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Abstract 
The implicative graph is one of the statistical tools very essential 
for the representation of the sequence of attribute groups. It 
allows the user to highlight association rules for these attributes. 
Several studies have already been developed, but we find that 
these works focus only on two measure: measure of Gras and 
Lerman’s. While only using these two measures are not sufficient 
to guarantee the quality of graphs implicative. In this work, we 
focus on the development of the implicative graph of all 
association rules by using another quality measure MGK. Such a 
construction is exponential in the size of database, and mainly 
due to the paths implicative step. It is therefore necessary to 
define an efficient algorithm to automate the construction. 
Following this study, we propose a new algorithm that generates 
an implicative graph using this new quality measure MGK. We 
conducted experiments using one database to test the 
performance of our algorithm.   
Keywords: Algorithm, Implicative graph, Database, 
Association rules, Quality measure MGK.  

1. Introduction 

Introduced by the works of Gras [12] and IC Lerman [5] in 
the early of 1980’s, the implicative statistical analysis is a 
fairly old discipline. The problem of successive sequences 
of attributes or the attribute group is frequently studied. 
The implicative graph is one of the statistical tools that is 
very essential for the representation of this sequence, 
particularly for taxonomical objective. It allows the user to 
highlight the association rules he wants to see. In this 
work, the relationship “arc” between the two attributes i 
and j will be shown in this graph implicative if the value of 
implicative measure is higher than a given minimum 
threshold. Biological sciences, Medical sciences, 
Computer networks [9] and Telecommunication networks 
are particularly the fields where the implicative graph 
could efficiently intervene. To our knowledge, the didactic 
of disciplines, the psychology and the sociology are, up to 
now, the main fields in which the implicative graph 
intervenes. As an example:  Maria and Sylvia apply the 
implicative analysis in order to reveal the existence of 
hierarchy of the difficulties in finding the simple 
mathematical solutions [4]. Using analysis implicative, 

Serge and al. study the psychological behavior trait of 
association members for the white-collar workers, in order 
to build up the help system of decision-taking [13].  In 
[10], Ritschard and al. use implicative statistical analysis 
on the study of the professional dynamic in Geneva during 
the 19th century. In [7], Jean-Claude and J-C Réginier 
propose a conceptualization of implicative analysis 
methods to describe an activity of their students in 
computer data processing. In [6], Lerman and Pascal 
propose a formalization of a binary hierarchical oriented to 
provide a graphical representation of a family of 
association rules. In [15], the authors compare the three 
methods, such as the implicative statistical analysis, the 
factorial correspondence analysis and automatic 
classification of individuals. In [8], Lucia and Dusan 
describe the analysis of student’s solution on the particular 
theme of conception in geometry, in order to detect the 
possible strategies that can be used by the students. We can 
note that these works are only appropriate under two 
implicative measures: measure of Gras [12] and the 
Lerman’s [5], and they emphasize on the study of positive 
association rules. The negative association rules are thus 
still unknown in spite of their important interest for the 
user. In this work, we would like to focus on the 
construction of implicative graph of negative and positive 
rules. Such a construction is exponential in the size of 
database and mainly due to particularly of the paths 
implicative step. It is then important to define an efficient 
algorithm in order to get the automatic construction. In this 
paper, we have proposed a new algorithm generating an 
implicative graph under the implicative measure MGK [14] 
(Guillaume Khenchaff’s Measure). MGK is varying into the 
interval [−1, +1] [2], i.e. she is reflect the references 
situations such as incompatibility (MGK=-1), independence 
(MGK=0), and logical implication between the premise and 
the consequent of the association rules (MGK=+1).  
The rest of this paper is organized as follows. Some 
preliminaries are presented in section 2. Section 3 is 
devoted to the description of the method we propose. The 
algorithm proposed is described in section 4. Experimental 
evaluation will be presented in form of summary in section 
5. In conclusion, we shall present our results of our 
contributions and research perspectives.  
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2. Preliminaries 

In this section, we shall present all the basic concepts that 
will be useful later in this work. Therefore, we shall 
introduce the concepts of the association rules in a binary 
context, and directed graph.  

