
Assessment of Change Request Artifacts Impact towards
Fault Proneness

M.Rudra Kumar1 Dr.A.Ananda Rao2

1Annamacharya Institute of Technology and Sciences, Rajampet

2Professor,Director of IR&P,SCDE
2JNTU Anantapur,

Abstract:

Exploring the impact of change requests applied on a software
maintenance project helps to forecasts the fault-proneness of the
change request to be handled further, which is either a bug fix or
a new feature request. In practice the major development
community stores change requests and related data using bug
tracking systems such as bugzilla. These data, together with the
data stored in a versioning system, such as Concurrent
Versioning Systems, are a valuable source of information to
create descriptions and also can perform useful analyses. In this
paper we propose a novel knowledge based approach to assess
the impact of the change request by the Change Request artifacts
derived in our earlier work. The proposed model can be labeled
as Assessment of Change Request Impact towards Fault
Proneness (CRAI2FP). The method CRAI2FP exploits
information retrieval algorithms to identify the influenced part of
the code, architecture, modules and structure against the devised
change request. And further evaluates the change impact value of
the Change Request Artifacts towards fault proneness. The
proposed method is evaluated by applying on known open source
projects concurrent versioning and Change request logs.

Keywords: Defect forecasting, product metrics, change request,
artifacts, concurrent versioning system, fault proneness, SDLC,
risk prediction

1. Introduction:

The present open source projects are letting to access the
version histories under free of cost, which is volume wise
very high. This version history helps to extract the
information regarding the progress of stages and strategies
of that project development scenario, also provides
information of the time and resource related to a change
acquired. In recent literature related to software
engineering and development, we can observe the
extended role of this version history. Few of such
developments are, using to access the change proliferation
[1]; examining the impact of the bugs [2], accessing
complexities of software [3], and also can use to access the
reusability[4][5].

The said issues [1][2][3][4][5] issues usually raised due to
analyzing the “outcome of the development” instead of

“process of the development”. In related to this, the
research work devised in [2] concluded that fault
proneness is proportional to the count of code changes
applied. The research article [1] devised a strategy that
extracts patterns from changes registered in version history
and the same used to recognize the tuples of the code need
to be modified in related to a modification required. In this
regard in our earlier effort we defined chain of change
request artifacts [24]. Further in this paper we propose a
novel statistical approach to assess the impact of change
request towards fault proneness. In this regard a change
request artifact impact analysis model is devised. In
preprocess stage we extract the effected dependencies,
architecture, inheritance levels, sources and structure
against change, which is by using information retrieval
techniques. We use the development history log managed
by the CVS [6], which is one of the popular product
related to versioning system, and also we consider a bug
tracking system called Bugzilla [7]. The main
contributions of the proposed Change Request Assessment
towards fault proneness are:

o Extracting modules, dependencies, architecture,
inheritance levels, sources and structure at
preprocessing level, which is using information
retrieval technique.

o Assessing the impact of Change Request Artifacts
such as
 Dependency relation change impact
 Structure Change Impact
 Sources change impact
 Inheritance change Impact
 component or object Coupling change impact

o And further Change Request Impact towards fault
proneness will be assessed

2. Related Work

The classification schemes with characteristics described
in following listing are used in general to classify the
impacts of the change requests, which in turn help to

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 179

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

estimate the scope of a risk due to the requests related to
software.

o Concluding the hazards connected with change
request and recognizing the possibility of considering
change request.

o Letting to categorize changes by depend on divergent
decisive factors such as the change basis, change
form, the influential area of the change, and the
change influence.

o Letting to devise common process to handle changes
that categorized as analogous [8].

The work devised in [9] attempted to trace the occurrence
ratio of the divergent maintenance activities usually
practice by the software development communities. The
research article [10] also related to the same idea. With
assessment of these efforts [9][10] the changes
categorically identified as a change related to the request
of correcting an issue that went wrong, adapting a service
or resource that missed, perfecting the service and
preventing the possible pitfalls. The changes considered
during the life cycle of the software development are
categorized as changes related to Perfection. In general
these changes are centric towards attaining perfection in
requirements devised. The change requests related to
noticed bugs attain the demand of correction. The change
requests related to environmental and other functional
issues such as version compatibility, component
compatibility categorically concluded as adaptive change
requests [10]. Change requests related to rectifying the
instable states noticed in given software categorized as
preventive [11].

