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Abstract

Image compression is a fast paced and dynami-
cally changing field with many different varieties
of compression methods available. Wavelet trans-
form techniques currently provide a promising ap-
proach to image compression and concentrate on
achieving higher compression ratio without sacrific-
ing the quality of the image. In image compression,
the choice of wavelet depends on the image con-
tent. The quantitative measures Compression Ra-
tio(CR), Bit-Per-Pixel(BPP) and perceptual quality
measures Mean Square Error(MSE) and Peak Sig-
nal To Noise Ratio(PSNR) are calculated for differ-
ent images with different wavelets and comparative

study has been made.
Keywords: Discrete Wavelet Transform (DWT),

Bit-Per-Pizel (BPP), Mean Square Error (MSE),
Peak Signal To Noise Ratio (PSNR), Compression
ratio (CR)

1.Introduction

Image compression is very important for efficient
transmission and storage of images. It has many
applications in information theory[l],applied
harmonic analysis[2] and in many other fields.
The objective of image compression is to minimize
the size of an image by exploiting the redundancy
within the data without degrading the quality of
the image. The reduction in file size allows more
images to be stored in a given amount of disk
or memory space. The common redundancies
are spatial redundancy, temporal redundancy,
inter-pixel redundancy, psycho-visual redun-
dancy and statistical redundancy[3,4]. Some

common image compression methods are JPEG,
Discrete Cosine Transform, Wavelet Algorithm
Transform, Fractal based and several other tech-
niques like NTT and Neural Network. Discrete
Wavelet Transform (DWT) can be efficiently
used in image coding applications because of their
datareduction capabilities. Basis of DWT can be
composed of any function (wavelet) that satisfy
the requirements of multiresolution analysis [5].
V. Elamaran et al.[6] have described the basic
idea of compression and attempted to reduce the
average number of bits per pixel to adequately
represent an image. Fourier based transforms
(e.g. DCT and DFT) are efficient in exploiting
the low frequency nature of an image. The high
frequency coefficients are coarsely quantized, and
hence reconstructed image have poor quality at
edges. M. Gupta et al. [7] have developed some
simple functions to compute the DCT and to
compress images. Image Compression is studied
using 2-D discrete Cosine Transform. Theoriginal
image is transformed in 8-by-8 blocks then inverse
transform in 8-by-8 blocks to reconstruct image
and the error image (the difference between
the original and reconstructed image) has been
displayed. M. Chowdhury et al. [8] have described
a new image compression scheme with pruning
proposal based on discrete wavelet transforma-
tion. A new image compression scheme based
on discrete wavelet transform is proposed which
provides sufficient high compression ratios with
no appreciable degradation of image quality.

In this paper, we have studied the behavior of
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different type of wavelet functions with different
types of images and suggested the appropriate
wavelet function that can perform optimum com-
pression for a given type of images. The effects of
different wavelet functions and compressionratios
are assessed. This investigation is carried out by
calculating the Compression Ratio(CR), Mean
Square Error(MSE), Bit Per Pixel(BPP) and Peak
SignaltoNoiseratio(PSNR) for different wavelets.

This paperis organized into four sections : Section
2presentsthetheorybehind wavelets and Discrete
Wavelet Transform. Section 3 describes image
compression using wavelets and how the wavelet
transform is implemented and used in image
compression systems. In section 4, we present
some results of different wavelets used for different
images and the conclusion.

2. Basics of Wavelet Transform

Wavelets basis functions are generated by scaling
and translation of function(t) € L?(R)and(t)
is called mother wavelet. Mother wavelet is scaled
by a factor of a and translation by a factor of b to

give
Yap(t) = la| T (t_b) :

a

wherea # O0andb € R

where a and b are two arbitrary real numbers rep-
resenting the dilation and translation parameters
in the time axis. The parameter ‘a’ contracts
1(t) in the time axis when a < 1 and expands or
stretches whena > 1.

Wavelets are special kind of mathematical func-
tions that exhibits oscillatory behaviour for short
period of time and then die out. Wavelet function
(t) € L?(R) has zero average value and also sat-
isfy admissibility condition, i.e.

