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Elaboration of implicative graph according to measure Mgk
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Serge and al. study the psychological behavior trait of

Abstract association members for the white-collar workers, in order

The implicative graph is one of the statistical tools very essentialto build up the help system of decision-taking [13]. In
for the representation of the sequence of attribute groups. It[10], Ritschard and al. use implicative statistical analysis
allows the user to highlight association rules for these attributes.qp, the study of the professional dynamic in Geneva during

Several studies have already been developed, but we find thaéhe 19th century. In [7], Jean-Claude and J-C Réginier

these works focus only on two measure: measure of Gras an ronose a conceptualization of imolicative analvsis
Lerman’s. While only using these two measures are not sufficientP 0P P P Y

to guarantee the quality of graphs implicative. In this work, we Methods to describe an activity of their students in
focus on the development of the implicative graph of all cOmputer data processing. In [6], Lerman and Pascal
association rules by using another quality measwg. lBuch a  propose a formalization of a binary hierarchical oriented to
corstruction is exponential in the size of database, and mainlyprovide a graphical representation of a family of
due to the paths implicative step. It is therefore necessary toassociation rules. In [15], the authors compare the three

define an efficient algorithm to automate the construction. methods, such as the implicative statistical analysis, the
Following this study, we propose a new algorithm that generates,ctorial correspondence  analysis and  automatic

an implicative graph using this new quality measurg.MVe classification of individuals. In [8], Lucia and Dusan

corducted experiments using one database to test the . . \ - .
performance of our algorithm. describe the analysis of student’s solution on the particular

Keywords:  Algorithm,  Implicative  graph,  Database, them_e of concgption in geometry, in order to detect the
Association rules, Quality measure M. possible strategies that can be used by the students. We can
note that these works are only appropriate under two
implicative measures: measure of Gras [12] and the
1. Introduction Lerman’s [5], and they emphasize on the study of positive
association rules. The negative association rules are thus
Introduced by the works of Gras [12] and IC Lerman [5] in still unknown in spite of their important interest for the
the early of 1980’s, the implicative statistical analysis is a user. In this work, we would like to focus on the
fairly old discipline. The problem of successive sequencesconstruction of implicative graph of negative and positive
of attributes or the attribute group is frequently studied. rules. Such a construction is exponential in the size of
The implicative graph is one of the statistical tools that is database and mainly due to particularly of the paths
very essential for the representation of this sequencejmplicative step. It is then important to define an efficient
particularly for taxonomical objective. It allows the user to algorithm in order to get the automatic construction. In this
highlight the association rules he wants to see. In thispaper, we have proposed a new algorithm generating an
work, the relationship “arc” between the two attributes implicative graph under the implicative measurgg14]
andj will be shown in this graph implicative if the value of (Guillaume Khenchaff's Measure). M is varying into the
implicative measure is higher than a given minimum interval [-1, +1] [2], i.e. she is reflect the references
threshold. Biological sciences, Medical sciences, situations such as incompatibility gv=-1), independence
Computer networks [9] and Telecommunication networks (Mgk=0), and logical implication between the premise and
are particularly the fields where the implicative graph theconsequent of the association ruleggw1).
could efficiently intervene. To our knowledge, the didactic The rest of this paper is organized as follows. Some
of disciplines, the psychology and the sociology are, up topreliminaries are presented in section 2. Section 3 is
now, the main fields in which the implicative graph devoted to the description of the method we propose. The
intervenes. As an example: Maria and Sylvia apply the algorithm proposed is described in section 4. Experimental
implicative analysis in order to reveal the existence of evaluation will be presented in form of summary in section
hierarchy of the difficulties in finding the simple 5. In conclusion, we shall present our results of our
mathematical solutions [4]. Using analysis implicative, contributions and research perspectives.
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2. Preliminaries
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who buy a computer also buy a printer. When considering
an association rule, it is essential to associate at least one

In this section, we shall present all the basic concepts thatjuality measure on which the user can rely on to judge its
will be useful later in this work. Therefore, we shall relevance. A quality measure is a function that evaluates an
introduce the concepts of the association rules in a binaryassociation rule. We present below a definition of the

context, and directed graph.
2.1 Association rules

Definition 1. A binary context is a triplet K =(T,I,R),

where T and | are respectively finite sets of transactions
(or objects) and items (or attributes), and RO | xT isa

binary relation between the transaction and the item. A
couple (i,t)0R denotes the fact that the transaction
tOT containstheitemi O .

