
An Application of UML for Road Traffic Management System by

Implementing Extensive Mechanism: Stereotypes

Ruhi Saxena
 Faculty of Engineering (FET),

 Mody University of Science and Technology

 Monika Singh,
Faculty of Engineering (FET),

Mody University of Science and Technology

Abstract- This paper describe the extension

mechanisms of the UML in real time system and it

introduces a new approach of using Stereotypes and

shows its utility by implementing in road traffic

management system. This paper also discusses the

process of specifying, translating and verifying UML

specifications for road traffic management system.

Different kinds of existing UML Meta-models used in

road traffic management system are analyzed UML

traffic system by implementing the Stereotypes will be

created based on the real time system using the

analysis report.

Keywords- UML, Extensible mechanism, safety critical

system, road management system.

I. INTRODUCTION

The Unified modelling language (UML) [1] [3] has

become a de-facto standard notation for analysis

and design models of object oriented software

system. It has been observed that graphical

representation of model is easily accessible and

understandable to the user. The primary gap

between the developer and the user has been easily

fulfilled by the graphical description.

Some of the benefits of UML are listed below:

 UML helps visualise, and document

models of systems or processes, including

their structure and design, in a way that

meets the requirements specifications.

 Helps stakeholders understand what the

system will be and what are the possible

options available.

 It is language and platform independent.

 UML assembles the important aspects of a

system while omitting the rest -

abstraction mechanism - mapping of

elements onto a Model.

 UML allows developers to quickly

assemble programs from existing

components and operations.

 It defines a wide set of concepts and

diagrams to communicate information

effectively. These are applicable to most

domains

In its current form UML is comprised of two major

components: a Meta-model and a notation

The Meta-model

UML is unique in that it has a standard data

representation. This representation is called the

metamodel. The meta-model is a description of

UML in UML. It describes the objects, attributes,

and relationships necessary to represent the

concepts of UML within a software application.

This provides CASE manufacturers with a standard

and unambiguous way to represent UML models

[2].

The Notation

The UML notation is rich and full bodied. It is

comprised of two major subdivisions. There is a

notation for modeling the static elements of a

design such as classes, attributes, and relationships.

There is also a notation for modeling the dynamic

elements of a design such as objects, messages, and

finite state machines

Table 1: Use of UML diagram for different level of

System properties

II. WHY WE NEED EXTENSIBLE

MECHANISMS

The graphical modeling elements and relationships

defined for UML diagrams are sometimes too

limited for certain modeling tasks [6]. The

following are the problems with the UML

diagrams:

 UML brings a set of notations and

concepts that meet the needs of typical

software modeling projects but some users

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 83

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

mailto:Dhariwal.monika@gmail.com
mailto:ruhi.saxena2011@gmail.com

have found UML unable to express their

modeling needs. (non software systems)

 Flexibility should be added to construct

and document more heterogeneous and

complex systems.

 UML lacks features that would allow

attaching non-semantic information to

models.

 Component models and architectural

frameworks (JavaBeans, CORBA

Component Model and COM+ cannot be

modelled easily with UML.

Therefore to overcome above mentioned problems

we need the extensible mechanisms.

III UML EXTENSIBILITY MECHANISMS

UML is an extensible language, in the sense it

provides mechanisms (stereotypes, tagged values,

and constraints) that allow introducing new

elements for specific domains if it is needed, such

as web applications, database applications, business

modeling, software development processes, etc.

Due to limitations of UML diagrams, it is then

desirable that the precision of the UML models can

be increased, to provide information for automated

analysis or to specify the intent of a diagram more

precisely.

UML extension mechanisms are used to extend

UML by:

 adding new model elements,

 creating new properties,

 and specifying new semantics

Moreover, it is often preferred that the UML can be

extended to create new domain-specific modeling

notations [4]. Currently, the two extension

mechanisms that exist for UML 2.1 are profiling,

also called a lightweight extension mechanism, and

a heavyweight mechanism, as defined by the

specification of the Meta Object Facility

(MOF)[5][4].