The change request process flow listed below is devised in
research article [12]:

1. Need of the change that requested should be
formalized

2. Assess viability and consequences of the
requested change

3. Trace and allocate the desired resources to assess
and implement the said change request

4. Devise a strategy to handle the requested change
5. Devise a methodology to apply the strategy

explored in previous step
6. Commence to handle the requested change

The consequences of changes applied on inheritance
structure were analyzed in [13]. The changes that lead to
consequences related to process and structure of the
system were categorically identified in [12].

The process of fault prediction through the analysis of
dependencies was devised in [15]. The model explored in
[15] is able to recognize the proportionality between

dependencies and faults. In this regard dependency
structure devised in [14] is taken into consideration. As
plotted in [14], the syntactic dependencies is category of
product metrics that are related to direct dependencies, and
product metrics related to transitive coupling are comes
under rational dependencies. By considering these
categories of process metrics, the model devised in [15]
able to explore the proportionality between these process
metrics and bugs. The empirical study found in [15]
concluding that transitive dependencies are more fault
prone compared to direct dependencies. In turn the same
empirical study confirming that alone product metrics are
not significant to bug forecasting and influences of the
changes related to bugs fix and enhancement.

A review of all empirical studies from 1995 to 2010 to
predict software fault-proneness with a specific focus on
techniques used is explored in [23]. A machine learning
model devised in [22] to discover the association among
OO metrics such as CK-Metrics and fault-proneness and
its severity. In this regard the model devised in [22] is
using the logistic regression to define the relation between
OO-metrics and fault-proneness. The results were
analyzed using open source software. Further, the
performance of the predicted models was evaluated by
ROC analysis. Researchers have successfully applied
fuzzy logic in software engineering disciplines such as
effort estimation, project management. In this regard
Handa et al [20] devised Fuzzy Logic for software metrics
to predict the fault proneness. Chandra et al [19] devised
an empirical study to evaluate the proportionality among
MOOD metrics and quality of the product.

However, tracing the influenced sections due to requested
change consequences is intricate. The model referred as
Static analysis [18] is said to be extracts false positives and
demands countable additional computation time. The other
analytical model called dynamic analysis [19] able to
confines bound areas in adaptive manner, but it often fails
to recognize infrequently used but affected areas. In
practical, the dynamic analysis is not adaptable more
often. A model devised in [20] able to trace the effected
sections related to the given change request, but it
performs only by prior information of the module to which
the requested change is related. The prior knowledge of
the module that related to given change leads to raise the
complexity to determine the affected sections with
minimal false positives.

Henceforth here in this paper we propose a novel
statistical approach to assess the impact of change request
towards fault proneness, which is measuring based on the
impacts of effected change request artifacts devised in our
earlier work [24].

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 180

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

3. Assessing Change Request Impact
Towards Fault Proneness

Here in this section we describe the proposed Assessment
approach of Change Request Impact towards fault
Proneness. Initially preprocessing will be done to identify
the change request artifacts influenced by the given change
request. In this regard an information retrieval technique
will be used, which is described in following sub section.

3.1 The Task

The maintenance phase of software life cycle is critical as
it deals with potential change requests. The updates
applied to the software against to these change requests
may leads to fault proneness. In particular, after
considerable number potential changes made the fault
proneness of further change requests increases.
Henceforth, a practice of forecasting the possible fault
proneness of a change request is worthy.

3.2 The approach

A learning strategy is adapted in our proposed model that
attempts to forecast the fault proneness of a change request
made. In this process the devised model calculates the
weights of the change request artifacts (see figure1 for
listing of those artifacts), which is based on the change
impacts observed against to earlier change requests.

3.3 The input source of the process

A software tool such as bugzilla [2] is used to handle
change requests. Any authorized individual involved
with that software can request a change. In common,
the structure of a change request in any of such tools
contains long and short descriptions. These
descriptions are taken as primary input to identify the
requested change. The versioning systems such as
concurrent versioning systems (CVS) [6] are used to
log the every event (such as the details of lines of
code modified, modified by whom and when)
occurred during the software development and
updates. The descriptions available in these versioning
systems are taken as input to estimate the impacts of
earlier change requests considered and applied.