2.1 Association rules 

Definition 1. A binary context is a triplet ( , , )K T I R= , 

where T and I are respectively finite sets of transactions 
(or objects) and items (or attributes), and R I T⊆ ×  is a 
binary relation between the transaction and the item. A 
couple ( , )i t R∈  denotes the fact that the transaction 

t T∈ contains the item i I∈ . 

It is assumed that the data K to explore are binary, its 
means we can describe each transaction by means of a 
finite set of items 1{ ,..., }mI i i= , also called attributes. Each 

transaction T will be a subset of I. Furthermore, it 
combines each transaction identified TID (Transaction 
IDentify): 1{ ,..., }nT t t= , that is to say ( , )i t I T∀ ∈ × , 

t[i]=1 if the item i is present in t and t[i]= 0 otherwise. The 
pattern X is a subset of items I ( )X I⊆ . Below, the table 1 

shows an example of binary context with four items {A, B, 
C, D} and five transactions {1, 2, 3, 4, 5}. Let 

' { | , }X t T i X iRt= ∈ ∀ ∈  the set of all public entities to all 

elements X, this is the dual of the pattern X.  

Table I.  Example of binary context 

TID A B C D 

1 1 1 1 1 

2 0 1 0 0 

3 1 0 1 0 

4 0 1 1 0 

5 1 1 0 1 

By considering the context of table I, for 
example { }X AB= , we have: { }' 1,5X =  and its logical 

negation is presented by { }' 2,3,4X = . In the rest of this 

paper, to simplify the notation, let us 
denoted ( | ) ( ' | ')P Y X P Y X= , where 'X  is the extension 

(or dual) of the pattern X.  

Definition 2. An association rule is a quasi implication of 
the form X Y→ , where X and Y are disjointed patterns 
( ,X Y I⊆ and X Y∩ = ∅ ) respectively called the 
premise and the consequent of the rule.  

Example 1 Consider the association rule given by: 
Computer → Printer. This can be translated as customers 

who buy a computer also buy a printer. When considering 
an association rule, it is essential to associate at least one 
quality measure on which the user can rely on to judge its 
relevance. A quality measure is a function that evaluates an 
association rule. We present below a definition of the 
measure we used, measure MGK. 

Definition 6. For all association rules X Y→ , the quality 
measure MGK is defined as: 

( | ) ( )
, ( | ) ( )

1 ( )
( , )

( | ) ( )
, ( | ) ( )

( )

GK

p Y X p Y
if p Y X p Y

p Y
M X Y

p Y X p Y
if p Y X p Y

p Y

− ≥ −=  − <


     (1) 

Independently of Guillaume [14], Totohasina et al. 
introduced in [2] the same measure called ION 
(implicative measure, oriented and normalization) to allow 
the extraction negative and positive association rules. Wu 
et al. also introduced in [16] the same measurement known 
CPIR (Conditional Probability Increment Ratio) for the 
extraction of positive and negative context of data mining 
rules. 

If ( , ) 1GKM X Y = , then the attraction between the premises 

X and therefore Y is high, that is X and Y are positively 
dependent. If ( , ) 0GKM X Y = , that is X and Y are 

independent, the rule X Y→ is not interesting. If 
( , ) 1GKM X Y = − , that is X and Y are stochastically 

incompatible, there is therefore a strong repulsion between 
X and Y, i.e. X and Y are negatively dependent. The main 
mathematical properties characterizing this quality 
measure are developed in [1-3]. Therefore, we urge 
interested reader to check their works.  

2.2 Concepts of the directed graph 

Definition 1. We call graph ( , )G V E= , the data set V 

whose elements are called the vertices and part E 
symmetrical ( )( , ) ( , )x y E y x E∈ ⇔ ∈ whose elements are 

called edges (or arcs).  
 
