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Abstract: 

Exploring the impact of change requests applied on a software 
maintenance project helps to forecasts the fault-proneness of the 
change request to be handled further, which is either a bug fix or 
a new feature request. In practice the major development 
community stores change requests and related data using bug 
tracking systems such as bugzilla. These data, together with the 
data stored in a versioning system, such as Concurrent 
Versioning Systems, are a valuable source of information to 
create descriptions and also can perform useful analyses. In this 
paper we propose a novel knowledge based approach to assess 
the impact of the change request by the Change Request artifacts 
derived in our earlier work. The proposed model can be labeled 
as Assessment of Change Request Impact towards Fault 
Proneness (CRAI2FP). The method CRAI2FP exploits 
information retrieval algorithms to identify the influenced part of 
the code, architecture, modules and structure against the devised 
change request. And further evaluates the change impact value of 
the Change Request Artifacts towards fault proneness. The 
proposed method is evaluated by applying on known open source 
projects concurrent versioning and Change request logs. 

Keywords: Defect forecasting, product metrics, change request, 
artifacts, concurrent versioning system, fault proneness, SDLC, 
risk prediction 

1. Introduction:

The present open source projects are letting to access the 
version histories under free of cost, which is volume wise 
very high. This version history helps to extract the 
information regarding the progress of stages and strategies 
of that project development scenario, also provides 
information of the time and resource related to a change 
acquired.  In recent literature related to software 
engineering and development, we can observe the 
extended role of this version history. Few of such 
developments are, using to access the change proliferation 
[1]; examining the impact of the bugs [2], accessing 
complexities of software [3], and also can use to access the 
reusability[4][5]. 

The said issues [1][2][3][4][5] issues usually raised due to 
analyzing the “outcome of the development” instead of 

“process of the development”. In related to this, the 
research work devised in [2] concluded that fault 
proneness is proportional to the count of code changes 
applied. The research article [1] devised a strategy that 
extracts patterns from changes registered in version history 
and the same used to recognize the tuples of the code need 
to be modified in related to a modification required. In this 
regard in our earlier effort we defined chain of change 
request artifacts [24]. Further in this paper we propose a 
novel statistical approach to assess the impact of change 
request towards fault proneness. In this regard a change 
request artifact impact analysis model is devised. In 
preprocess stage we extract the effected dependencies, 
architecture, inheritance levels, sources and structure 
against change, which is by using information retrieval 
techniques. We use the development history log managed 
by the CVS [6], which is one of the popular product 
related to versioning system, and also we consider a bug 
tracking system called Bugzilla [7]. The main 
contributions of the proposed Change Request Assessment 
towards fault proneness are: 

o Extracting modules, dependencies, architecture,
inheritance levels, sources and structure at
preprocessing level, which is using information
retrieval technique.

o Assessing the impact of Change Request Artifacts
such as
 Dependency relation change impact
 Structure Change Impact
 Sources change impact
 Inheritance change Impact
 component or object Coupling change impact

o And further Change Request Impact towards fault
proneness will be assessed

2. Related Work

The classification schemes with characteristics described 
in following listing are used in general to classify the 
impacts of the change requests, which in turn help to 
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estimate the scope of a risk due to the requests related to 
software.  

o Concluding the hazards connected with change 
request and recognizing the possibility of considering 
change request.  

o Letting to categorize changes by depend on divergent 
decisive factors such as the change basis, change 
form, the influential area of the change, and the 
change influence. 

o Letting to devise common process to handle changes 
that categorized as analogous [8]. 

