IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 2, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.lJCSl.org 8

FPGA-based load test accelerator

Anton Borodin'

! Department of Computer Science, Moscow State Forest University,
Mytischi, 141005, Russia

Abstract

The information systems play the main role at a current time.
These systems collect, control and give information for many
users. Information by itself becomes the most valuable resource
on a whole world. That is why reliability of computer systems is
important. The main way to check, if the system works properly
during development process, is testing. This paper represents
results of our work on improvement of load testing. We propose
new method of creating load, which is based on using a module
with FPGA. On this paper we provided results of experiments for
that module evaluation. Additionally to it, for compare, here
there are represented results of experiments for estimation of a
load capability of current computer systems. These results show
how much time is needed for network stack processing on
modern operation systems launched on computers with adequate
hardware characteristics.

Keywords: load testing, FPGA, load creation, load capability,
OS network stack evaluation.

1. Introduction

Computer becomes an important part of our live. We
already can’t imagine modern world without smartphones,
laptops, Internet, social networks, online shops and etc.
Computer now is a source of information, way of
communication, and a tool for controlling different
complex processes. Life of a human being, work of a small
company or the whole country now is depending on
information technologies. That’s why quality of it
becomes very significant. If quality of hardware is ensured
by industrial production standards, quality of software is
relying on developers. Testing is the most important tool
that helps developers to maintain high quality of software
product. There is a wide range of different types of tests,
from functional to security testing.

At current time most of software systems are oriented
at work with large amount of concurrent users. To
guaranteeing high quality of those systems, developers
need to know:

e Does system work correctly under load caused by

expected amount of concurrent users?

e Does system performance violate service-level

agreement under operating load?

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

e Does selected hardware is adequate to operating
load?

e On what components they should focus their
attention for future system expansion?

e How many users can be processed by system
until performance will degrade?

A subtype of software performance testing called
load-testing helps to answer on these and many more other
questions. Load testing consist many stages [1] that can be
tentatively merged in three big steps: preparing to testing,
launching of a tests and results analysis. Studying of works
related to load testing shows that attention of most
researchers attracted to first and third step described
above. There many different works focused on generating
realistic tests [2-6], developing methods for testing of
distributed systems [7-8], creating load models [9] and
effective result analysis [10-11]. At the same time, stage of
test launching doesn’t get much attention of researchers.
Effectiveness of that stage is depending on quality of load
generator realization. Under effectiveness, in this case, we
meant how much load can produce one computer with
concurrent gathering performance metrics. Constant
progress of information systems makes them complicated
and high-powered, so load generator on a single computer
can’t create enough load to reach operating condition.
That’s why most of load testing tools offer different
methods of increasing produced load. Current methods
presented by cloud computing, distributed computer
clusters and distributed computing based on computers
connected by local network. Using cloud computing or
distributed clusters require information system to be
connected to global network which can be not acceptable
for systems that still under construction and are not
properly tested. Cloud computing and distributed clusters
mostly used for finished software systems to model
realistic load. On the other cases widespread method of
load creation using distributed computing based on local
network. On our work we propose an other method of
creating load and gathering performance metrics. That
method is based on using FPGA-based hardware module
for load creation. This article represents results of our
work.

1JCSI
www.lJCSl.org

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 2, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.lJCSl.org 9

2. Overview of load creation process

So-called load injectors are used for load creation at
current time. These load injectors are a part of load testing
tools. During work these injectors reads testing scripts,
prepared at previous stages of load testing, and according
to them make a lot of operating system API function calls.
Each function call is forcing operating system (OS) to start
network stack routines for sending a form by injector
request. Network stack routines consist of many stages
which request must pass. Additionally to it each stage of
network stack have different protocols for various tasks.
On most common ways process of request sending goes as
follow. Depending on a size of request its divided on few
pieces and each piece is put in a packet with additional
service information necessary for its transmission. Then
each packet goes through stage of route determination and

at the end of network routines execution it gets on
network interface adapter (NIC). The NIC is implementing
physical
packet transmission between two or more connected
devices. Each request formed by load injector passes all
these stages. Additional to it, every formed request can be
checked by security components of OS. All these routines
are handled by central processing unit. The more requests
formed by load injector, the more processing resources are
spent on network stack routines for its transmission.
Additionally to it during test run stage is launched special
programs for gathering performance metrics. These
programs are analyzing incoming traffic from software
system under load test. Moreover, because for load testing
are used common computers with standard OS on the
background are always launched different applications that
can consume processing power. These factors additionally
to hardware peculiarities are causing that a single
computer doesn’t have enough resources to produce
enough load.