Definition 2. A directed graph is a pair ( , )G V E= , 

where V is a set of vertices and E V V⊂ ×  is a set of 
edges. A directed arc ( , )x y  is denoted by x y→ . We say 

that x y→  it starts at the top x and y  comes from the 

top. In this case, each edge is oriented and cannot be 
driven in the direction of the arrow.  
The figure 1 is an exemplary graph of 7 vertices having 
order 7 V={1, 2, 3, 4, 5, 6, 7} and 9 edges:   
E={(1,2),(1,3),(2,3), (2,4),(2,5),(2,6),(4,6),(6,7),(3,7)}.  
Definition 3. Given a graph ( , )G V E= , E V V⊂ × . 

If ( , )x y E∈ , then y  is a successor of x, and if ( , )y x E∈ , 
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then y  is a predecessor. Two vertices connected by an 

edge are said to be adjacent or neighbors, i.e. x and y are 
adjacent if there is a predecessor and / or successor of x. 

 
Fig. 1 Example of a graph of order 7 oriented. 

In the example of figure1 , the top 2 recognizes the nodes 
1, 5 and 6 as predecessors but admits the top 3 as 
successor, one notes respectively pred( 2 ) = {1, 5, 6} and 
succ( 2 ) = {3}.  Then the peaks (1 and 2) or (2 and 3) are 
adjacent or immediate neighbors. 
 
Definition 4. Given a graph ( , )G V E= . The set of 

successors x is noted ( )x+Γ  as ( ) { | ( , ) }x y x y E+Γ = ∈ . 

The set of predecessors of x is denoted ( )x−Γ  as 

( ) { | ( , ) }x y y x E+Γ = ∈ . The set of neighbors of x is 

denoted ( ) ( ) ( )x x x+ +Γ = Γ ∪ Γ . 

Also according to the example of figure 1, all of the 
successor peak 1 is given by(1) {2,3}+Γ = , while all of the 

predecessor vertex is empty as(1) {}−Γ = . Then the set of 

neighbors of the vertex 1 is(1) {2,3}Γ = .  

 
Definition 5 . Given a graph ( , )G V E= . Called interior 

grade or half-degree of a vertex x is the number of 
elements denoted ( ) | ( ) |d x x− −= Γ . 

In the example of figure 1, there is no peak that is within 
the top one, its degree is zero: (1) 0d − = , while the degree 

within the top 3 is at number 3 , so (3) 3d − = . 

 
Definition 6 . Given a graph ( , )G V E= . Called out-

degree (external degree) or half-degree of a vertex x is the 
number of elements noted ( ) | ( ) |d x x+ += Γ . 

In figure 1, there are two vertices which are beyond the top 
one, so (1) 2d + = . 

Definition 7. Given a graph ( , )G V E= . We call the 

degree of x (or valence) the sum of the in-degree and out-
degree ( ) ( ) ( )d x d x d x− += + . 

In our example in figure 1, the degree of vertex 1 is none 
other than the out-coming degree because its incoming 
degree is zero, so(1) 2d = . A vertex of degree zero 

incoming and outgoing non-zero degree is called source, 
while a vertex of degree entering non-zero and zero is 
called out-degree wells. In this example, vertices 1, 4 and 5 
are source vertices, while the top 3 is well known. 
 
Definition 8 . A graph is valued when, each edge or arc is 
associated with a number real. If this number is positive, it 
is called weight and weighted graph. 
In a graph, it is natural to want to move from peak to peak 
along the edges. Such a step is called a string or path. 
 
Definition 9 . A path of graph ( , )G V E=  is a sequence of 

vertices 1 1,..., , 1, :1 1, ( , )k i ix x k i i k x x E+∀ ≥ ∀ ≤ ≤ − ∈ . A 

path [ ]1,..., kx x  is called elementary if 1,..., , 1kx x k∀ ≥  

and 1, i ii x x +∀ ≠ , i.e. contains not twice the same vertex.  

The length of a path is defined by the number arcs 
composing the path. It equals the number of vertices minus 
one: | | 1V − . A path consisting of only the top 1x noted 

[ ]1x  is of zero length. In the example of figure 1, the path 

[4, 6, 7, 3] is an elementary way, for each vertex of the 
path is visited once. 
 
Definition 10. A circuit of ( , )G V E= is one path 

[ ]1,..., kx x  such that 1 kx x= . 