The work devised in [9] attempted to trace the occurrence 
ratio of the divergent maintenance activities usually 
practice by the software development communities. The 
research article [10] also related to the same idea. With 
assessment of these efforts [9][10] the changes 
categorically identified as a change related to the request 
of correcting an issue that went wrong, adapting a service 
or resource that missed, perfecting the service and 
preventing the possible pitfalls. The changes considered 
during the life cycle of the software development are 
categorized as changes related to Perfection. In general 
these changes are centric towards attaining perfection in 
requirements devised. The change requests related to 
noticed bugs attain the demand of correction. The change 
requests related to environmental and other functional 
issues such as version compatibility, component 
compatibility categorically concluded as adaptive change 
requests [10]. Change requests related to rectifying the 
instable states noticed in given software categorized as 
preventive [11]. 

The change request process flow listed below is devised in 
research article [12]: 

1. Need of the change that requested should be 
formalized 

2. Assess viability and consequences of the 
requested change 

3. Trace and allocate the desired resources to assess 
and implement the said change request  

4. Devise a strategy to handle the requested change 
5. Devise a methodology to apply the strategy 

explored in previous step 
6. Commence to handle the requested change  

The consequences of changes applied on inheritance 
structure were analyzed in [13]. The changes that lead to 
consequences related to process and structure of the 
system were categorically identified in [12]. 

The process of fault prediction through the analysis of 
dependencies was devised in [15]. The model explored in 
[15] is able to recognize the proportionality between 

dependencies and faults. In this regard dependency 
structure devised in [14] is taken into consideration. As 
plotted in [14], the syntactic dependencies is category of 
product metrics that are related to direct dependencies, and 
product metrics related to transitive coupling are comes 
under rational dependencies. By considering these 
categories of process metrics, the model devised in [15] 
able to explore the proportionality between these process 
metrics and bugs. The empirical study found in [15] 
concluding that transitive dependencies are more fault 
prone compared to direct dependencies. In turn the same 
empirical study confirming that alone product metrics are 
not significant to bug forecasting and influences of the 
changes related to bugs fix and enhancement. 

A review of all empirical studies from 1995 to 2010 to 
predict software fault-proneness with a specific focus on 
techniques used is explored in [23]. A machine learning 
model devised in [22] to discover the association among 
OO metrics such as CK-Metrics and fault-proneness and 
its severity.  In this regard the model devised in [22] is 
using the logistic regression to define the relation between 
OO-metrics and fault-proneness.  The results were 
analyzed using open source software. Further, the 
performance of the predicted models was evaluated by 
ROC analysis. Researchers have successfully applied 
fuzzy logic in software engineering disciplines such as 
effort estimation, project management.  In this regard 
Handa et al [20] devised Fuzzy Logic for software metrics 
to predict the fault proneness. Chandra et al [19] devised 
an empirical study to evaluate the proportionality among 
MOOD metrics and quality of the product. 

However, tracing the influenced sections due to requested 
change consequences is intricate. The model referred as 
Static analysis [18] is said to be extracts false positives and 
demands countable additional computation time. The other 
analytical model called dynamic analysis [19] able to 
confines bound areas in adaptive manner, but it often fails 
to recognize infrequently used but affected areas. In 
practical, the dynamic analysis is not adaptable more 
often. A model devised in [20] able to trace the effected 
sections related to the given change request, but it 
performs only by prior information of the module to which 
the requested change is related. The prior knowledge of 
the module that related to given change leads to raise the 
complexity to determine the affected sections with 
minimal false positives. 

Henceforth here in this paper we propose a novel 
statistical approach to assess the impact of change request 
towards fault proneness, which is measuring based on the 
impacts of effected change request artifacts devised in our 
earlier work [24]. 

 

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 180

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.



3. Assessing Change Request Impact 
Towards Fault Proneness 

Here in this section we describe the proposed Assessment 
approach of Change Request Impact towards fault 
Proneness.  Initially preprocessing will be done to identify 
the change request artifacts influenced by the given change 
request. In this regard an information retrieval technique 
will be used, which is described in following sub section. 

3.1 The Task 

The maintenance phase of software life cycle is critical as 
it deals with potential change requests. The updates 
applied to the software against to these change requests 
may leads to fault proneness. In particular, after 
considerable number potential changes made the fault 
proneness of further change requests increases.  
Henceforth, a practice of forecasting the possible fault 
proneness of a change request is worthy. 