3. Load capability estimation

Maximum quantity of requests per second computer
system can produce is limited by architecture of NIC [12].
Can computer reach that throughput depend on OS
realization and hardware. In our work we took few
experiments to measure time needed by OS for processing

one request and to measure approximate load capability.
These experiments were made on computers with technical
specification represented at table 1.

For our experiments we used program “tcpdump”
which is embedded on UNIX-like operating systems. That
program is using low level library “pcap” for capturing
packets on driver level of OS [13]. Each captured packet
have timestamp that represent value of system time at
moment of capturing. So to measure time needed by OS
for processing one request we created experimental
program that do following:

e Read system time.

e Putiton a packet.

e Send packet through network stack.

System time experimental program is inserting in
UDP packet. That transport protocol has been chosen
because of its simplicity and speed of work. Using it we
can measure load capability on best case. Besides, during
work, experimental program gradually increase amount of
formed packet per second. Experiment consists of next
steps:

Launch the packet capture “tcpdump” program.
Launch the experimental program.

Wait until experimental program will finish it
work.

Stop execution of packet capture program.

Result gathering and analysis.

First experiments showed that single threaded
program couldn’t form packets with big intensity.
Experimental program was making about 100000 calling
of

API functions OS to send system time, but
nevertheless quantity of sent packets were much lesser.
The more copies of experimental program were run, the
more packets were sent per second. That’s why during
experiment few copies of experimental program were
launched. Furthermore with number growth of
experimental programs, packet loss is increasing during
capturing due to lack of resources. To determine optimal
experimental programs amount, we estimated dependence
between packet loss and quantity. Estimated dependence
for experimental platforms is represented on figure 1.

Table 1:Platforms description

Name

Tech. specs. (N

Experimental platform Ne 1
9GB

Desktop Intel Core i7 920 2.67 GHz, DDR3-1066

CentOS 6.4

Experimental platform Ne 2

Laptop Samsung R580-JS03 Intel Core i5 430M 2.26
GHz, DDR3-1066 3 GB

Ubuntu 12.10

Experimental platform Ne 3

Laptop MacBook Air Intel Core i7 3667U 2 GHz,
DDR3L-1600MHz 8§ GB

0S X 10.8.5

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

1JCSI
www.lJCSl.org

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 2, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784

www.lJCSl.org 10
B Intensity of EP1
. -
N 60 7 §100000 Processing time of EP1 20 3
g 55 = 90000 -18 E
] 4 1 =1
250 = 80000 - 16 E
S 45 g g
g 40 1 £ 70000 - F14 8
12} -
5 35 1 £ 60000 - F12 &
=30 - "EPL® E
25 - "Ep2" 50000 - - 10
20 "EP3” 40000 -8
15 1 30000 - -6
10 -
5 - 20000 - -4
0 r———————— 7T T 10000 -2
1234567 891011121314151617 0 0
0 50 100 150 200
Number of experimental programs Seconds of experiment
Figure 1. Dependence between percent of losses during capturing from Figure 2. Curves of EP1 intensity and processing time during experiment
number of launched experimental programs
. . . <]
According to retrieved data for experiment was 2 14000 - Intensity of EP2 w0
selected conditions when packet loss not exceeded more g Processing time of EP2 £
. =1
than 5 percent. The results of our experiment are presented ﬁ 12000 1 L 50 B
. . . a
on table 2. Figures 2-4 shows change of intensity and iwooo S
. . . . S 1 | é:
average processing time of one packet during experiment g 40
for each experimental platform. £ 8000
Represented graphs show that with growth of - " 30
intensity, average time of one packet processing is 6000 1
decreasing. Because of that, we separately collected data at 4000 | [20
time when experimental platforms reached maximal ”
packet generation. These data are represented at table 2. 2000 7
Time needed OS to process one packet is affected by 0 o
many factors: launched applications, settings and 0 20 40 60 80 100 120
R . Seconds of experiment
realization of network stack, schemes of power

management and etc. According to that our experiments
were made at conditions when experimental platforms
didn’t do any other tasks. Even in that case during two
identical experiments under identical conditions, the
results had small differences because of processes inside
of computer system and OS.