The example of figure 1 is a graph without circuit, because 
there are not an edge returns between the peaks. 

3. Description of the method 

 
In this section, we describe our approach to build a graph 
called implicative by using the measure of involvement 
MGK. In most cases, we tried to explore large databases for 
this purpose, the construction of such implicative graph has 
become tedious and exhausting, mainly because of the 
problem of course implicative way. It is therefore 
necessary to define an efficient algorithm that can 
automate the construction. The approach we have adopted 
is as follows. Formalize the data measuring MGK 
involvement in an adjacency matrix or Boolean matrix to 
switch to binary mode involvement between associations, 
such as: 

     
1, ( , ) min

0 otherwise
GK GKif M i j M

M
≥

= 


                   (1) 

where i and j two adjacent items, ( , )GKM i j  represents the 

value of the arc i j→  according to the measure MGK, and 

minMGK is the minimum threshold set by the expert. In 
other words, we assign the value 1 if the measure MGK 
verifies the minimum threshold, and 0 otherwise. Interest is  
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finding the path of implicative path all vertices. After  
formalized data, we generated the set of vertices (going 
through the implicative path), adapting the situation to the 
technique of the search path theory of classical graphs, in 
which the transition cost function becomes, in our 
approach, the involvement measure MGK. The adapted new 
technique is defined as follows. Given a set of items (or 
vertices) V and a set of arcs E, the generating implicative 
graph ( , )impG V E=  such that: 

{ \ ( ) : ( ) min{ ( ); ( ) ( , )}}imp GKG j V i j j i M i jδ δ δ+= ∀ ∈ Γ = +     (2) 

where j is the natural successor to i; ( )i+Γ  is the set of 

successors of i , and ( )jδ  is the minimum weight of at 

least j. As shown in Algorithm 1, the process is repeated 
until the implicative graph is generated in step | | 1V − . In 

the beginning, the parameters of the oriented graph are 
obtained by Lemma 1 below.  
 
Lemma 1. If an item j is adjacent to the immediate source 
item 0i , then the minimum weight j coincides with the 

value of the implicative measure MGK  of 0i  to j as:     

               0( ) ( , )GKj M i jδ =                                (4) 

When all the nodes of the implicative graph are integrated 
in the set V, the lists represent the length of the path from 
the source item 0i  to all other vertices.  

Definition 12. An implicative graph ( , )G V E=  is a 

directed graph, weighted and not reflexive, where V is the 
set of items of context, and E is the set of arcs in pairs of 
items. The arc x y represents the rule if x item is chosen, so 
y is probably chosen too.    
 
The weight carried on such arc ( , )x y  is defined by the 

value the implicative measure MGK. The graph in figure 1 
is an oriented graph and not reflexive and weighted. 
 
Proposition 1. An implicative graph ( , )G V E= is 

necessarily without circuit. 
   
Proof 1. By the absurd. Taking an implicative measure 

GKM is (transitive and not reflexive) on a finite set V. If 

[ ]1,..., kc x x=  is a elementary circuit, we deduce by 

transitivity of GKM , we have:  

 1 2 2 3 1 1( , ), ( , ),..., ( , ) ( , )GK GK GK k k GK kM x x M x x M x x M x x− = .  

Where, 1 1( , )GKM x x since 1 kx x= Contradiction!! Because 

GKM is not reflexive. 

 
Proposition 2. An implicative graph ( , )G V E= has at 

least one source and a sink. 
 

Proof 2.  Consider a path c which is maximal in the 
following sense: [ ]1,..., kc x x= and there is no apex y in G 

as [ ]1, ,..., ky x x  or [ ]1,..., ,kx x y as paths of G. Such a path 

exists since G is without circuit. This means that 1x is a 

source, and xk is a well. Well lead to our model, we take an 
experiment using a small base in the below table 1. 

Table 1. Example of association rule valid under GKM  

(0.15)d f→  

(0.25)b e→  

(0.20)d e→  

(0.10)e g→  

(0.20)f g→  

(0.15)a b→  

(0.10)b d→  

(0.30)d g→  

(0.20)c f→  

(0.20)a c→  

(0.15)c d→   

 
As a result, we formalize this data as a Boolean matrix to 
find the items sources and the last item of the graph. Using 
the relation (1), the adjacency obtained matrix is in table 2 
below. 