3.2 The approach 

A learning strategy is adapted in our proposed model that 
attempts to forecast the fault proneness of a change request 
made. In this process the devised model calculates the 
weights of the change request artifacts (see figure1 for 
listing of those artifacts), which is based on the change 
impacts observed against to earlier change requests. 

 

3.3 The input source of the process 

A software tool such as bugzilla [2] is used to handle 
change requests. Any authorized individual involved 
with that software can request a change. In common, 
the structure of a change request in any of such tools 
contains long and short descriptions. These 
descriptions are taken as primary input to identify the 
requested change. The versioning systems such as 
concurrent versioning systems (CVS) [6] are used to 
log the every event (such as the details of lines of 
code modified, modified by whom and when) 
occurred during the software development and 
updates. The descriptions available in these versioning 
systems are taken as input to estimate the impacts of 
earlier change requests considered and applied. 

3.4 Extracting change request type and related 
change request artifacts:  

Extract short and long descriptors of the change 
request then apply text processing steps such as 

 Tokenizing: split the short and long descriptors in 
to words 

 Stop word removal: remove stop words such as 
the, and, of, a…. 

 Stemming: remove tense and ing-forms from the 
words 

 And eliminating the duplicates: remove duplicate 
words and explore the final attributes labeled as 
descriptive tokens. 

Then extract the work descriptors from versioning system 
and rank these descriptors in descending order according 
to frequency of the descriptive tokens. The descriptor with 
highest frequency of descriptive tokens will be ranked 
high. 

Depend on the highly compatible descriptors, explore the 
change request artifacts figured in fig 1 

 

Figure 1: The Change request artifacts and their connected 
flow [24] 

Top Level Artifact is “motivation of a change” and it 
represents either “new feature” or “bug fix”.  

The second level artifacts of “feature request” are explored 
here 

1. Refactor  
2. Functional 
3. Architectural 

The second level Artifacts of “Bug Fix” are explored here: 

1. Preventive 
2. Perfective 
3. Corrective 
4. Adaptive 

The third Level Artifacts that are common for all second 
level artifacts are listed here: 

1. Changes in Source code 
2. Changes in Inheritance levels 
3. Changes in component or Object coupling 
4. Changes in dependency relations 
5. Decomposition of Structure 
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3.5 Estimating the artifacts fault prone weights: 
 
3.5.1 First Level  

The first level artifact weights have been measured as 
number of revisions occurred due to the faults emerged 
against for each change request.  

Let icrb is the 
thi bug fix request and ( )irc crb is the 

revision count of icrb , which is 1  represents the 

number of times software update occurred while fixing the 

bug represented by icrb .   The set of bug fix requests 

found in the change request log can be referred as  

1 2 1{ , ,....... , ,..... }b i i nCR crb crb crb crb crb   

And set of software update count related to bCR can be 

referred as 

1 2 1{ ( ), ( ),...... ( ), ( ),..... ( )}b i i nRCCR rc crb rc crb rc crb rc crb rc crb . 

In similar manner, let icrf is the 
thi change request related 

to new feature and ( )irc crf is the number revision 

occurred due to defects emerged while adding new feature 

request related to icrf . The set of feature enhancement 

related change requests found in change-request-log   can 
be referred as  

1 2 1{ , ,....., , ,.... }f i i nCR crf crf crf crf crf   

And set of software update count related to fCR can be 

referred as 

1 2 1{ ( ), ( ),...... ( ), ( ),..... ( )}f i i nRCCR rc crf rc crf rc crf rc crf rc crf . 