3.4 Extracting change request type and related
change request artifacts:

Extract short and long descriptors of the change
request then apply text processing steps such as

 Tokenizing: split the short and long descriptors in
to words

 Stop word removal: remove stop words such as
the, and, of, a….

 Stemming: remove tense and ing-forms from the
words

 And eliminating the duplicates: remove duplicate
words and explore the final attributes labeled as
descriptive tokens.

Then extract the work descriptors from versioning system
and rank these descriptors in descending order according
to frequency of the descriptive tokens. The descriptor with
highest frequency of descriptive tokens will be ranked
high.

Depend on the highly compatible descriptors, explore the
change request artifacts figured in fig 1

Figure 1: The Change request artifacts and their connected
flow [24]

Top Level Artifact is “motivation of a change” and it
represents either “new feature” or “bug fix”.

The second level artifacts of “feature request” are explored
here

1. Refactor
2. Functional
3. Architectural

The second level Artifacts of “Bug Fix” are explored here:

1. Preventive
2. Perfective
3. Corrective
4. Adaptive

The third Level Artifacts that are common for all second
level artifacts are listed here:

1. Changes in Source code
2. Changes in Inheritance levels
3. Changes in component or Object coupling
4. Changes in dependency relations
5. Decomposition of Structure

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 181

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

3.5 Estimating the artifacts fault prone weights:

3.5.1 First Level

The first level artifact weights have been measured as
number of revisions occurred due to the faults emerged
against for each change request.

Let icrb is the
thi bug fix request and ()irc crb is the

revision count of icrb , which is 1 represents the

number of times software update occurred while fixing the

bug represented by icrb . The set of bug fix requests

found in the change request log can be referred as

1 2 1{ , ,....... , ,..... }b i i nCR crb crb crb crb crb

And set of software update count related to bCR can be

referred as

1 2 1{ (), (),...... (), (),..... ()}b i i nRCCR rc crb rc crb rc crb rc crb rc crb .

In similar manner, let icrf is the
thi change request related

to new feature and ()irc crf is the number revision

occurred due to defects emerged while adding new feature

request related to icrf . The set of feature enhancement

related change requests found in change-request-log can
be referred as

1 2 1{ , ,....., , ,.... }f i i nCR crf crf crf crf crf

And set of software update count related to fCR can be

referred as

1 2 1{ (), (),...... (), (),..... ()}f i i nRCCR rc crf rc crf rc crf rc crf rc crf .

The fault prone weight of each change request (first level
artifacts) will be defined as follows:

Since the increased number of software update revisions
indicates the increased fault prone weight, therefore the

fault prone weight of icrb and icrf can be measured

respectively as

1
() 1

()
i

i

fpw crb
rc crb

  (Fault prone weight of the

bug fix)

1
() 1

()
i

i

fpw crf
rc crf

  (Fault prone weight of the

feature enhancement)

And the average fault prone weight of the bug fix change

request ()bfpw CR and feature enhancement change

request ()ffpw CR can be measured respectively as

follows

1

()

()
| |

n

i
i

b

b

fpw crb

fpw CR
CR




1

()

()
| |

n

i
i

f

f

fpw crf

fpw CR
CR




3.5.2 Second Level Artifact fault proneness
Weights

The fault prone weight of bug fix second level artifacts will
be defined as follows:

In a similar approach has been applied to find the fault
prone weights of the second level artifacts, description is
follows

Let 1 2 1() { , ,...., , ,...., }b i i nCR pr crb crb crb crb crb is the set bug

fix requests comes under the preventive artifact and

1 1 1() { (), (),...., (), ().... ()}b i i nRCCR pr rc crb rc crb rc crb rc crb rc crb

is the set of revision counts occurred for respective change
request of preventive artifact

The () ()pr ifpw crb can be found as follows:

()

1
() 1

{ () () ()}
pr i

i i b

fpw crb
rc crb rc crb RCCR pr

 
 

The average fault prone weight of the bug fix requests
under second level preventive artifact can be measured as
follows:

()

1

{ () | ()}

(())
| () |

n

pr i i b

i
b

b

fpw crb crb CR pr

fpw CR pr
CR pr









IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 182

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

And the similar way can be considered to measure the
fault prone weight of the bug fix requests comes under
other second level artifacts, the description follows