Figure 3. Curves of EP2 intensity and processing time during experiment

Table 2: Results of experiments

Platform Number of taverage thest tworst Inaccuracy of average
trials
General measures
EP Ne 1 9,8 us 2 us 3279 ps +2,8497 s
EP Ne 2 10 1027 s 2 s 3770 s +0,5950 s
EP Ne 3 60,53 ps <0us 2090 ps +0,9771 us
Peak measures
EP Ne 1 3,83 us 2 us 2527 us +0,0721 ps
EP Ne 2 10 8,20 s 2 us 3770 ps +0,0779 us
EP Ne 3 17,97 ps < 0ups 2030 ps +0,2056 pus

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.
1JCSI
www.lJCSl.org

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 2, July 2014

ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.lJCSl.org

.g 80000 - Intensity of EP3 300 w
L S
S Processing time of EP3 s
£ 70000 - £
R - 250 :D
] =
$ 60000 - 3
8 o
N 200 3
2 50000 - £
|2
=
s
= 40000 - 150
30000 -
100
20000 A
50
10000 A
0 T T T T 0
0 20 40 60 80 100 120
Seconds of experiment

Figure 4. Curves of EP3 intensity and processing time during experiment

During load testing, software system under test is
forming responses stream. That stream on our work we
call a backload. Operating system is processing every
response from that stream before it can be analyzed by
load testing application. Additionally some network
protocols to maintain connections require exchanging of
service information, which also consume resources.
Centralized design of conventional computer is causing
handling of all these tasks by central processor. Therefore
backload can affect on load capability of a computer
system. We made additional experiments to check this
assumption.

For experiment were used same program as before
and all platforms were connected to local network. During
experiment one of the platform was acting like load
injector and other platforms were emulating backload.
Experiment consists from next steps:

e Launching experimental program on “load

injector” platform.

e Waiting until platform reach maximal intensity.

e Launching experimental program on platforms
acting as backload for “load injector” platform.

e When backload reach it maximal intensity,
execution of experimental program on “backload”
platforms is being stopped.

e Stopping execution of experimental program on
“load injector” platform.

e Results analysis.

During the experiment the only one copy of
experimental program on each platform was used. On the
role of “load injector” was selected experimental platform
Ne3, because program here can produce packets with
greater intensity in comparison with other platforms.
Results of an experiment represented on figures 5-6.

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

g Intensity of EP3
(=3 " "
§70000 ~ Backload" from EP1
> "Backload" from EP2
E 60000 Total "backload”
]
.
50000 -
7
g
£ 40000 |
30000
20000 -
10000 -
0
0 20 40 60 80 100 120 140
Seconds of experiment
Figures 5. Intensity change during experiment
g 70000 Intensity of EP3 re
§ Processing time of EP3 3
260000 - F12
s -
w
gSOOOO 'I - 10 §
2 g
£ 40000 - L &
3
k]
30000 - "6
20000 F 4
10000 - F2
0 T T T T T T 0
0 20 40 60 80 100 120 140
Seconds of experiment

Figures 6. Processing time change during experiment

Graph shows that with growing of backload, the
intensity of “load injector” platform starts to decrease and
when backload disappear, intensity restores its previous
level. Average time of one packet processing is changing
too during backload. On our work the influence of
incoming traffic on load capability, we call the backload
effect.

Load capability of conventional computer is limited
by many internal and external factors. These factors are a
reason why resources of a single computer are not enough
to produce enough load. To overcome these disadvantages
we created other approach.

4. Our approach
At current time FPGA is a flexible and powerful tool

for wide range of tasks — from digital signal processing to
avionics control [14]. Works of different researchers show

1JCSI
www.lJCSl.org

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 2, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.lJCSl.org 12

that using FPGA for network tasks is also effective[15-
17]. That is why instead of additional computers for load
creating we propose using of FPGA-based hardware
module. Main goals of a module are to create load on
software system and gather performance metrics. Test
requests created at preparing stages of load test are
transmitting on a module. According to requests and
additional testing information, module is creating load on
software system and gathering performance metrics. Then
results of load testing are transmitting back on a computer
for further analysis. Our key requirements to that module
are:
e High effectiveness of load creation process.
e Load capability shouldn’t be affected by
incoming traffic.
e Independence from software being tested.
e Gathered performance metrics should be
represented in a convenient way for further
analysis.