The fault prone weight of each change request (first level 
artifacts) will be defined as follows: 

Since the increased number of software update revisions 
indicates the increased fault prone weight, therefore the 

fault prone weight of icrb and icrf can be measured 

respectively as 

1
( ) 1

( )
i

i

fpw crb
rc crb

   (Fault prone weight of the 

bug fix) 

1
( ) 1

( )
i

i

fpw crf
rc crf

  (Fault prone weight of the 

feature enhancement) 

And the average fault prone weight of the bug fix change 

request ( )bfpw CR and feature enhancement change 

request ( )ffpw CR  can be measured respectively as 

follows 

1

( )

( )
| |

n

i
i

b

b

fpw crb

fpw CR
CR




 

1

( )

( )
| |

n

i
i

f

f

fpw crf

fpw CR
CR




 

3.5.2  Second Level Artifact fault proneness 
Weights 

The fault prone weight of bug fix second level artifacts will 
be defined as follows: 

In a similar approach has been applied to find the fault 
prone weights of the second level artifacts, description is 
follows 

Let 1 2 1( ) { , ,...., , ,...., }b i i nCR pr crb crb crb crb crb is the set bug 

fix requests comes under the preventive artifact and 

1 1 1( ) { ( ), ( ),...., ( ), ( ).... ( )}b i i nRCCR pr rc crb rc crb rc crb rc crb rc crb

is the set of revision counts occurred for respective change 
request of preventive artifact 

The ( ) ( )pr ifpw crb can be found as follows:  

( )

1
( ) 1

{ ( ) ( ) ( )}
pr i

i i b

fpw crb
rc crb rc crb RCCR pr

 
 

 

The average fault prone weight of the bug fix requests 
under second level preventive artifact can be measured as 
follows: 

( )

1

{ ( ) | ( )}

( ( ))
| ( ) |

n

pr i i b

i
b

b

fpw crb crb CR pr

fpw CR pr
CR pr








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And the similar way can be considered to measure the 
fault prone weight of the bug fix requests comes under 
other second level artifacts, the description follows 

The fault prone weight of bug fix request icrb that comes 

under perfective artifacts can be referred as 

( ) ( )pe ifpw crb , and the it can be measured as 

( )

1
( ) 1

( )
pe i

i

fpw crb
rc crb

   such that 

( )i bcrb CR pe and ( ) ( )i brc crb RCCR pe  

And the average fault prone weight of the bug fix requests 
under second level perfective artifact 

( )
1

{ ( ) | ( )}

( ( ))
| ( ) |

n

pe i i b
i

b

b

fpw crb crb CR pe

fpw CR pe
CR pe








 

 The fault prone weight of bug fix request icrb that comes 

under corrective artifacts can be referred 

as ( ) ( )co ifpw crb , and the it can be measured as 

( )

1
( ) 1

{ ( ) ( ) ( )}
co i

i i b

fpw crb
rc crb rc crb RCCR co

 
 

  

And the average fault prone weight of the bug fix requests 
under second level corrective artifact 

1

{ ( ) | ( )}

( ( ))
| ( ) |

n

i i b
i

b

b

fpw crb crb CR co

fpw CR co
CR co








 

The fault prone weight of bug fix request icrb that comes 

under adaptive artifacts can be referred as ( ) ( )ad ifpw crb , 

and it can be measured as 

( )

1
( ) 1

{ ( ) ( ) ( )}
ad i

i i b

fpw crb
rc crb rc crb RCCR ad

 
 

  

And the average fault prone weight of the bug fix requests 
under second level perfective artifact 

1

{ ( ) | ( )}

( ( ))
| ( ) |

n

i i b
i

b

b

fpw crb crb CR ad

fpw CR ad
CR ad








 

The fault prone weight of second level artifacts of “feature 
enhancement” will be defined as follows: 

In a similar approach that described for bug fix second 
level artifacts has been applied to find the fault prone 
weights of the second level artifacts of feature 
enhancement, description is follows 