The fault prone weight of bug fix request icrb that comes

under perfective artifacts can be referred as

() ()pe ifpw crb , and the it can be measured as

()

1
() 1

()
pe i

i

fpw crb
rc crb

  such that

()i bcrb CR pe and () ()i brc crb RCCR pe

And the average fault prone weight of the bug fix requests
under second level perfective artifact

()
1

{ () | ()}

(())
| () |

n

pe i i b
i

b

b

fpw crb crb CR pe

fpw CR pe
CR pe








 The fault prone weight of bug fix request icrb that comes

under corrective artifacts can be referred

as () ()co ifpw crb , and the it can be measured as

()

1
() 1

{ () () ()}
co i

i i b

fpw crb
rc crb rc crb RCCR co

 
 

And the average fault prone weight of the bug fix requests
under second level corrective artifact

1

{ () | ()}

(())
| () |

n

i i b
i

b

b

fpw crb crb CR co

fpw CR co
CR co








The fault prone weight of bug fix request icrb that comes

under adaptive artifacts can be referred as () ()ad ifpw crb ,

and it can be measured as

()

1
() 1

{ () () ()}
ad i

i i b

fpw crb
rc crb rc crb RCCR ad

 
 

And the average fault prone weight of the bug fix requests
under second level perfective artifact

1

{ () | ()}

(())
| () |

n

i i b
i

b

b

fpw crb crb CR ad

fpw CR ad
CR ad








The fault prone weight of second level artifacts of “feature
enhancement” will be defined as follows:

In a similar approach that described for bug fix second
level artifacts has been applied to find the fault prone
weights of the second level artifacts of feature
enhancement, description is follows

Let 1 2 1() { , ,...., , ,...., }f i i nCR rf crf crf crf crf crf is

the set of feature requests comes under the refactor artifact
and

1 1

1

() { (), (),....,

......, (), ().... ()}

f

i i n

RCCR rf rc crf rc crf

rc crf rc crf rc crf



is the set of revision counts occurred for respective change
request of refactor artifact

The () ()rf ifpw crf can be found as follows:

()
1

() 1
{ () () ()}

rf i
i i f

fpw crf
rc crf rc crf RCCR rf

 
 

The average fault prone weight of the feature requests
under second level refactor artifact can be measured as
follows:

()

1

{ () | ()}

(())
| () |

n

rf i i f

i
f

f

fpw crf crf CR rf

fpw CR rf
CR rf









And the similar way can be considered to measure the
fault prone weight of the feature requests comes under
other second level artifacts, the description follows

The fault prone weight of feature request icrf that comes

under functional artifacts can be referred

as () ()fu ifpw crf , and it can be measured as

()

1
() 1

{ () () ()}
fu i

i i f

fpw crf
rc crf rc crf RCCR fu

 
 

And the average fault prone weight of the feature requests
under second level functional artifact

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 183

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

()
1

{ () | ()}

(())
| () |

n

fu i i f
i

f

f

fpw crf crf CR fu

fpw CR fu
CR fu








 The fault prone weight of feature request icrf that comes

under architectural artifact can be referred

as () ()ar ifpw crf , and the it can be measured as

()

1
() 1

{ () () ()}
ar i

i i f

fpw crf
rc crf rc crf RCCR ar

 
 

And the average fault prone weight of the feature requests
under second level architectural artifact

1

{ () | ()}

(())
| () |

n

i i f

i
f

f

fpw crf crf CR ar

fpw CR ar
CR ar









In a glance

 (()), (()), (()) (()b b b bfpw CR pr fpw CR pe fpw CR co fpw CR ad and

are fault prone weights of the second level bug fix
artifacts called preventive, perfective, corrective and
adaptive respectively,

 and (()), (()), (()) and f f ffpw CR rf fpw CR fu fpw CR ar are

fault prone weights of the feature request second level
artifacts called refactor, functional, architectural
respectively.

3.5.3 Third level artifact fault proneness
weights

The model devised to measure the fault proneness weights
of the first and second level artifacts can be considered to
find fault prone weights for third level artifacts. Not like in
second level artifacts, the third level artifacts are same for
all change requests called bug fix and feature
enhancement. Hence forth the fault proneness weights
measures under the context of all types of change requests.