A. LIGHTWEIGHT EXTENSION

The lightweight extension mechanism uses profiles

to extend the UML. It consists of three main

constructs:

 stereotypes

 tagged values

 constraints

It is called a lightweight extension mechanism,

because it provides pure additions to the UML and

does not change anything to the semantics of the

metamodel elements, nor changes its structure nor

adds new elements [5]. Whether or not to choose a

lightweight metamodel extension technique

depends on a number of factors. According to

Desfray [6], a profile based technique should be

chosen when:

• The domain is not subject to consensus, many

variations and points of view exist.

• Many changes and evolutions may occur.

• The domain may be combined with other domains

in an unpredictable way.

• Models defined in the domain may be

interchanged with other domains.

Stereotypes

Among all, the stereotypes are most important. A

stereotype is a model element that denotes

additional values (based on tagged values),

additional constraints, and optionally a new

graphical representation (an icon). A stereotype

allows us to attach a new semantic meaning to a

model element. A stereotype is represented as a

string between a pair of guillemots (<<>>), but it

can also be rendered by a new icon.

Tagged Values

Just like a class has attributes, a stereotype may

have properties, which are referred to as tag

definitions. Once the stereotype is applied to a

model element, the values of these properties are

referred to as tagged values.

Tagged values are only supposed to extend model

elements as attributes of stereotypes [7]. Tagged

values can be useful for adding properties about

- code generation

- version control

- configuration management

- authorship

- etc.

Constraints

Besides tagged values, a stereotype may contain

constraints with which the extended model can be

restricted semantically. They are specified between

braces {and} and can be expressed in any kind of

language (e.g. English, OCL). A constraint is an

assertion and is therefore not executable. An

example of a predefined constraint is the

{required} constraint on the extension relationship

for stereotypes.

B. HEAVYWEIGHT EXTENSIONS

Whereas lightweight extensions can only provide

pure additions to the UML, heavyweight extensions

can also change the semantics of the UML. This is

done by explicitly adding new metaclasses and

other metaconstructors which can introduce new

behaviour [30]. This is in contrast with the

lightweight stereotypes, which can only extend

existing metaclasses and do nothing by themselves.

A heavyweight extension technique should be

applied when [4]:

• The domain is well defined and has a unique well

accepted set of main concepts.

• A model realized under the domain is not subject

to be transferred into other domains.

• There is no need to combine the domain with

other domains.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 84

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Because of the fact that a heavyweight extension

not just extends the language, but is also capable of

changing it, it can be discussed whether the

designation ‘extension’ is appropriate here. A

heavyweight ‘extension’ can even change the

complete syntax and semantics of a language and

thus essentially defines a new language. It is for

this reason that it is very hard to combine multiple

heavyweight extensions in a single model.

Different languages do not combine very well.

Furthermore, it is very hard for a tool to provide

support for heavyweight extensions.

IV. SAFETY CRITICAL REAL TIME SYSTEM

DOMAIN- ROAD TRAFFIC MANAGEMENT

SYSTEM (RTMS)

Road transportation is an important economic force

that faces many problems. Traffic congestion,

environmental pollution and safety are becoming

increasingly unaccepted by society. The

introduction of new infrastructure is important but

not sufficient. Traffic demand is increasing, while

constructing new road infrastructure is limited due

to environmental, social and financial constraints.

In order to cope with these challenges, a possible

solution is to manage and to control road traffic by

developing Road Traffic Management Systems

(RTMS).

RTMS make use of real-time data acquired from

the road network in order to reduce traffic

congestion and accidents, and to save energy and

preserve the environment [9].

The Road Traffic management System (RTMS) has

three active actors. Basically the Admin who uses

the dataset and give the complaints, important

suggestions which are under taken by the traffic

police. Traffic police maintains the information

which is provided by the users (Admin, vehicle

owners).

Based on the above scenario, the UML diagram is

implemented in figure 1, figure 2, and figure3.

Use case diagram (figure 1, figure 2) captures the

functional requirement of the system and it’s the

interaction between the actor the system.

Consider Figure 1 and Figure 2 which describes the

Use case diagram with basic function of RTMS

using the stereotypes:

Use case description:

1. Vehicle Owner:

 Login

 Complaints

 Licence received

Fig. 1: Use case Diagram of Vehicle owner

2. Traffic Police:

 Record Traffic Signals

 Control entire traffic

 Check and handle complaints

Fig. 2: Use case Diagram of Traffic Police

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 85

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Class diagram describes the static designs which in

turn help us to understand the functional

requirements of the system, how the system is

composed from the description of classes. A class

diagram shows a set of classes, interfaces

collaborations and their relationships.