Let 1 2 1( ) { , ,...., , ,...., }f i i nCR rf crf crf crf crf crf is 

the set of feature requests comes under the refactor artifact 
and  

1 1

1

( ) { ( ), ( ),....,

......, ( ), ( ).... ( )}

f

i i n

RCCR rf rc crf rc crf

rc crf rc crf rc crf


 

is the set of revision counts occurred for respective change 
request of refactor artifact 

The ( ) ( )rf ifpw crf can be found as follows: 

( )
1

( ) 1
{ ( ) ( ) ( )}

rf i
i i f

fpw crf
rc crf rc crf RCCR rf

 
 

 

The average fault prone weight of the feature requests 
under second level refactor artifact can be measured as 
follows: 

( )

1

{ ( ) | ( )}

( ( ))
| ( ) |

n

rf i i f

i
f

f

fpw crf crf CR rf

fpw CR rf
CR rf








 

And the similar way can be considered to measure the 
fault prone weight of the feature requests comes under 
other second level artifacts, the description follows 

The fault prone weight of feature request icrf that comes 

under functional artifacts can be referred 

as ( ) ( )fu ifpw crf , and it can be measured as 

( )

1
( ) 1

{ ( ) ( ) ( )}
fu i

i i f

fpw crf
rc crf rc crf RCCR fu

 
 

  

And the average fault prone weight of the feature requests 
under second level functional artifact 
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( )
1

{ ( ) | ( )}

( ( ))
| ( ) |

n

fu i i f
i

f

f

fpw crf crf CR fu

fpw CR fu
CR fu








 

 The fault prone weight of feature request icrf that comes 

under architectural artifact can be referred 

as ( ) ( )ar ifpw crf , and the it can be measured as 

( )

1
( ) 1

{ ( ) ( ) ( )}
ar i

i i f

fpw crf
rc crf rc crf RCCR ar

 
 

  

And the average fault prone weight of the feature requests 
under second level architectural artifact 

1

{ ( ) | ( )}

( ( ))
| ( ) |

n

i i f

i
f

f

fpw crf crf CR ar

fpw CR ar
CR ar








 

 

In a glance 

 ( ( )), ( ( )), ( ( )) ( ( )b b b bfpw CR pr fpw CR pe fpw CR co fpw CR ad   and  

are fault prone weights of the second level bug fix 
artifacts called preventive, perfective, corrective and 
adaptive respectively, 

 and ( ( )), ( ( )), ( ( ))  and f f ffpw CR rf fpw CR fu fpw CR ar are 

fault prone weights of the feature request second level 
artifacts called refactor, functional, architectural 
respectively. 

3.5.3  Third level artifact fault proneness 
weights 

The model devised to measure the fault proneness weights 
of the first and second level artifacts can be considered to 
find fault prone weights for third level artifacts. Not like in 
second level artifacts, the third level artifacts are same for 
all change requests called bug fix and feature 
enhancement. Hence forth the fault proneness weights 
measures under the context of all types of change requests. 

Let CR be the set of change requests 

representing 1 2 1{ , ,...., , ,... }i i ncr cr cr cr cr . And 

, , , ,sc iht oc dr strRCCR RCCR RCCR RCCR RCCR are 

representing set of revisions of source code updates 

( scRCCR ), inheritance updates ( ihtRCCR ), object 

coupling updates ( ocRCCR ), dependency relation updates 

and structure updates ( strRCCR ) respectively.  

The 

scRCCR represents

1 2 1{ ( ), ( ),..., ( ), ( ),..., ( )}sc sc sc i sc i sc nrc cr rc cr rc cr rc cr rc cr , 

here ( )sc irc cr indicates the set of source code update 

revisions required for change request icr . 

The 

ihtRCCR represents

1 2 1{ ( ), ( ),..., ( ), ( ),..., ( )}iht iht iht i iht i iht nrc cr rc cr rc cr rc cr rc cr , 

here ( )iht irc cr indicates the set of inheritance update 

revisions required for change request icr . 