Let CR be the set of change requests

representing 1 2 1{ , ,...., , ,... }i i ncr cr cr cr cr . And

, , , ,sc iht oc dr strRCCR RCCR RCCR RCCR RCCR are

representing set of revisions of source code updates

(scRCCR), inheritance updates (ihtRCCR), object

coupling updates (ocRCCR), dependency relation updates

and structure updates (strRCCR) respectively.

The

scRCCR represents

1 2 1{ (), (),..., (), (),..., ()}sc sc sc i sc i sc nrc cr rc cr rc cr rc cr rc cr ,

here ()sc irc cr indicates the set of source code update

revisions required for change request icr .

The

ihtRCCR represents

1 2 1{ (), (),..., (), (),..., ()}iht iht iht i iht i iht nrc cr rc cr rc cr rc cr rc cr ,

here ()iht irc cr indicates the set of inheritance update

revisions required for change request icr .

The

ocRCCR represents

1 2 1{ (), (),..., (), (),..., ()}oc oc oc i oc i oc nrc cr rc cr rc cr rc cr rc cr ,

here ()oc irc cr indicates the set of object coupling update

revisions required for change request icr .

The

drRCCR represents

1 2 1{ (), (),..., (), (),..., ()}dr dr dr i dr i dr nrc cr rc cr rc cr rc cr rc cr ,

here ()dr irc cr indicates the set of dependency relation

updates revisions required for change request icr .

The

strRCCR represents

1 2 1{ (), (),..., (), (),..., ()}str str str i str i str nrc cr rc cr rc cr rc cr rc cr ,

here ()str irc cr indicates the set of object coupling update

revisions required for change request icr .

And then the fault proneness weight of each change
request under third level artifacts (source code updates,
inheritance update, object coupling update, dependency
relation update and structural update) measures as follow:

Fault proneness weight of source code update artifact for

change request icr is

1
() 1

{ () () & () 1}
sc i

sc i sc i sc sc i

fpw cr
rc cr rc cr RCCR rc cr

 
  

Average fault proneness weight of source code update
artifact for change request set CR is

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 184

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

1

{ () & () 1}

()
| |

n

sc i i sc i

i
sc

fpw cr cr CR rc cr

fpw CR
CR



  





Fault proneness weight of inheritance update artifact for

change request icr is

1
() 1

{ () () & () 1}
iht i

iht i iht i iht iht i

fpw cr
rc cr rc cr RCCR rc cr

 
  

Average fault proneness weight of inheritance update
artifact for change request set CR is

1

{ () & () 1}

()
| |

n

iht i i iht i

i
iht

fpw cr cr CR rc cr

fpw CR
CR



  





Fault proneness weight of object coupling update artifact

for change request icr is

1
() 1

{ () () & () 1}
oc i

oc i oc i oc oc i

fpw cr
rc cr rc cr RCCR rc cr

 
  

Average fault proneness weight of object coupling update
artifact for change request set CR is

1

{ () & () 1}

()
| |

n

oc i i oc i

i
oc

fpw cr cr CR rc cr

fpw CR
CR



  





Fault proneness weight of dependency relation update

artifact for change request icr is

1
() 1

{ () () & () 1}
dr i

dr i dr i dr dr i

fpw cr
rc cr rc cr RCCR rc cr

 
  

Average fault proneness weight of dependency relation
update artifact for change request set CR is

1

{ () & () 1}

()
| |

n

dr i i dr i

i
dr

fpw cr cr CR rc cr

fpw CR
CR



  





Fault proneness weight of structural update artifact for

change request icr is

1
() 1

{ () () & () 1}
str i

str i str i str str i

fpw cr
rc cr rc cr RCCR rc cr

 
  

Average fault proneness weight of structural update
artifact for change request set CR is

1

{ () & () 1}

()
| |

n

str i i str i

i
str

fpw cr cr CR rc cr

fpw CR
CR



  





3.6 The Algorithmic approach of the CR
assessment

 Extract the CR state from Change Request
submitted

 Find CR-State is Enhancement or Bug
 If CR-State is Bug then find bug-state
o If bug-state is not repetitive then

 Extract short and long descriptions of the bug
explored

 Preprocess the descriptions to extract the
descriptive tokens

 Extract versioning system work descriptions
by the descriptive token compatibility and
rank them based on the descriptive token
frequency

 Find that bug state is preventive, corrective
or adaptive by the ranked descriptions.