     Table 2. Adjacency matrix of the data GKM  

 a b c d e f g 
a 0 1 1 0 0 0 0 
b 0 0 0 1 1 0 0 
c 0 0 0 1 0 1 0 
d 0 0 0 0 1 1 1 
e 0 0 0 0 0 0 1 
f 0 0 0 0 0 0 1 
g 0 0 0 0 0 0 0 

 
As the column of the item a and a line item g are all zero 
(see table 2), then according to proposition 2, there is no h 
of G such as [h, a, b, c, d, e, f, g] or [a, b, c, d, e, f, g, h] as 
the paths G. In other words, neither item is predecessor of 
a and nor successor of g. This shows that a is a source and 
g is the last item. Therefore, the construction of that graph 
begins with item a. The calculation steps are carried out as 
follows. To do this, denote by V the set of vertices and 
permanently marked by p(j) the predecessor of item j.  
In the 0 step, the set V naturally contains a single item 
because a is a source, therefore V={a}=a. Then, based on 
the adjacency matrix of table 2, we find that b and c are 
immediate adjacent to the source item, then by Lemma 1, 
we have: ( ) 0.15bδ =  and ( ) 0.20cδ = . We also see that 

the items d, e, f and g are not adjacent to a immediate, so 
they temporarily take a weight " "∞  and a predecessor 
line" "− . The result is summarized in table 3 below. 

Table 3. Item parameters at step 0 
step V ( ) ( )b p bδ

 

( ) ( )c p cδ

 

( ) ( )d p dδ

 

( ) ( )e p eδ

 

( ) ( )f p fδ

 

( ) ( )g p gδ

 
0 a 0.15,a 0.20,a ,∞ −  ,∞ −  ,∞ −  ,∞ −  

 
In step1, we see that ( ) 0.15bδ = which is the minimum 

weight of all the peaks, which will b integrate the list of V 
and we get { }V ab ab= = . Then from table 2 the 
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adjacency matrix, we see that d and e are in immediate 
adjacent items b, we have: 

( ) min{ ( ); ( ) ( , )} min{ ;0.15 0.10} 0.25GKd d b M b dδ δ δ= + = ∞ + =
 and  

( ) min{ ( ); ( ) ( , )} min{ ;0.15 0.25} 0.40GKe e b M b eδ δ δ= + = ∞ + =  

Initially, the predecessors of these two items are not 
known, they will now argue b. While items f and g are not 
adjacent to b immediate, they keep their old settings 
( " "∞ and a dash" "− ). The updated parameters are 
summarized in table 4. 

Table 4. Item parameters at step 1 
step V ( ) ( )b p bδ

 

( ) ( )c p cδ

 

( ) ( )d p dδ

 

( ) ( )e p eδ

 

( ) ( )f p fδ

 

( ) ( )g p gδ

 
0 a 0.15,a 0.20,a ,∞ −  ,∞ −  ,∞ −  ,∞ −  

1 ab  0.20,a 0.25,b 0.40,b ,∞ −  ,∞ −  

 
In step 2, from table 4 it is seen that: ( ) 0.20cδ = which is 

the minimum weight of all vertices. We will then move c in 
the set V, and we have { }V abc= . From table 2 of the 

adjacency matrix, we see that d and f are immediate 
adjacent to c. For this purpose, was 

( ) min{ ( ); ( ) ( , )} min{0.25;0.2 0.15} 0.25GKd d c M c dδ δ δ= + = + =
We have the same value as before, this means that the two 
solutions (0.25, b) and (0.25, c) are possible, but we will 
choose b arbitrarily for further calculations. For f, we have:  

( ) min{ ( ); ( ) ( , )} min{ ;0.20 0.20} 0.40GKf f c M c fδ δ δ= + = ∞ + = . 

The immediate predecessor of f is c. The result is in table 
5.  