/_O:O Y(x)de =0

and R
2
Cyp = 271'/ de < 00
r |l

2.1 Multiresolution Analysis and scaling
function

A multiresolution analysis on R is a sequence of
subspaces V; of functions L?(R) which approxi-
matespace L?(R) and satisfies the following prop-
erties.

(i)..cVaiCcVocCcViC..

ii)span ;. Vj = L*(R)

i) (., Vj = 0

iv) f(z) € Vjifandonlyif f(2772) € Vj

vi) there exist a function ¢(t) € L%*(R) called
scaling function such that the system {T,,¢(t) =
¢(t — n)} is an orthonormal system of translates
and

(
(
(
(

Vo = span{T.o(x)}
Thesubspaces { V] } is generated by basis functions

Gik(t) =226(2t — k), j k€ Z
where  27/2 denotes scale of scaling
function{¢; ()} and k denotes translation
in time. Since Vy C Vi, any function from sub-
space Vj can be represented with basis function
from V.

O(t) = V2 hpp(2t — k)
K

Using the fact that {¢; x(t) }rcz are orthonormal
basis for Vj, the coefficients hj, can be obtained by
computing the inner product:

(o)
hy, = \/5/ O(t) (2t — k)dt
— 00
{hy} are called low pass filter coefficients.

By defining W} as an orthogonal complement of V;;
in ij +1,
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Vipi =V, & Wj,

the space L2(R) is represented as a direct sum of
W;’s as

L*(R) = @czW;

The entire space of square integrable functions
L?(R) can be decomposed into orthogonal sub-
spaces W; each containing information about de-
tails at given resolution. Detail space W; has or-
thonormal basis ;i (t), where

bin(t) = 259(27t — k)

So L?(R) has an orthonormal basis t; 1 (t) called
wavelet basis. Since (¢ — k) isin Wy C Vi ,9(t)
can be represented as superposition of basis func-
tion for V.

U(t) = V2 gro(2t — k)
k

Using the fact that {¢; 1 (t) } ez are orthonormal
for Vj, the coefficients g, can be obtained by com-
puting the inner product

w=vE [ wioer—har

{gx} are called high pass filter coefficients. These
can also be calculated from coefficients of low pass
filter using

g = (=1)"h1_y,

2.2 Discrete Wavelet Transform

Supposing that input function f(¢) only known to
the certain level j and that details on the scales
smaller than 27 is ignored, the approximation of
f(t) onlevel jis determined by equation

Fit) =" agjn(t)
k

where ¢, 1(t) is a scaling function on resolution

level j and translated by integer k and ay, are coef-
ficients given by

af = /R £5(0)654(t)dt

The function f;(t) can be uniquely represented by
the coefficients ai. The function f;(t) can be de-
composed into a smooth part f;_1(t) on the next
coarser level j — 1 and detail d;_;

fi(®) = fi1(8) + dja ()
D oal T k(O + Y AT k(8
k

k

where ¢, ,(t) is a wavelet function on resolution
level j and translated by integer k and dj are the
coefficients given by

d = /R £ (05 (1)dt

Smooth part of f;(t) can be further decomposed
to smooth part and detail part on resolution level
j — 2. Decomposition of input function can be re-
peated untill the coarsest level jg is reached.

2.3 2-D Discrete Wavelet Transform

Discrete Wavelet Transform for two dimensional
signals or images can be derived from one-
dimensional DWT. Easiest way for obtaining scal-
ing and wavelet function for two-dimensions is by
multiplying two one-dimensional functions.
Scaling function for 2-D DW'T can be obtained by
tensor product of two 1-D scaling functions. Gen-
erally different scaling functions can be used for
each direction but in practice those functions are
in most cases the same.

o(x,y) = d(x)d(y)

Wavelet functionsfor2-DDW'T canbeobtained by
multiplying two wavelet functions or wavelet and
scaling function for one-dimensional analysis. For
2-D case there exist three wavelet functions that
analysisdetailsinhorizontal, verticaland diagonal
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direction respectively.
¥(z,y) = (2)(y)