The 

ocRCCR represents

1 2 1{ ( ), ( ),..., ( ), ( ),..., ( )}oc oc oc i oc i oc nrc cr rc cr rc cr rc cr rc cr , 

here ( )oc irc cr indicates the set of object coupling update 

revisions required for change request icr . 

The 

drRCCR represents

1 2 1{ ( ), ( ),..., ( ), ( ),..., ( )}dr dr dr i dr i dr nrc cr rc cr rc cr rc cr rc cr , 

here ( )dr irc cr indicates the set of dependency relation 

updates revisions required for change request icr . 

The 

strRCCR represents

1 2 1{ ( ), ( ),..., ( ), ( ),..., ( )}str str str i str i str nrc cr rc cr rc cr rc cr rc cr , 

here ( )str irc cr indicates the set of object coupling update 

revisions required for change request icr . 

And then the fault proneness weight of each change 
request under third level artifacts (source code updates, 
inheritance update, object coupling update, dependency 
relation update and structural update) measures as follow: 

Fault proneness weight of source code update artifact for 

change request icr is 

1
( ) 1

{ ( ) ( ) & ( ) 1}
sc i

sc i sc i sc sc i

fpw cr
rc cr rc cr RCCR rc cr

 
  

 

Average fault proneness weight of source code update 
artifact for change request set CR is 
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1

{ ( ) & ( ) 1}

( )
| |

n

sc i i sc i

i
sc

fpw cr cr CR rc cr

fpw CR
CR



  




 

Fault proneness weight of inheritance update artifact for 

change request icr is 

1
( ) 1

{ ( ) ( ) & ( ) 1}
iht i

iht i iht i iht iht i

fpw cr
rc cr rc cr RCCR rc cr

 
  

 

Average fault proneness weight of inheritance update 
artifact for change request set CR is 

1

{ ( ) & ( ) 1}

( )
| |

n

iht i i iht i

i
iht

fpw cr cr CR rc cr

fpw CR
CR



  




 

Fault proneness weight of object coupling update artifact 

for change request icr is 

1
( ) 1

{ ( ) ( ) & ( ) 1}
oc i

oc i oc i oc oc i

fpw cr
rc cr rc cr RCCR rc cr

 
  

 

Average fault proneness weight of object coupling update 
artifact for change request set CR is 

1

{ ( ) & ( ) 1}

( )
| |

n

oc i i oc i

i
oc

fpw cr cr CR rc cr

fpw CR
CR



  




 

Fault proneness weight of dependency relation update 

artifact for change request icr is 

1
( ) 1

{ ( ) ( ) & ( ) 1}
dr i

dr i dr i dr dr i

fpw cr
rc cr rc cr RCCR rc cr

 
  

 

Average fault proneness weight of dependency relation 
update artifact for change request set CR is 

1

{ ( ) & ( ) 1}

( )
| |

n

dr i i dr i

i
dr

fpw cr cr CR rc cr

fpw CR
CR



  




 

Fault proneness weight of structural update artifact for 

change request icr is 

1
( ) 1

{ ( ) ( ) & ( ) 1}
str i

str i str i str str i

fpw cr
rc cr rc cr RCCR rc cr

 
  

 

Average fault proneness weight of structural update 
artifact for change request set CR is 

1

{ ( ) & ( ) 1}

( )
| |

n

str i i str i

i
str

fpw cr cr CR rc cr

fpw CR
CR



  




 

3.6 The Algorithmic approach of the CR 
assessment 

 Extract the CR state from Change Request 
submitted 

 Find CR-State is Enhancement or Bug 
 If CR-State is Bug then find bug-state 
o If bug-state is not repetitive then 

 Extract short and long descriptions of the bug 
explored 

 Preprocess the descriptions to extract the 
descriptive tokens 

 Extract versioning system work descriptions 
by the descriptive token compatibility and 
rank them based on the descriptive token 
frequency  

 Find that bug state is preventive, corrective 
or adaptive by the ranked descriptions. 