 Find the influenced dependents impact
 Find the influenced structure impact
 Find the Influenced Sources impact
 Find the influence Inheritance structure

impact
 Find the influence component or object

coupling impact
o Else if CR-State is Enhancement

 Extract short and long descriptions of the
Enhancement explored

 Preprocess the descriptions to extract the
attributes

 Extract work sheet descriptions by the
attribute compatibility and rank them based
on their comparison weights

 Find that enhancement state is functional,
architectural or refactor by the ranked
descriptions.

 Find the influenced dependents impact
 Find the influenced structure impact
 Find the Influenced Source impact
 Find the influence Inheritance structure

impact
 Find the influence component or object

coupling impact

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 185

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Further the dependents relation change impact (DRCI) can
be found as follows:

| |

| |

cdr
DRCI

dr
 …. Eq 1.

Here in this Eq 1, | |cdr is number of dependency

relations changed, and | |dr is total number of dependency

relations

The Inheritance change impact (HCI)can be measured as
follows:

| | | |

| |

chl nhl
HCI

hl


 …Eq 2.

Here in Eq 2, The | |chl is set changed inheritance levels,

| |nhl is set of new inheritance levels and | |hl is set of all

inheritance levels

| | | |

| |

cco nco
OCHI

co


 … Eq 3.

The Eq 3 is indicating the process of measuring Coupling
Change Impact (CCI), here in this equation

| |cco indicates the set of changed couplings,

| |nco indicates the new couplings and | |co indicates the

all available couplings count.

Structure Update Impact (SUI) can be measured as
follows:

1
1SUI

DRCI HCI OCHI
 

 
… Eq 4.

| | | |

| |

csl nsl
SCCI

sl


 … Eq 5.

The Eq 5 indicates the process of measuring Source Code

Change Impact (SCCI), here in eq 5, | |csl is set of

changed source lines, | |nsl is set of new source lines and

| |sl is total number of source lines.

'' * () * ()

 * () * ()

 * ()

str dr

oc iht

sc

CRI SUI fpw CR DRCI fpw CR

OCHI fpw CR HCI fpw CR

SCCI fpw CR

 

 



… Eq 6

Here in Eq 6, "CRI indicates the third level change request
impact, which is the sum of impacts of various third level

artifacts are multiplied by the respective fault proneness
weights.

The feature enhancement change request impact fCRI can

measured as follows:

' 1
1

{ ''* (() () ())}
f

rf f fu f ar f

CRI
CRI fpw CR fpw CR pw CR

 
 

… Eq 7

Here in Eq7 '
fCRI is the change request impact of

second level artifacts

'

1
1

* ()
f

f f

CRI
CRI fpw CR

  …. Eq 8

Here in Eq 8 fCRI indicates the feature enhancement

change request impact.

The impact of the bug fix change request can be measured
as
follows

'

() () () ()

1
1

{ ''* (() () () ())}
b

pr b pe b co b ad b
CRI

CRI fpw CR fpw CR fpw CR fpw CR
 

  

… Eq 9

In Eq9 '
bCRI indicates the impact of second level

bug fix artifacts

'

1
1

{ * ()}
b

b b

CRI
CRI fpw CR

  ….. Eq 10

And finally equation determines the impact of a

bug fix change request bCRI

The Eq 7 is measuring the second level feature change
request impact, the Eq 8 follows that measures first level

feature change request impact. Here in Eq 7 ''CRI is
multiplied by the sum fault proneness weights of all
second level artifacts of the feature change request. In Eq 8

'CRI is multiplied by the fault proneness weight of the
feature change request.