I (2,y) = ()Y (y)
YU (2, y) = ()Y (y)

3. Image Compression Based
On DWT

A typical black and white image is an M * M
array of integers chosen from some specified range
say 0 through L — 1.Each element of this array is
referred toaspicture element or pixel and the value
of each pixel is grayscale value and represents the
shades of the gray of the given pixel. If pixel value
0 then color is black and if L — 1 color is white. If
M = 256 and N = 256 then the storage required
for an image would be 256 * 256 * 8 = 524288
bits. The goal of image compression is to take
advantage of hidden structure in the image to
reduce these storage requirements.

In the discrete wavelet transform, an image can
be analyzed by passing it through an analysis
filter bank followed by a decimation operation.
This analysis filter bank consisting of a low pass
filter and a high pass filter at each decomposition
stage, is commonly used in image compression.
When a signal passes through these filters, it
splits into two bands. The low pass filter, which
corresponds to an averaging operation, extracts
the coarseinformation. Thehigh passfilter, which
corresponds to a differencing operation, extracts
the detail information.

A two dimensional transform can be done
by performing two separate one-dimensional
transforms.First, the image is filtered along the
x-dimension using low pass filter and high pass
filter and decimated by two. Low pass filtered
coeflicients are stored on the left part of the matrix
and high pass filtered are stored on the right part.

Because of decimation the total size of the image
is same as the original image. Then it followed by
filtering the sub-image along the y-direction and
decimated by two. We have split the image into
four bands denoted by LL, HL, LH, HH after one
level decomposition.

Images contain a large amount of information
that requires large transmission bandwidths,
much storage space and long transmission times.
Therefore it is crucial to compress the image by
storing only the essential information needed to
reconstruct the image. An image can be thought
of as a matrix of pixel values. In order to compress
the image, redundancies must be exploited,
for example, areas where there is little or no
change between pixel values. Therefore large
redundancies occur in the images having large
areas of uniform color, and conversely images that
have frequent and large change in color will be less
redundant and harder to compress.

In general, there are three essential stages in a
wavelet transform image compression system:

(1) The Transform step

(2) The Quantization step

(3) The Coding step

(1)The Transform step: In this step, the im-
agedataisacteduponbysomeinvertibletransform
whose purpose is to decorrelate the data as much
aspossible. Thismeanstoremove theredundancy
orhiddenstructureintheimage. Such atransform
usually amounts to computing the coefficients of
theimage in some orthonormal or non-orthogonal
basis.

(2) The Quantization step: The coefficients
calculated in the transform step will in general be
real numbers, or at least high precision floating
point numbers even if the original data consists
of integer values. As such the number of bits re-
quired to store each coefficients can be quite high.
Quantization is the process of replacing these real
numbers with approximations that require fewer
bits to store.
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(3) The Coding step: Most of the coefficients
calculated in the transform step will be close to
zero, and in the quantization step will actually be
set to zero. Hence the step (1) and (2) will be a
sequence of bits containing long stretches of zeros
It is known that bit sequences with that kind of
structure can be very efficiently compressed. The
idea behind coding is to exploit redundancy in or-
der to reduce the number of bits required to store
bit sequence.

Huffman Coding: Huffmancodingisstatistical
compression technique developed by David Huff-
man. It uses the probability of occurrence of sym-
bols to determine the codeword representing the
symbols. The length of the codeword is variable
which means that individual symbols which make
amessage are represented with bit sequences that
have distinct length[10]. This helps to reduce the
redundancy in data. Symbols with higher proba-
bility of occurrence have shorter codeword length
whilesymbolswith lower probability of occurrence
will have longer codeword lengths. Asaresult, the
average codeword length per symbol reduces and
this leads to a smaller output data size. In order
to use Huffman encoding to encode the quantize
data, we have to obtain the frequencies of occur-
rence of the symbols from the input.

4.Results

Results have been obtained by calculating few pa-
rameters obtained by comparing the original im-
age and uncompressed image.