 Find the influenced dependents impact 
 Find the influenced structure impact 
 Find the Influenced Sources impact 
 Find the influence Inheritance structure 

impact 
 Find the influence component or object 

coupling impact 
o Else if CR-State is Enhancement 

 Extract short and long descriptions of the 
Enhancement explored  

 Preprocess the descriptions to extract the 
attributes  

 Extract work sheet descriptions by the 
attribute compatibility and rank them based 
on their comparison weights  

 Find that enhancement state is functional, 
architectural or refactor by the ranked 
descriptions.  

 Find the influenced dependents impact 
 Find the influenced structure impact 
 Find the Influenced Source impact 
 Find the influence Inheritance structure 

impact 
 Find the influence component or object 

coupling impact 
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Further the dependents relation change impact (DRCI) can 
be found as follows: 

| |

| |

cdr
DRCI

dr
 …. Eq 1. 

Here in this Eq 1, | |cdr is number of dependency 

relations changed, and | |dr is total number of dependency 

relations 

The Inheritance change impact (HCI)can be measured as 
follows: 

| | | |

| |

chl nhl
HCI

hl


 …Eq 2. 

Here in Eq 2, The | |chl is set changed inheritance levels, 

| |nhl is set of new inheritance levels and | |hl is set of all 

inheritance levels 

| | | |

| |

cco nco
OCHI

co


 … Eq 3. 

The Eq 3 is indicating the process of measuring Coupling 
Change Impact (CCI), here in this equation 

| |cco indicates the set of changed couplings, 

| |nco indicates the new couplings and | |co indicates the 

all available couplings count. 

Structure Update Impact (SUI) can be measured as 
follows: 

1
1SUI

DRCI HCI OCHI
 

 
… Eq 4. 

| | | |

| |

csl nsl
SCCI

sl


 … Eq 5. 

The Eq 5 indicates the process of measuring Source Code 

Change Impact (SCCI), here in eq 5, | |csl is set of 

changed source lines, | |nsl is set of new source lines and 

| |sl is total number of source lines. 

'' * ( ) * ( )

 * ( ) * ( )

  * ( )

str dr

oc iht

sc

CRI SUI fpw CR DRCI fpw CR

OCHI fpw CR HCI fpw CR

SCCI fpw CR

 

 



… Eq 6 

Here in Eq 6, "CRI indicates the third level change request 
impact, which is the sum of impacts of various third level 

artifacts are multiplied by the respective fault proneness 
weights.  

The feature enhancement change request impact fCRI can 

measured as follows: 

' 1
1

{ ''* ( ( ) ( ) ( ))}
f

rf f fu f ar f

CRI
CRI fpw CR fpw CR pw CR

 
 

… Eq 7 

Here in Eq7 '
fCRI is the change request impact of 

second level artifacts 

'

1
1

* ( )
f

f f

CRI
CRI fpw CR

  …. Eq 8 

Here in Eq 8 fCRI indicates the feature enhancement 

change request impact. 

The impact of the bug fix change request can be measured 
as 
follows

'

( ) ( ) ( ) ( )

1
1

{ ''* ( ( ) ( ) ( ) ( ))}
b

pr b pe b co b ad b
CRI

CRI fpw CR fpw CR fpw CR fpw CR
 

  

… Eq 9 

In Eq9 '
bCRI indicates the impact of second level 

bug fix artifacts 

'

1
1

{ * ( )}
b

b b

CRI
CRI fpw CR

  ….. Eq 10 

And finally equation determines the impact of a 

bug fix change request bCRI  

The Eq 7 is measuring the second level feature change 
request impact, the Eq 8 follows that measures first level 

feature change request impact. Here in Eq 7 ''CRI is 
multiplied by the sum fault proneness weights of all 
second level artifacts of the feature change request. In Eq 8 

'CRI is multiplied by the fault proneness weight of the 
feature change request. 