To achieve goals the module should consist of such
components as:

e Load creation component.

e Light-weighted network stack to communicate
with software system.
Connections control component.
Incoming traffic analysis component.
Components needed for downloading testing
preferences and uploading load-testing results.

4.1 Implementation and evaluation.

Based on goals and key requirements we created
prototype of load creation hardware module. Prototype
was built at board “Altera DE2-115 Development and
Education Board” with FPGA Altera Cyclone IV
EP4CE115. All key components were implemented on
hardware using VHDL language. Prepared requests and
testing preferences are transmitting on a board using JTAG
UART. Database “Redis” located on dedicated computer
are used to store results of load testing. Board and database
are connected by separate Ethernet link. Additionally,
communication with database required database-client,
which was implemented on hardware too.

During load creation process, prototype create
great amount of TCP (Transmission Control Protocol)
connection with software system and send requests. Each
request and responding with time information are
transmitting on a database. Packet generation process
consists of session information selection from memory,
header generation, data preparing and transfer generated
packets to Ethernet controller. Thanks to architecture of
FPGA, most of packet generation stages can be processed

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

concurrently. Time needed to generate one packet by
prototype can be described as:

tgen = Uss T thgap)

where tg is time of session selection and where is
time of header generation and data preparing.

General time for packet generation and its
transmission on Ethernet controller can be described as:

tgeneral = tgen T %T (2)

where N is length of a packet, D is data bus width
and T is clock period.

After transmission of a packet, new one is being
generated according to TCP connection status. Thus,
characteristics of a prototype are depend on performance
of software system being tested. For example, before data
transmission it is necessary to send connection request and
then wait for response. While prototype is waiting for
response, t, is increasing.

To evaluate prototype characteristics we
conducted experiments. Additional resources were used to
create components for tgenerq measuring of a prototype.
These components are calculating number of clocks
needed for packet processing and save that information in
a memory for each sent packet. Additionally, that memory
is storing data about size of each sent packet. Using all
gathered data we can calculate tge,. During experiment
prototype was sending requests to connected computer
approximately 10 seconds. After that, data from prototype
memory was read and analyzed.

At the time of experiment prototype generated
108050 packets. Work of a prototype can be divided into 2
stages. At the first stage it is sending a lot connection
request packets and at the second prototype is transmitting
data packets. Hence first stage is not depending on remote
computer and that is why it can show performance of a
prototype. Results of that stage is next:

tgen worse = 340 ns

tgen best = 220 ns

tgen average =~ .~ 0,60 ns

Difference between results is caused by waiting
for access to sessions memory. While prototype is creating
connections, remote computer is responding with
confirmation. When prototype is receiving confirmation, it
updates information in a session memory. Because of that
load creation components in some cases need to wait for
access to sessions memory.

Using collected data we can calculate throughput

of created prototype:
C=——1 — = 2773 152,16 packets/second
tgen averagetpT
1

7— =2 083 333, 33 packets/s

Cworst =
tgenworsetpT

1JCSI
www.lJCSl.org

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 2, July 2014

ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.lJCSl.org

Cpost = ————=2 777 777,77 packets/s

tgen best T5T

These data shows throughput for packets with
length 56 bytes, which consist of TCP service information.
Results for packets with length 232 bytes consisting of
simplest GET requests to webserver is next:

C=1249 062,45 packets/s
Cuworse= 1 086 956, 52 packets/s

Cpest= 1 250 000 packets/s

Dependence between intensity and size of packet
is represented on figures 7-8. These results show maximal
load capability of a created prototype.

g 5000000 -
4500000 -
4000000 -
b.3500000-
3000000 -
2
b 2500000 -
= 2000000 -
=)
1500000 -
1000000 -
500000 -
0
© o o o o ©C Qo 9 9O 9O o o o 9o O <C
o QO QO O O Q O Q 0 Q9 9 9 o 9
Mm OV O N N O = ¥ N O O O O o o O
- = - N N N MmO O O O O
Mm o 54
Size of a packet, bytes

Figure 7. Curve of dependency between throughput and size of a packet
expressed in packets per second.