Table 5. Item parameters at step 2 
step V ( ) ( )b p bδ

 

( ) ( )c p cδ

 

( ) ( )d p dδ

 

( ) ( )e p eδ

 

( ) ( )f p fδ

 

( ) ( )g p gδ

 
0 a 0.15,a 0.20,a ,∞ −  ,∞ −  ,∞ −  ,∞ −  

1 ab  0.20,a 0.25,b 0.40,b ,∞ −  ,∞ −  

2 abc   0.25,bc 0.40,b 0.40,c ,∞ −  

 
In step 3, table 5 shows that the minimum weight of all the 
vertices is ( ) 0.25dδ = , which is going to include in the 

list of the set V, and { }V abcd= . From table 2, its 

immediate adjacent vertices are e, f and g, we have:  
( ) min{ ( ); ( ) ( , )} min{0.40;0.25 0.20} 0.40GKe e d M d eδ δ δ= + = + =

So we have the same value as before, the two solutions 
(0.40, b) and (0.40, d) are possible, but we will keep 
(0.40,b) in the following calculations. On the other hand, 

( ) min{ ( ); ( ) ( , )} min{0.40;0.25 0.15} 0.40GKf f d M d fδ δ δ= + = + =
We also have the same value as before, so the two 
solutions (0.40, c) and (0.40, d) are also possible, but we 
will keep (0.40, c). And ( ) ( ) 0.40e fδ δ= = , so we 
arbitrarily choose between e and f, and we have chosen e. 
For g, we have: 

( ) min{ ( ); ( ) ( , )} min{ ;0.25 0.30} 0.55GKg g d M d gδ δ δ= + = ∞ + =  

The immediate predecessor of g is initially unknown, it 
will now argue d. The results are in table 6. 
 

Table 6. Item parameters at step 3 
s
t
e
p 

V ( ) ( )b p bδ

 

( ) ( )c p cδ

 

( ) ( )d p dδ

 

( ) ( )e p eδ

 

( ) ( )f p fδ

 

( ) ( )g p gδ

 

0 a 0.15,a 0.20,a ,∞ −  ,∞ −  ,∞ −  ,∞ −  

1 ab  0.20,a 0.25,b 0.40,b ,∞ −  ,∞ −  

2 abc   0.25,bc 0.40,b 0.40,c ,∞ −  
3 abcd    0.40,bd 0.40,cd 0.55,d 

In step 4, from table 6 was ( ) 0.40eδ = which is the 

minimum distance, there will therefore integrate e in the 
set S and we get { }V abcde= . According to the adjacency 

matrix of table 2, only the adjacent item is immediate to e 
g. So,  

( ) min{ ( ); ( ) ( , )} min{0.55;0.4 0.1} 0.5 0.55GKg g e M e gδ δ δ= + = + = ≠
We have a change of values. So the immediate predecessor 
of g becomes e. The result of calculations is in table 7.  

Table 7. Item parameters at step 4 
s
t
e
p 

V ( ) ( )b p bδ

 

( ) ( )c p cδ

 

( ) ( )d p dδ

 

( ) ( )e p eδ

 

( ) ( )f p fδ

 

( ) ( )g p gδ

 

0 a 0.15,a 0.20,a ,∞ −  ,∞ −  ,∞ −  ,∞ −  

1 ab  0.20,a 0.25,b 0.40,b ,∞ −  ,∞ −  

2 abc   0.25,bc 0.40,b 0.40,c ,∞ −  
3 abcd    0.40,bd 0.40,cd 0.55,d 
4 abcde     0.40,c 0.50,e 

In step 5, from table 7, the minimum distance of all 
vertices is ( ) 0.40fδ = , so we will include f in S and we 

get { }V abcdef= . Then g is the only immediate adjacent 

vertex f (see table 2). So,  
( ) min{ ( ); ( ) ( , )} min{0.50;0.40 0.20} 0.50GKg g f M f gδ δ δ= + = + =

 We have the same value as before, the two solutions 
(0.50,e) and (0.50,f) are possible, but we kept arbitrarily 
(0.50,e). The result is summarized in table 8 below. 