The Eq 9 is measuring the impact of second level change 
request artifacts of Bug Fix change request, The Eq 10 
follows that measures change request impact of the bug fix 

change request. Here in Eq 9 ''CRI is multiplied by the 
sum fault proneness weights of all second level artifacts of 

the Bug Fix change request. In Eq 10 'CRI is multiplied 
by the fault proneness weight of the first level artifact 
called Bug Fix. 
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The CRI value can be used to access the impact of 
change request towards fault proneness, which is as 
follows 

If 0.33CRI  CR is accessed as not fault prone 

If 0.33&& 0.66CRI CRI  then CR is assessed as 
Moderate to fault prone 

If CRI>0.66, CR is assessed as highly fault prone 

4. Empirical Analysis

We conducted experiments on 4 years old change request 
log and concurrent versioning log of an in house 
maintenance project. We make sure the heterogeneity in 
the number of change requests and their impact in various 
SDLC stages considered for experiments. We measured 
accuracy of accessing the change request artifact impact 
towards the fault proneness as follows: 

|CRI|
S(CRI)

| |CRI
 .... Eq 11 

Here in Eq 11 |CRI| indicates the change request impacts 
assessed by propose Statistical approach. 

| |CRI  Indicates the change request impacts that are 

actually observed in logs 
Here in this empirical study we observe that proposed 
statistical model performs better in predicting the degree 
of change request impact towards fault proneness, which 
stands with an approximate value of above 70%.  

4.1 Input Data characteristics 
The data that we used to analyze the performance of the 
proposed Statistical Analysis of Change Request Impact 
towards Fault Proneness is the change requests made to 
selected in house maintenance project. The change 
requests maintained using BUGZILLA, and Work 
descriptors of the software updates against change requests 
maintained in concurrent versioning system. The work 
specifications are customized such that they reflect the 
second and third level artifacts used in this proposal. The 
first level artifact information is extracted from the Change 
Request descriptors. The performance analysis done on 
over 500 change requests, out of that majority of CRs 
related to first level change request artifact called Bug Fix. 

4.2 Performance Analysis 

We used fault forecasting accuracy (the percentage of 
conceptually valid faults by the proposed CRAI2FP) as the 
main performance measure. In addition to measuring fault 
forecasting accuracy, the precision, recall, and F-measure 

were used to measure the performance; these are defined 
using Eq12, Eq13 and Eq14. 

t
pr

t f


 




…..  Eq12

Here in Eq12 the pr indicates the precision, t indicates

the true positives and f indicates the false positive

t
rc

t f


 




…..  Eq13 

Here in the Eq13, the ‘ rc ’ indicates the recall, ‘ f ’

indicates the false negative. 

2* *pr rc
F

pr rc



…… Eq14

Here in the Eq14, ‘ F ’ indicates the F-measure. 

Table 1: Precision, recall and F-measure values for faults 
actually rose in regard to change requests, faults proneness 
actually forecast by proposed CRAI2FP. 

Preci
sion 

Rec
all 

F-
Measu
re 

Faults proneness actually rose 
against Change Requests 

0.997
6 

0.9
983 

0.998 

Fault Proneness forecast by 
CRAI2FP 

0.997
2 

0.9
979 

0.997
25 

Fig 1: The comparison bar chart of the Precision, recall 
and F-measure values for faults actually rose in regard to 
change requests, faults proneness actually forecast by 
proposed CRAI2FP. 

5. Conclusion:

The work described in this paper is a knowledge based 
approach to assess the impact of change request artifacts 
impact towards fault proneness, in short referred as 
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CRAI2FP. The model devised here is using the Change 
Request Artifacts devised in our earlier work [24]. The 
state of fault proneness of the change request is forecasted 
by the proposed model with around more than 70% 
accuracy, which is explored by accessing 

accuracy ( )S CRI , precision pr , recall rc  and f-

measure F  in experimental study. This work motivates us 
to further research towards developing mining approaches 
to access the change request impact towards the fault 
proneness. 
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