450 1
400 -
350 +
300 A
250 -
200 -

Throughput, MByte/second

150
100 A
50 A

S O 9 9 9 9 9 9 9 9 © 9 o 9 9 9
S 9 ©9 9 9 @ © 9 © 9 ©9 © © © © 9
M YV OO MW ® AT OO O O S D
— = = N NN ™MV OO O O 9
M\DG\M

Size of a packet, byte

Figure 8. Curve of dependency between throughput and size of a packet
expressed in MByte per second.

After evaluation of a prototype we used it to create
load on web-server and study how it will work in practice.
As systems under load were selected experimental
platforms 1 and 2 with installed web-server “nginx”. All

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

preferences and program modules of nginx was stayed by
default. When server was receiving request it forms
standard HTML page. For comparing, the same web-
servers were being tested using load-testing tool “Apache
JMeter”. Empirically “JMeter” parameters were set to
create load as big as possible. Server access journal was
the source of information about created load. Web-server
is putting information about each received request on that
journal. Results of prototype assaying represented at
figures 9-10.

= 30000
H Prototype
S — D3
d
3 25000 EP2
Q
=
g
= 20000
E h
]
Q
-

15000

v v v
10000
5000 “ I
0 . r \
0 50 100 150 200 250
Seconds of a test

Figure 9. Results of using prototype for load creation on EP1.

°
§ 60000 Prototype
v
250000 EP1
=
o
2
< 40000
«
Q
-
30000 I\
20000
10000
0 -
0 50 100 150 200 250
Seconds of a test

Figure 10. Results of using prototype for load creation on EP2.

Depictured graphs show that prototype during
assaying create high load on a short period of time with
some periodicity. The following analyzing of data
gathered by packet capture program revealed that web-
server is not responding on requests. Prototype during load
creation process is sending request on a server and waiting
for response. Packet capturer data show that computer get
request, but web-server is not responding on it. Reason of
it is that prototype is trying to create maximum possible
load at once without smooth increasing of load. Web-
server cannot process that amount of request at time.

1JCSI
www.lJCSl.org

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 2, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.lJCSl.org 14

Period of time between load spikes is caused by time-out
period. Prototype is waiting for responding from server,
which is not happening. After time-out period, server is
trying to close connection. Prototype react to that, it is
reconnecting to server and send request again.
Additionally to that server is not accepting all connection
because of high intensity. Hence to hold load testing more
accurate, load should be created smoothly. Current
realization of prototype doesn’t have mechanism for that,
feature of load controlling will be added in future.

5. Conclusion

This paper presents results of our work on
acceleration of load creation process using hardware
module with FPGA. Created prototype has high load
capability with latency about 220 ns. Process of load
creation is fully independent from income traffic, so
prototype is not being influenced by back-load effect.
Implementation of it requires 17,098 LUTs and 174
memory blocks that utilize 15 percent of Cyclone IV E
resources. Despite high load capability, prototype requires
additional work before it can be used as full-blown load
testing tool. It is necessary to create flexible mechanism
for management of load creation process, easy way for
uploading test requests on device and additional work on
network stack components. Nevertheless created hardware

(3]

(4]

(3]

(6]

[7]

P. Zhang, S. Elbaum, M. B. Dwyer,
“Compositional load test generation for software
pipelines”, in Proceedings of the 2012
International Symposium on Software Testing and
Analysis, 2012, pp. 89-99.

K. Morrison, H. M. Haddad, “Converting users to
testers: an alternative approach to load test script
creation, parameterization and data correlation”,
Journal of Computing Sciences in Colleges,
28(2), 2012, pp. 188-196.

D.V. Silakov, “Avtomatizacija testirovanija web-
prilozhenij, osnovannyh na skriptovyh jazykah”
[Test automation of the web applications based
on scripting languages]. Trudy Instituta
sistemnogo programmirovanija RAN, no. 2, 2008,
pp- 159-178.

A. Sortov, A. Horoshilov, “Funkcional'noe
testirovanie Web-prilozhenij na osnove tehnologii
UniTesK” [Functional testing of web-application
using UniTesK technologies]. Trudy Instituta
sistemnogo programmirovanija RAN, 2004, no. §,
pp- 77-97.