Table 8. Item parameters at step 5 
s
t
e
p 

V ( ) ( )b p bδ

 

( ) ( )c p cδ

 

( ) ( )d p dδ

 

( ) ( )e p eδ

 

( ) ( )f p fδ

 

( ) ( )g p gδ

 

0 a 0.15,a 0.20,a ,∞ −  ,∞ −  ,∞ −  ,∞ −  

1 ab  0.20,a 0.25,b 0.40,b ,∞ −  ,∞ −  

2 abc   0.25,bc 0.40,b 0.40,c ,∞ −  
3 abcd    0.40,bd 0.40,cd 0.55,d 
4 abcde     0.40,c 0.50,e 
5 abcdef      0.50,ef 

In step 6, it is obvious that the minimum distance is 
( ) 0.50dδ = , because it is the only remotely compare. We 

will integrate g in the list of the set V, and we have: 
{ }V abcdefg= . This is the end of step calculations, 

because no top is to go. 
Table 9. Item parameters at step 6 

s
t
e
p 

V ( ) ( )b p bδ

 

( ) ( )c p cδ

 

( ) ( )d p dδ

 

( ) ( )e p eδ

 

( ) ( )f p fδ

 

( ) ( )g p gδ

 

0 a 0.15,a 0.20,a ,∞ −  ,∞ −  ,∞ −  ,∞ −  

1 ab  0.20,a 0.25,b 0.40,b ,∞ −  ,∞ −  

2 abc   0.25,bc 0.40,b 0.40,c ,∞ −  
3 abcd    0.40,bd 0.40,cd 0.55,d 
4 abcde     0.40,c 0.50,e 
5 abcdef      0.50,ef 
6 abcdefg      0.50,e 

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 56

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.



 

From table 9 (summary of all stages of calculations), the 
implicative graph our method is built in this way. Item 
from the source, draw arcs from a to b, and c to the 
respective distances 0.15 and 0.20. Then from item b, draw 
arcs from b to d and b to c respective distances 0.25 and 
0.40. From item c, draw arcs c to d and f to c respective 
distances 0.25 and 0.40. From item d, draw arcs d to f, and 
d to e and d to g, respective distances 0.40, and 0.40 and 
0.55. From item e, draw the arc e to g, 0.50 distances. 
Finally, draw arc f to g, 0.50 distances. The implicative 
graph matching is as follows (see figure 2). 

 
Fig. 2 : Implicative graph of our method 

 
As we have indicated, the manual construction of a graph 
implicative is revealed to be difficult when we have a large 
database (large association rules) mainly due to the 
different steps of implicative paths. It is therefore 
necessary to define an effective algorithm in order to 
automate the construction. The following section presents 
an algorithm that we have proposed. 

4. Presentation of the algorithm 

In this section, we shall present a proposal of an algorithm 
generating a problem implicative graph according to 
implicative measure GKM . The implementation of this 

problem is described in the pseudo code of the algorithm 1 
and 2 below. The first algorithm is called graph 
construction implicative (CGI) which has an objective of 
elaborating an implicative graph of association rules. It 
receives the data of the MGK, the minimum threshold 
minMGK and all items V. The algorithm generates the CGI 
implicative graph with a single source; however the second 
algorithm, called algorithm for constructing global 
implicative graph (GIG), generates all other existing 
sources items.  

 
Firstly, the algorithm formalizes the data GKM  to the 

adjacency matrix (lines 2 to 8). The algorithm CGI begins 
with finding the items sources because of SomAdjIm 
function (line 9). Beginning with the source item, the 
algorithm will generate the natural successor of item 
source and found (lines 10 to 15). As a result, the 
algorithm determines the parameters of these successor 
peaks to put them in order in ascending order (lines 10 to 
12). It then performs the update of all other vertices that 
are not adjacent to the immediate source item (lines 13 to 
15). Then comes the phase of construction of other new 
natural successor (lines 16 to 31), thanks to the SomAdjIm 
function (line 18). In this case, the algorithm starts by 
including a new item with the minimal weight, then for the 
next step, it generates all the new vertices adjacent 
immediate newly included in this item. This procedure is 
repeated until the implicative graph is extracted in 
step 1V −  (lines 17 to 31). The algorithm will stop when 

all the peaks are placed (line 31). The use of the other 
sources is presented in Algorithm 2 below. The overall 
algorithm implicative graph (GIG) receives as input a set 
of items sources. It generates the implicative graphs from 
all sources (lines 1 to 7) through the Gimp function (line 
4).  
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4. Experimentation 

The objective of this section is to test the feasibility of our 
approach. We evaluate our algorithm in terms of 
generation of implicative graph. We have implemented our 
algorithm in R language and C++, inspired from the work 
of R. Couturier (CHIC) [11].  
 