(i)Mean Square Error: It represents the mean
square error between the original and compressed
image.It is defined as:

1 m n ) ) . )
MSE = — 3" 3" |X(ij) = Xe(i. )
i=0 j=0

The lower the value of MSE ;the lower the error.

(ii) Peak Signal To Noise Ratio: It is most
commonly used as a measure of quality of recon-

struction of lossy compression. It represents the
measure of peak error and is expressed in decibels.
Itisdefined as:

2552 )

PSNR = 10log;, (M—SE

(iii)Bit Per Pixel: It gives the number of bits
required to store one pixel of the image. Thus for
the purpose of compression BPP should be less to
reduce storage on the memory.

(iv)Compression Ratio: It isdefined as thera-
tio of the size of the original image over the size of
the compressed image.

ny

n2

Cr

where Cg is the compression ratio,n; and nsy is
the number of information carrying units in the
original and encoded images respectively.CR is
expressed in percentage.

The results over the images have been ob-
tained using Biorthogonal4.4, Haar,Symlets8 and
db4 wavelets.Resultsareanalyzedintabular form.

The first test image is Brain.The best results is
obtained with Biorthogonal4.4 wavelet. The MSE
is as low as 34.69 and PSNR is 32.73dB at the
BPP 1.837. The compression ratio at this point
7.6%. The results of various parameters of the
Brainimages arerecorded in Table-I over different
wavelets. (See figure (1) and (2))

Fig. 1: Original Image  Fig. 2: Compressed Image
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Table 1: Values of Brain image Parameters

image|wavelet used| BPP |[MSE|PSNR(dB)|CR (%)
1.0355|37.83] 32.25 4.31
Bio 4.4 [1.8378|34.69] 32.73 7.66
1.0327|77.21] 29.25 4.30
Haar  [1.8339[43.76] 31.72 7.64
Brain 1.0347]40.17]  32.09 4.31
sym 8  [1.837(36.75] 32.48 7.66
1.0273[44.67] 31.64 4.28
db 4 1.8467[39.00] 32.22 7.69

In the second test image that of Laure, the best
results are obtained with Biorthogonal4.4 at BPP
1.0306 with the resulting MSE 26.76dB. The
compression ratio and PSNR are 4.29% and 33.86
respectively. The result for laure iamge has been
enlisted in Table-II.(See figure (3) and (4))

Table 2: Values of Laure image Parameters

image|wavelet used| BPP |MSE|PSNR/(dB)|CR(%)
1.0306/26.76| 33.86 4.29
Bio 44 [1.8361/43.62] 31.73 7.65
1.0392[43.16] 31.78 4.33
Haar  [1.8447[44.18] 31.68 7.69
Laure 1.024 [28.02] 33.66 427
sym 8 1.894 [43.55] 31.74 7.66
1.0348/29.9| 33.37 4.31
db 4 1.8413[47.31] 31.38 7.67

Fig. 3: Original Image  Fig. 4: Compressed Image

In the third image that of baby, the best results

are obtained with Biorthogonal4.4 at BPP 1.0303
with resulting MSE 30.44. The PSNR and com-
pression ratio are 33.3 dB and 4.29 %respectively.
The various results for baby image are tabulated
in Table- III.(See figure (5) and (6))

Table 3: Values of Baby image Parameters

image|wavelet used| BPP |MSE|PSNR(dB)|CR/(%)
1.0303[30.44] 33.3 4.29
Bio 4.4 [1.8369[33.72] 32.85 7.65
1.0289[54.95 30.73 4.29
Haar 1.8417(37.87] 32.35 7.65
Baby 1.0331[34.01] 32.81 4.30
sym 8  [1.837[38.56] 32.27 7.64
1.0314[34.75] 32.72 4.30
db 4 1.8369]38.27] 32.3 7.65

Fig. 5: Original Image  Fig. 6: Compressed Image
4.Conclusion: We have used different
wavelets for compression of different images.
Peak signal to Noise Ratioisa qualitative measure
based on Mean Square Error of the reconstructed
image. Typical Value of PSNR range between 20
dB to 40 dB. The actual value is not meaningful
but the comparison between the two values for
different reconstructed image gives a measure
of image quality. Compression of images using
Biorthogonal4.4 can maintain the quality of
image, produces high compression performance
and minimize the amount of the data so that it can
be transmitted effectively.