The Eq 9 is measuring the impact of second level change
request artifacts of Bug Fix change request, The Eq 10
follows that measures change request impact of the bug fix

change request. Here in Eq 9 ''CRI is multiplied by the
sum fault proneness weights of all second level artifacts of

the Bug Fix change request. In Eq 10 'CRI is multiplied
by the fault proneness weight of the first level artifact
called Bug Fix.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 186

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

The CRI value can be used to access the impact of
change request towards fault proneness, which is as
follows

If 0.33CRI  CR is accessed as not fault prone

If 0.33&& 0.66CRI CRI  then CR is assessed as
Moderate to fault prone

If CRI>0.66, CR is assessed as highly fault prone

4. Empirical Analysis

We conducted experiments on 4 years old change request
log and concurrent versioning log of an in house
maintenance project. We make sure the heterogeneity in
the number of change requests and their impact in various
SDLC stages considered for experiments. We measured
accuracy of accessing the change request artifact impact
towards the fault proneness as follows:

|CRI|
S(CRI)

| |CRI
 Eq 11

Here in Eq 11 |CRI| indicates the change request impacts
assessed by propose Statistical approach.

| |CRI Indicates the change request impacts that are

actually observed in logs
Here in this empirical study we observe that proposed
statistical model performs better in predicting the degree
of change request impact towards fault proneness, which
stands with an approximate value of above 70%.

4.1 Input Data characteristics
The data that we used to analyze the performance of the
proposed Statistical Analysis of Change Request Impact
towards Fault Proneness is the change requests made to
selected in house maintenance project. The change
requests maintained using BUGZILLA, and Work
descriptors of the software updates against change requests
maintained in concurrent versioning system. The work
specifications are customized such that they reflect the
second and third level artifacts used in this proposal. The
first level artifact information is extracted from the Change
Request descriptors. The performance analysis done on
over 500 change requests, out of that majority of CRs
related to first level change request artifact called Bug Fix.

4.2 Performance Analysis

We used fault forecasting accuracy (the percentage of
conceptually valid faults by the proposed CRAI2FP) as the
main performance measure. In addition to measuring fault
forecasting accuracy, the precision, recall, and F-measure

were used to measure the performance; these are defined
using Eq12, Eq13 and Eq14.

t
pr

t f


 




….. Eq12

Here in Eq12 the pr indicates the precision, t indicates

the true positives and f indicates the false positive

t
rc

t f


 




….. Eq13

Here in the Eq13, the ‘ rc ’ indicates the recall, ‘ f ’

indicates the false negative.

2* *pr rc
F

pr rc



…… Eq14

Here in the Eq14, ‘ F ’ indicates the F-measure.

Table 1: Precision, recall and F-measure values for faults
actually rose in regard to change requests, faults proneness
actually forecast by proposed CRAI2FP.

Preci
sion

Rec
all

F-
Measu
re

Faults proneness actually rose
against Change Requests

0.997
6

0.9
983

0.998

Fault Proneness forecast by
CRAI2FP

0.997
2

0.9
979

0.997
25

Fig 1: The comparison bar chart of the Precision, recall
and F-measure values for faults actually rose in regard to
change requests, faults proneness actually forecast by
proposed CRAI2FP.

5. Conclusion:

The work described in this paper is a knowledge based
approach to assess the impact of change request artifacts
impact towards fault proneness, in short referred as

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 187

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

CRAI2FP. The model devised here is using the Change
Request Artifacts devised in our earlier work [24]. The
state of fault proneness of the change request is forecasted
by the proposed model with around more than 70%
accuracy, which is explored by accessing

accuracy ()S CRI , precision pr , recall rc and f-

measure F in experimental study. This work motivates us
to further research towards developing mining approaches
to access the change request impact towards the fault
proneness.

References

[1] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll.
Predicting source code changes by mining revision history.
IEEE Transactions on Software Engineering, 30:574–586,
Sept. 2004. [24] T. Zimmermann, P. Weisgerber, S. Diehl,
and A. Zeller. Mining version histories to guide software
changes. InICSE ’04: Proceedings of the 26th International
Conference on Software Engineering, pages 563–572. IEEE
Computer So-ciety, 2004.

[2] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy.
Predicting fault incidence using software change history.
IEEE Trans. Softw. Eng., 26(7):653–661, 2000.

[3] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A.
Mockus. Does code decay? assessing the evidence from
change management data.IEEE Trans. Softw. Eng., 27(1):1–
12, 2001.

[4] A. Michail. Data mining library reuse patterns using gen-
eralized association rules. InICSE ’00: Proceedings of the
22nd international conference on Software engineering,
pages 167–176. ACM Press, 2000.

[5] L. Lpez, J. Gonzlez-Barahona, and G. Robles. Applying so-
cial network analysis to the information in cvs respositories.
In IEEE 26th International Conference on Software Engi-
neering - The International Workshop on Mining Software
Repositories, 2004.