P.N. Jakovenko, A.V. Sapozhnikov,
“Infrastruktura testirovanija web-servisov na baze
tehnologii TTCN-3 i platformy.NET” [Testing
infrastructure of web-services on a base TTCN-3
technology and platform .net]. Trudy Instituta
sistemnogo programmirovanija RAN, 2009, vol.

loader shows that using FPGA for load testing task is 17, pp. 63-74.
highly effective.‘ ‘ [8] A.A. Ermykin, “Razrabotka metoda postroenija
At current time more papers emerge devoted to usimg kompleksa nagruzochnogo testirovanija

FPGA for application-specific tasks. Tasks that
traditionally have been solved using only software. For
example, emulation of java runtime machine, DBMS
tasks, simulation of different hardware architectures for its
evaluation, processing of market data and etc. Constant
progress of FPGA technology is causing increasing
number of device features, decreasing its costs and
simplifying development tools. This, in its turn, leads to
the growth of FPGA field of application. For example in
future, FPGA can be used for solving operation system
tasks thereby leave central processing unit only for
applications.

References

[1] J.D. Meier, C. Farre, P. Bansode, S. Barber, D.
Rea, Performance Testing Guidance for Web
Applications, Microsoft patterns & practices.
Retrieve from http://msdn.microsoft.com/en-
us/library/bb924375.aspx, 2007.

[2] P. Zhang, S. Elbaum, M. B. Dwyer, “Automatic
Generation of Load Tests”, in Proceedings of the
2011 26th IEEE/ACM International Conference
on Automated Software Engineering, 2011, pp.
43-52.

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

(9]

raspredelennoj informacionnoj sistemy” [Creating
of method for developing load testing complex of
distributed information system], Ph.D. thesis
(Technical Sciences), department of Mechanics
and Optics, St. Petersburg National Research
University of Information Technologies, St.
Petersburg, Russia, 2005.

Y. Cai, J. Grundy, J. Hosking, “Synthesizing
client load models for performance engineering
via web crawling”, in ASE '07 Proceedings of the
twenty-second IEEE/ACM international
conference on Automated software engineering,

2007, pp. 353-362.

[10]Z. M. Jiang, “Automated analysis of load testing

results”, in ISSTA '10 Proceedings of the 19th
international symposium on Software testing and
analysis, 2010, pp. 143-146.

[11]H. Malik, “A Methodology to Support Load Test

Analysis”, in ICSE '10 Proceedings of the 32nd
ACM/IEEE International Conference on Software
Engineering - Volume 2, 2010, pp. 421-424.

[12]D. Serpanos, and T. Wolf, Architecture of

Network Systems, Burlington : Morgan Kaufmann
Publishers, 2011.

1JCSI
www.lJCSl.org

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 2, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.lJCSl.org

[13] Pcap, http://en.wikipedia.org/wiki/Pcap, 2014.

[14] Field-programmable gate array,
http://en.wikipedia.org/wiki/Field-
programmable gate array, 2014.

[15]G.W. Morris, D.B. Thomas, W. Luk, “FPGA
Accelerated Low-Latency Market Data Feed
Processing”, in HOTI '09 Proceedings of the
2009 17th IEEE Symposium on High
Performance Interconnects, 2009, pp. 83-89.

[16]N. Weaver, V. Paxson, J.M. Gonzalez, “The
shunt: an FPGA-based accelerator for network
intrusion prevention”, in Proceeding FPGA '07
Proceedings of the 2007 ACM/SIGDA 15th
international symposium on Field programmable
gate arrays, 2007, pp. 199 —206.

[17]S. Miihlbach, A. Koch, “A Scalable Multi-FPGA
Platform for Complex Networking Applications”,
in Proceeding FCCM 'l1 Proceedings of the
2011 IEEE 19th Annual International Symposium
on Field-Programmable Custom Computing
Machines, 2011, pp. 81-84.

Borodin Anton A. was born in the 19" of September 1988 in
Tashkent (Uzbekistan). He received his BS degree and engineer’s
degree on computer science from Moscow State Forest University
(Russia) in 2009 and 2010. At current time he is an assistant at
Department of Computer Science on Moscow State Forest
University and is working on his Ph.D. thesis. His research
interests include embedded systems, FPGA, load testing and
computer networks.

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

1JCSI
www.lJCSl.org