Fig. 3: Class Diagram of RTMS

V. IMPORTANCE OF EXTENSIBLE

MECHANISM: SETEROTYPE IN SAFETY

CRITICAL APPLICATION

According to Kopetz, a real time safety critical

system is a computer system in which the

correctness of the system behaviour depends not

only on the logical results of the computations, but

also on the physical instant at which these results

are produced [8].

Stereotypes are one of the extensibility mechanisms

in UML. Example <<include>> <<extend>>

distinguish dependencies in use case diagrams. A

stereotype may be associated with a Class or

Association (or other model element) in the

definition of a profile.

 The main aspects in which a stereotype can modify

the metaclass definition are:

 Presentation such as, first character of

stereotype in lower case in front of

elements name enclosed in guillmets;

icon or display.

 Additional properties for classes and

attributes. The most important properties

for an attribute (in addition to the name)

are Type, Default Value, Multiplicity, and

Unique.

 Additional constraints: In a profile only

stereotypes can own constraints. The

constraint can be named. In the CASE tool

Rational Rose the constraints can be

written in Java or OCL syntax.

 Stereotypes can specialize or generalize

other stereotypes.

A common set of stereotypes for real-time system

design includes the following methods [10]:

 Subsystem: A subsystem is an abstraction

of a complex component.

 Passive Class: passive classes can only

change their state when they are requested

by other objects, by means of a method or

operation invocation.

 Protected Class: protected classes can

only Change their internal state through

atomic operations. They represent data or

other objects which are used by more than

one active object

 Cyclic Classes: Cyclic objects are used to

represent periodic behaviour. They have

an independent thread of control,

 Resource Classes: Data resources can be

represented with protected classes, but

there are other resources, like CPU, input

output devices, or memory, that impose

constraints on the system execution.

VI. CONCLUSION

In this paper, a detailed UML documentation for

road traffic management system using stereotypes

is given. The UML diagram used in the

documentation are Use Case and Class diagrams.

The UML extension mechanisms provide not only

a means for communication but also a framework

for the knowledge and experiences of the

individuals within a development environment.

Stereotype describes the behaviour/state of

individual objects. Use case diagram of different

user (Traffic Police, Vehicle Owner, and Admin)

and Class diagram of road traffic management

system are explained in this paper by using the

stereotypes. However, functions of the road traffic

management system described in this paper are

limited to basic functionality.

REFERENCES

[1]. Grady Booch, James Rumbaugh, Ivar Jacobson, “The
Unified Modeling Language User Guide”, (1999).
[2]. Rumbaugh, I. Jacobson and G. Booch: The Unified
Modeling Language Reference Manual, Second Edition,
Addison Wesley, 2006.
[3]. B.Selic and J.Rumbaugh, “UML for modeling complex
real-time systems”, Technical report, Object Time, 1998.
[4]. Jorge Enrique Pérez-Martínez, “Heavyweight
extensions to the uml metamodel to describe the c3
architectural style”, Software Eng. Notes, 2003.

[5]. David S. Rosenblum, “Lightweight Extension
Mechanisms for UML”, Lecture notes Advanced Analysis
and Design (GS02/4022), 2005.
[6]. Phillippe Desfray, “UML Profiles versus Metamodel
extensions: An ongoing debate”, 2000.
[7]. OMG, “Unified Modeling Language: Infrastructure
version 2.0 formal/05-07-05”, Object Management Group,
March 2006.

[8]. Hermann Kopetz, “Real-Time Systems, Design
Principles for Distributed Embedded Applications.UML

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 86

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

2003-theunified modeling language: modeling languages
and applications”, 6th international conference, San
Francisco, CA, USA, October 20-24, 2003: proceedings.
[9]. B.Selic and J.Rumbaugh: UML for modeling complex
real-time systems, Technical report, Object Time, 1998.

[10]. Abdelouahed Gherbi and Ferhat Khendek, “UML
Profiles for Real-Time Systems and their Application”, in
Journal of Object Technology, vol.5, 2006.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 87

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

