,
attribute, and authorization assertions should be
exchanged among participating services in a
secure and interoperable way and also XACML
providing a complete authorization engine.

Layers like WS Trust and WS security Policy are
here to define standard manner to describe security
constrains and distribute security information
between heterogeneous and trusted domains.

Figure 10: WS security stack

This table, present the security requirement covered
by each standard cited below:

Table 3: WS security perimeter
Security requirement Standard

Integrity and non
repudiation

XML Signature

Confidentiality XML Encryption
Authentication and
identity federation

SAML, WS Trust

Authorization XACML
Expression of security
requirements

WS Policy

Security context among
transactions

WS-SecureConversation

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 134

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

5 Analysis
As seen in the previous chapters, WS-Security
provides some important security services for web
services and allows non intrusive integration on
existing systems. The WS-Security standard does
not address other issues related to security
infrastructure like policy storing and key
management which must be set up separately. Also
based on our analysis for the current standards, we
will describe in this section some lacks we fined to
address all the pains and the issues related to web
service security.

5.1 Channel security Vs Message security
Implementing WS security (message security
mechanism) becomes a necessity as it’s proven
regarding the arguments bellow that Channel
security is no longer enough:

 "Point-to-point" security: Any communication
with multiple "hops" requires establishing
separate channels (and trusts) between each
communicating node along the way. Trust
transitivity is not guaranteed, as trusts between
node pairs {A,B} and {B,C} do not
automatically imply {A,C} trust relationship.

 Lack of flexibility: Although Channel security
technologies are used in Web services security,
they are not sufficient for providing end-to-end
security, as Web services require more
granularities. In general, Web services needs
complex interactions that can include the
routing of messages between and across
various trust domains.

 Lack of interoperability: Not using standard
message security technology implies that
applications have to utilize proprietary
mechanisms for transmitting credentials, over
the secure channel. This can lead to altering the
clients/servers and prevent forming automatic
B2B service integration.

Unfortunately, the reality is that there still a lot of
Web Services that are protected by some form of
channel security mechanism, which alone might
suffice for a simple internal application. However,
in a B2B exchange and depending on the sensitivity
of the data, a combined protection would work
better for each specific case.

5.2 Complexity
WS Security standard aims to provide tools for
message-level communication protection, whereas
each message represents an isolated piece of

information, carrying enough security data to verify
message properties, such as: authenticity, integrity,
freshness, and to initiate decryption of any
encrypted message parts [17]. This manner is very
complex regarding to the traditional channel
security, which methodically applies pre-negotiated
security context to the whole stream. We note that
this type of service could be provided by WS-
SecureConversation implementation, but this
standard is steel not enough mature.

From the architectural view, the WS-Security
standard was conceived as a message-level toolkit
for securely delivering data for higher level
protocols. Those protocols rely on the transmitted
tokens to implement access control policies, token
exchange, and other types of protection. However,
taken alone, the WSS standard does not mandate
any specific security properties, and poorly
designed application can lead to subtle security
vulnerabilities and hard to detect problems as WS-
Security is not ready to use out of the box like SSL.
Developers need when using WS-Security to
determine when to sign and encrypt, as well as
decide on a token. They need also to decide on
which order these operations will be processed.

5.3 No Audit standard
In compliance with some regulation constraints,
audit must be implemented on sensitive web service
systems. Audits are also used when reconstructing
the chain of events that led to a certain problem.
Unfortunately, no standard auditing framework is
proposed to the webservice stack till now and so
these systems must be developed individually.
Additionally there is not an “out of the box” way in
most web services implementations to correlate
service requests and responses. This is a critical
lack in some business cases [14].

5.4 Bigger attack surface of WS-Security
Analyzing WS architecture and comparing it with
SSL let us to assure that the attack surface of WS-
Security is much bigger than that of SSL as with
message-oriented security; we need to have
messages before you can do anything. That's not the
case with SSL, where the attacker gets less to play
with. WS-Security acts as a target-rich environment
that is open for attack. In contrast, SSL with client
certificates keeps users out of the message details
and metadata unless authenticated.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 135

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

5.5 Lack of standard token and credentials
validation

WS-Security standard rely on the transmitted
tokens carrying credentials to implement access
control policies, However, the verification
mechanics of those credentials are completely at the
Web Service's discretion (example: taking the
supplied username and password's hash and
checking it against the backend user store, or
extracting subject name from the X.509 certificate
used for signing the message, verifying the
certificate chain and looking up the user in its
store). At the moment, there are no requirements or
standards which would guide how it should be
done. All depends on the application
implementation and the quality of the design
provided by the developers.