Our experiments were performed on a PC with 4 GB of 
RAM under Windows system. In this context, we have 
conducted a series of experiments on a synthetic database 
“animaux” [11]. This database includes 71 items and 41 
variables describing the characteristics of animals. Our 
experiments were performed on a PC with 4 GB of RAM 
under Windows system. In this context, we have conducted 
a series of experiments of a synthetic database.  
The main objective of this experiment is to observe the 
quality of implicative graph obtained when the minimal 
threshold varies minMGK. As a result, we varied the 
minimal minMGK à 90%, 95% and 97%, the obtained 
results found in figures 3, 4 and 5. As we have mentioned 
the calculation of the implicative graph of our method 
provides a graph on which the variables that have a value 
greater than or equal to a certain threshold implication, are 
connected with an arrow. Figure 3 below shows an 
implicative graph with a 97% threshold. The figure 3 
shows a graph of implicative six sources (“Grand”, 
“Peureux”, “Comique”, “Sale”, “Tetu”, and “Stupide”) and 
four wells (“Beau”, “Discret”, “Sournois”, and “Bete”). 
 
With a threshold of 95%, we have 18 most frequent 
transitions. To interpret it, we rely on the concept of 
implicative measure MGK and visualize in knots transitions 
statistically significant involvement. Specifically, the 
involvement is considered that of the rule which is defined 
by the premise leading to the branch node and entering the 
transition in question. Transitions are represented and most 
characteristic of the node in the sense that they are the ones 
whose relative frequency of against-examples within the 
group is the significantly lower than the proportion of other 
transitions in the node initial. In each node transitions 
meaningful involvement are ordered from bottom to top in 
order to decrease the significance.  

 
Fig. 3: Implicative graph tested our algorithm (min 97%GKM = ) 

With this new tool, we can present the implicative graph 
on the same figure. Figure 4 presents of implicative graph 
of threshold 95% (green) and 97% (red). While figure 5 as 
90% threshold (green) and 97% (red).  
 

 
Fig. 4: Implicative graph tested our algorithm (min 95%,97%GKM = ) 

As we have noted, the implicative graph allows the user to 
highlight the important features of the data. As indicated in 
the given examples, we can interpret the Figure 4 as 
follows. With 95%, a Grand admits animal characters and 
violent. It is majestic and wicked. At 95% of chance, an 
animal “Powerful” is a violent and wicked animal. It is 
97% strong and hazardous animal. At 95%, the animal 
“Mortal” is scary and mean, but 97% sneaky. An animal 
"Bloody" is 95%, mean and nasty. At 97%, it is aggressive 
and sneaky. Character both sinister and cunning is made 
95% chance. The figure 5 below shows the feasibility of 
our approach that provides the set of graphs to several 
paths implicative step in very reasonable time. As we have 
seen in Figure 5, we observe that when the threshold is 
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reduced minGGK (90%), we have implicative graphs larger 
due the increase in the size of rules of significant 
associations. We can say that our approach is operational 
even if the size is big bass.  

 

 
Fig. 5: Implicative graph tested our algorithm (min 90%,97%GKM = ) 

4. Conclusions and future work 

We have proposed a new method to construct the 
implicative graph in the sense of implicative measure MGK. 
Also, we have presented a new algorithm that generates 
these implicative graphs. The results of our experiments 
show the effectiveness of the proposed strategy to generate 
graphs in several ways, in times in a very reasonable 
answer. In the near future, extending our algorithm to 
make the construction the implicative graph of implicative 
quantitative and qualitative association rules. 
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