Acknowledgement: The Authors are thankful
to the Council of Scientific and Industrial Re-
search and University Grants Commission, New
Delhi(India) for providing financial assistance for
the preparation of manuscript.

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

57

1JCSI

www.lJCSl.org



IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 2, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784

www.lJCSl.org

References

[1] T.M.Cover and J.A.Thomas, ”Elements of In-
formation Theory” John Wley and Sons, 1991.

[2] D.L.Donoho and I.Daubechies, ”Data Com-
pression and Harmonic Analysis” IEEE Trans-
action on Information Theory, Vol. 44, pp 2435-
2476, Oct 1998.

Zhen Liu, ”Context-Based and Perceptual-
Based wavelet Image Compression with Appli-
cation to JPEG2000” Arizona State Univer-
sity, Oct 2003.

R.Sudhakar,R.Karthiga,S.Jayaraman, Im-
age Compression using Coding of Wavelet
Coefficients-A Survey ICGST-GVIP Journal,
Vol. 5, Issue 6, June 2005, pp 25-38.

I.Daubechies, Ten lectures on wavelets, So-
ciety of industrial and Applied Mathemat-
ics,Phiadelphia, 1992.

V. Elamaran, and A. Praveen, Comparison of
DCT and wavelets in image coding IEEE,2012,
pp 1-4. Computer Communication and Infor-
matics (ICCCI), 2012 International Conference
on. I[EEE, 2012.

M. Gupta and Amit Kumar Garg, Analy-
sis Of Image Compression Algorithm Using
DCT(2012). International Journal of Engineer-
ing Research and Applications (IJERA), Vol. 2,
Issue 1, Jan-Feb 2012, pp 515-521

M. Mozammel Hoque Chowdhury, and Am-
ina Khatun, Image Compression Using Dis-
crete Wavelet Transform. International Jour-
nal of Computer Science issues, Vol 9, issue 4,
July 2012, pp 327-330.

M. Antonini,et.al.: ”Image Coding Using
Wavelet transform”, IEEE Trans.Image Pro-
cessing, vol. 1, no.2, pp 205-220, April 1992.

D.A.Huffman, ”A Method For The Construc-
tion of Minimum-Redunadancy Codes”, Pro-
ceedings of the L.R.E, September 1952, pp
1098-1102.

(10]

[11] Sonja Grgic,Kresimi Kers,Mislav Grgic, Im-
age Compression Using Wavelets, 1999, IEEE.

0-7803-5662-4/99,Vol. 1, pp 99-104.

D.F. Walnut, An Introduction to Wavelet Anal-
ysts, Birkhauser, Boston, 2001.

(12]

[13] Michel Misiti, et.al, Wavelet Tooloboz, User’s
Guide,

Tarlok Singh is working as SRF(CSIR) in the De-
partment of Mathematics, Guru Nanak Dev Univer-
sity, Amritsar. He received his postgraduate degree
in M.Sc(Mathematics) in 2008 from the same uni-
versity campus. His area of interest is application
of Wavelets to real world problems.

Pooja is working as JRF(UGC) in the Depart-
ment of Mathematics, Guru Nanak Dev University,
Amritsar. She received her postgraduate degree in
M.Sc(Mathematics) in 2011 from the same univer-
sity campus. Her area of interest is image compres-
sion and Data Mining.

Prof. Pammy Manchanda is working as senior
professor in the Department of Mathematics , Guru
Nanak Dev University, Amritsar. She teaches un-
dergraduate and postgraduate courses in addition to
providing research guidance to Ph.D scholars. Her
major research interest are Wavelet Analysis ,Image
Compression, Inverse Problems.

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

58

1JCSI
www.lJCSl.org