5.6 XML Encryption problems

Using WS-Security on Web Services could
introduces in some cases, new problems concerning
service availability specially when using XML
encryption standard supposing providing
confidentiality to sensible data. XML Encryption
can also mask message content from being
inspected correctly. As this encrypted content can
contain an intended attack like Oversize Payload,
Coercive Parsing or XML Injection. This kind of
attacks is unfortunately hard to detect as analyzing
the message structure by lunching schema
validation needs decryption first. In this case, here
are two possibilities on how a targeted system may
be affected. If decryption is done after message
validation, the malicious message content may pass
the message validation. If decryption is done before
message validation, the system resources could be
exhausted during message decryption because of
the XML and cryptographic processing. Thus, even
if a system is able to counter the unencrypted
attack, obfuscated attacks may affect a target
system anyway and its availability compromised.
[12] This kind of attacks is complex to generate but
must be considered by application architects.

5.7 Brokered Authentication problem

The client and the service provider do not attempt
to authenticate each other directly. They use an
intermediary security token as proof of successful
authentication. The client attaches this token to the

request and the service uses this token to
authenticate the client. That validates the client’s
identity and then processes the message [10]. This
manner makes the availability of Web services
depending of the availability of the identity
providers. These components must provide High
availability guarantee when used in B2B scenarios.

5.8 Adoption in Internet scenarios

In general WS security protocols are efficient in
communication between two trusted parties with an
established security association. These protocols are
not designed for protecting in an internet scenarios
where anonymous consumers could introduces
security vulnerabilities as the ability to establish
and maintain security policy agreements and
security data, such as user credentials, with
potentially unknown customers is not firmly
established. Consequently, we can say that the
infrastructure is not yet sufficient for secure public
internet transactions. Securing these transactions
depends first on risk analysis and a tradeoff with
the cost/effort that is required to implement custom
solutions.

5.9 Performances

Using WS-Security implies using signing and
encryption. Those operations are costly in matter of
resources (CPU and Memory) they can cut
application throughput between 5 percent and 50
percent. A solution for this overhead could be the
use of a dedicated hardware call XML Firewalls.

Those hardware systems provide performance as
they allow real-time processing of huge documents.
But they cannot always be used as an optimal
solution as this quality comes with a price and also
they cannot be easily integrated with the already
existing back-end software infrastructure.

6 Conclusion & Challenges

In this paper we have described the different
distributed architectures and specially the most used
architecture actually when integrating
heterogeneous information systems which is web
service.

We have described the nature and characteristics of
web services and have presented their advantages.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 136

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

We have seen that web services constitute a sort of
automated services which communicate via Internet
and rely on open Internet-based standards.

We have seen also that Web services are invoked
using messages instead of APIs or file formats. This
works due to the independence of the service
interface through the WSDL standard from the
implementation.

Nevertheless, web services are also subject to some
limitations which include low performance, weak
transaction management facilities but more critical,
an immature and incomplete security framework
although the presence of the WS Security
framework that we presented and give a critical
analysis.

This analysis revealed some points to treat end
some progress to do in order to get a sufficient trust
level when managing sensitive and valuable
business transactions. It is important de note that
Web Service security represents a key requirement
for today’s distributed interconnected electronic
world. To date, the problem of security has been
investigated very much in the context of
standardization efforts; these efforts, however, been
concentrated in adapting existing security
techniques, such as encryption, for use in Web
Services. The standards have also focused on
addressing the problem of security interoperability
through the development of standard formats for
security assertions, tokens and credentials. These
standards are grouped under the WS-Security
framework which is not inventing any new
techniques but they are providing a way how to use
the existing technologies with SOAP to secure the
communication of web services.

In the previous sections we demonstrate that the
usage of WS-Security does not automatically
ensures full security for Web Services. As shown
before, WS-Security defines mechanisms for
enabling integrity and confidentiality for Web
Service messages. However, several issues have not
yet been addressed while some of the
vulnerabilities are caused by implementation
weaknesses and exploit protocol lacks for example,
WS-Security does not define any direct
countermeasures against attacks like Denial-of-
Service. WS Security stack remain in all cases the

best starting point as it is well reviewed by industry
experts and regularly updated.

Throughout our analysis we recommend a number
of considerations to build a secure architecture
enhanced by defense-in-depth precautions:

Strong access control mechanism: A well-known
protective mechanism for service availability is
access control. Access control restricts access to the
service to trusted users. Additionally, access control
enables accountability, allowing excluding the
attacker. WS-Security defines security tokens for
authentication, which can be used for access control
systems. Of course, access control cannot fully
eliminate the threat of attacks. First of all, even
trusted communication partners can intentionally or
unintentionally execute attacks.

Solution design based on deployment scenario:
depending on the scenario constraints security
component must be well chosen. For example, due
to the fact that authentication needs a key
infrastructure; it is not applicable in B2C
relationships, as there is no wide-spread key
infrastructure among private users.