[6] Cvs. concurrent versions system. http://www.cvshome.org/.
[7] Bugzilla. bug tracking system. http://www.bugzilla.org/.
[8] N. Nurmuliani, D. Zowghi, and S. P. Williams. "Using Card

Sorting Technique to Classify Requirements Change," in
Proceedings of the 12th IEEE International Requirements
Engineering Conference, 2004, pp. 240-248.

[9] B. Lientz and B. Swanson, Software Maintenance
Management Addison-Wesley, 1980

[10] I. Sommerville, Software Engineering. 7th ed: Addison-
Wesley, 2004

[11] P. Mohagheghi and R. Conradi. "An Empirical Study of
Software Change: Origin, Acceptance Rate, and
Functionality Vs. Quality Attributes," in Proceedings of the
2004 International Symposium on Empirical Software
Engineering (ISESE '04), 2004, pp. 7- 16.

[12] J. Nedstam, E. A. Karlsson, and M. Host. "The Architectural
Change Process," in Proceedings of the 2004 International
Symposium on Empirical Software Engineering (ISESE
'04), 2004, pp. 27-36.

[13] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C.
Chen. "Change Impact Identification in Object Oriented
Software Maintenance," in Proceedings of the International

Conference on Software Maintenance, Victoria, BC, 1994,
pp. 202-211.

[14] Gall, H., Hajek, K., and Jazayeri, M., “Detection of rational
coupling based on product release history,” IEEE Int’l Conf.
on Softw. Maint. ICSM, pp.190-198, 1998.

[15] Cataldo, M., Mockus, A., Roberts, J. A., and Herbsleb, J.
D., “Software dependencies, work dependencies, and their
impact on failures,” IEEE Trans. Softw. Eng. 36, 2, pp.864-
878, 2009.

[16] Zimmermann, T., and Nagappan, N., “Predicting defects
using network analysis on dependency graphs,” Int'l Conf.
on Softw. Eng. ICSE, pp.531-540, 2008.

[17] Kobayashi, K.; Matsuo, A.; Inoue, K.; Hayase, Y.;
Kamimura, M.; Yoshino, T.; , "ImpactScale: Quantifying
change impact to predict faults in large software systems,"
Software Maintenance (ICSM), 2011 27th IEEE
International Conference on , vol., no., pp.43-52, 25-30
Sept. 2011; doi: 10.1109/ICSM.2011.6080771

[18] Bohner, S. A., and Arnold, R. S. (Eds.), “Software change
impact analysis,” Bohner, S. A. and Arnold, R. S., “An
introduction to software change impact analysis,” IEEE
Computer Society Press, pp.1-26, 1996.

[19] Chandra, E. and Linda, P.E. 2010. Assessment of software
quality through object oriented metrics. CIIT Int. J.
Software Engg. 2: 2.

[20] Handa, A. and Wayal, G. 2012. Software quality
enhancement using Fuzzy logic with object oriented
metrics in design. Int. J. Comp. Engg. Technol. (IJCET).
3(1): 169-179.

[21] Malhotra, R. 2012. A defect prediction model for open
source software. Proc. of the World Congress on
Engineering. Vol. II. July 4-6. London (UK).

[22] Malhotra, R., Kaur, A. and Singh, Y. 2010. Empirical
validation of object-oriented metrics for predicting fault
proneness at different severity levels using support vector
machines. Int. J. Syst. Assurance Engg. Management. 1(3):
269-281.

[23] Saxena, P. and Saini, M. 2011. Empirical studies to predict
fault proneness: A review. Int. J. Computer Appl . 22(8):
41-45.

[24] Rudra Kumar Madapudi, Ananda A Rao and Gopichand
Merugu. Article: Change Requests Artifacts to Assess
Impact on Structural Design of SDLC Phases. International
Journal of Computer Applications 54(18):21-26, September
2012. Published by Foundation of Computer Science, New
York, USA

[25] Mrinal Singh Rawat, Sanjay Kumar Dubey; Software
Defect Prediction Models for Quality Improvement: A
Literature Study;IJCSI International Journal of Computer
Science Issues, Vol. 9, Issue 5, No 2, September 2012; ISSN
(Online): 1694-0814; www.IJCSI.org

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 5, No 1, September 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 188

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