Service Assurance is critical: Even if the messages
are secured in transit, many of the depending on
services are not on our direct control, from the
security view. Even for services in our control,
there is still the possibility of insider threat. It’s
therefore critical to establish mechanisms for
detecting security violations through auditing and
the use of intrusion detection tools, along with
policies and procedures for recovery and response
when problems are detected. The need for good
security practices at the network, host, application,
personnel, processes, and physical layers is also
fundamental.

Safe implementation and configuration: It is
important to realize from the beginning that no
security standard by itself is going to provide
security to the message exchanges, it is the installed
implementations and the technical configuration,
which will be assure the required security rules. For
example, either requiring digital signature if a weak
key size is configured to be used the system could
remain vulnerable.

Heterogeneity improves Security: One security
benefit from web services is its interoperability

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 137

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

throughout several platforms. It means that a given
application may use many different technologies,
which may reduce the impact of an attack that
exploits a specific vulnerability in a particular
software or hardware platform. A heterogeneous
system can be more resilient in the face of attacks if
it is designed to provide diverse and redundant
means for assuring continuity of essential services.
A Well designed application must provide an
abstraction layer in front of the services so this can
protect it against cascade failure preventing the
access to the underlying technologies.

Regular security policy review: Web services
standards do not create effective policy (though
WS-Policy and WS-SecurityPolicy are used to
express policy) the creation and coordination of
security policies are the responsibility and
obligation of the participating organizations [14]. A
collaborative review of their security policies by
participating organizations can help to enhance the
global security level and resolve incompatibilities.

To resume, WS-Security is one of the important
building blocks for fending attacks but has to be
applied carefully. The solutions for the problems
cited below must be oriented on these directions:

 Prevention through the use of pre verified
security policy templates which group together
best practices for protecting incoming and
outgoing SOAP message and a mechanism for
regular review by experts

 Detection and reaction: through the emergence
of a standard in WS Audit that can provide an
Audit record aiming to prove what happened in
case of a violation and giving the possibility to
lunch compensation actions in reaction of the
consequences of these violations.

7 References
[1] Erl, Thomas. Service-Oriented Architecture,

Concepts, Technology, and Design. s.l. : Prentice
Hall Indiana, 2006. 0-13-185858-0.

[2] Gottschalk,Karl. “Web Services Architecture
Overview”. 2000.
http://www.ibm.com/developerworks/webservices/lib
rary/w-ovr/.

[3] Myerson, Judith. Web Services Architectures.
[4] Papazoglou, Michael. Web Services: Principles and

Technology. s.l. : Prentic Hall, 2008.

[5] Cerami, Ethan. Top Ten FAQs for Web Services.
2002. http://webservices.xml.com/lpt/a/1130.

[6] ABDALDHEM AL BRESHNE, PATRIK FUHRER,
JACQUES PASQUIER. Web Services Technologies:
State of the Art Definitions, Standards, Case Study.
September 2009

[7] IBM. WebSphere Business Integration Adapters.
http://publib.boulder.ibm.com/infocenter/wbihelp/v6r
xmx/index.jsp?topic=/com.ibm.wbia_adapters.doc/do
c/webservices/webservices17.htm.

[8] Point, Tutorials. What are Web serivces.
http://www.tutorialspoint.com/webservices/what_are
_web_services.htm.

[9] David, M. Rubin. Intro to Web Services. 2002.
http://www.softstarinc.
com/Methodology/Softstar%20Web%20Services%20
Presentation.ppt.

[10] D.Shravani1 P.Radhika2 Dr.P.Suresh Varma3
Dr.D.Sravan Kumar4 M.Upendra Kumar
Architecting Secure Service Oriented Web Services,
ACEEE Int. J. on Communication, Vol. 01, No. 03,
Dec 2010

[11] “Security Fundamentals for Web Services : Chapter
1” http://msdn.microsoft.com/en-
us/library/ff648318.aspx

[12] Meiko Jensen, Nils Gruschka and Ralph
Herkenhoener. A survey of attacks on web services.
Computer Science - Research and Development
(CSRD), Volume 24, Number 4, pages 185-197,
Nov.2009.

[13] IBM, Microsoft. “Security in a Web Services World:
A Proposed Architecture and Roadmap” April 7,
2002, http://msdn.microsoft.com/en-
us/library/ms977312.aspx

[14] Gunnar Peterson and Howard F. Lipson "Security
Concepts, Challenges, and Design Considerations for
Web Services Integration" https://buildsecurityin.us-
cert.gov/articles/best-practices/assembly-integration-
and-evolution--security-concept-challenge-and-
design-considerations-web-services-integration
Published: December 14, 2006

[15] “Web Services Architecture”
http://www.w3.org/TR/ws-arch/ W3C Working
Group Note 11 February 2004

[16] Jorgen Thelin. "XML Security Standards: Current
and Emerging Specifications attempting to provide
standardization of XML security infrastructure” Cape
Clear Software Inc. 2003

[17] “Web Services”. OWASP.
https://www.owasp.org/index.php/Web_Services

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 2, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 138

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