It is assumed that the daka to explore are binary, its

measure we used, measurggvl

Definition 6. For all association rules X - Y, the quality
measure Mg is defined as:

PO IX) = p(¥) 4

p(Y [ X)z p(Y)
Mox )= o ) W
—— it p(Y[X)<p(Y)
p(Y)
Independently of Guillaume [14], Totohasina et al.
introduced in [2] the same measure called ION

(implicative measure, oriented and normalization) to allow
the extraction negative and positive association rules. Wu

means we can describe each transaction by means of & 4| also introduced in [16] the same measurement known

finite set of itemd ={i,...,i,,} , also called attributes. Each
transaction T will be a subset ofl. Furthermore, it

CPIR (Conditional Probability Increment Ratio) for the
extraction of positive and negative context of data mining

combines each transaction identified TID (Transaction rules.

IDentify): T ={t,...,t.} , that is to sayO(i,t)0I xT ,
t[i]=1 if the itemi is present it andt[i]= O otherwise. The
patternX is a subset of items(X O 1) . Below, the table 1

shows an example of binary context with four items {A, B,
C, D} and five transactions {1, 2, 3, 4, 5}. Let
X'={tOT| 0i0X,iRG the set of all public entities to all
elements; this is the dual of the patte¥a

Table I. Example of binary context
TD |A |[B|C D
1 1 [ 1)1 1
2 o [1]0 0
3 1 o1 0
4 0 [1]1 0
5 1 1|0 1
By considering the context of tablel, for

exampleX ={AB} , we haveX'={1,3 and its logical
negation is presented bx'={2,3,4 . In the rest of this

paper, to simplify the notation, let us
denotedP(Y | X)=P(Y'| X "), where X' is the extension
(or dual) of the patterK.

Definition 2. An association ruleis a quasi implication of
the form X - Y, where X and Y are digointed patterns
( X,ydl and XnY=0O ) respectively called the
premise and the consequent of therule.

Example 1 Consider the association rule given by:
Computer — Printer. This can be translated as customers If (x,y) O E, then y isa succ

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

If Mg, (X,Y) =1, then the attraction between the premises
X and thereforeY is high, that isX andY are positively
dependent. IfMg (X,Y)=0, that is X and Y are
independent, the ruleX - Y is not interesting. If

Mg (X,Y)=-1, that is X and Y are stochastically
incompatible, there is therefore a strong repulsion between
X andy, i.e. X andY are negatively dependent. The main
mathematical properties characterizing this quality

measure are developed in [1-3]. Therefore, we urge
interested reader to check their works.

2.2 Concepts of the directed graph

Definition 1. We call graphG =(V,E), the data set V
whose elements are called the vertices and part E
symmetrical ((x,y)JE = (y,x)0E)whose elements are
called edges (or arcs).

Definition 2. A directed graph is a pair G=(V,E) ,
where V is a set of vertices and EOV xV is a set of
edges. A directed arc (x,y) is denoted by x - y. We say
that x - y it starts at the top xand y comes from the
top. In this case, each edge is oriented and cannot be
driven in the direction of the arrow.

The figure 1 is an exemplary graph of 7 vertices having
order 7 V={1, 2, 3, 4, 5 6, 7} and 9 edges:
E={(1,2),(1,3).(2.3), (2:4).(2.5),(2,6),(4,6).(6,7),(3,7)}.
Definition 3. Given a graph G=(V,E), EOV XV .
essor of x, and if (y,x)OE,
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theny is a predecessor. Two vertices connected by an incoming and outgoing non-zero degree is called source,
edge are said to be adjacent or neighbors, i.e. x and y are while a vertex of degree entering non-zero and zero is
adjacent if there is a predecessor and / or successor of x. called out-degree wells. In this example, vertices 1, 4 and 5
are source vertices, while the top 3 is well known.

° Definition 8. A graph is valued when, each edge or arcis

associated with a number real. If this number is positive, it

is called weight and weighted graph.

o e e In a graph, it is natural to want to move from peak to peak

' e along the edges. Such a step is called a string or path.

Definition 9. A path of graphG = (V,E) is a sequence of
vertices x,....x ,0k=10i :I<i<k-1& x, HE . A
Jpath [%,...%] is called elementary if x,...x Ok 1

Fig. 1 Example of a graph of order 7 oriented
In the example of figurel , the top 2 recognizes the node
1, 5 and 6 as predecessors but admits the top 3 agnd Ui, X # Xx,,, i.e. contains not twice the same vertex.
successor, one notes respectiyagd( 2 ) = {1, 5, 6} and The length of a path is defined by the number arcs
succ( 2) = {3}. Then the peaks (1 and 2) or (2 and 3) are composing the path. It equals the number of vertices minus
adjacent or immediate neighbors. one: |V |[-1. A path consisting of only the tog noted

[x] is of zero length. In the example of figure 1, the path

[4, 6, 7, 3] is an elementary way, for each vertex of the
path is visited once.

Definition 4. Given a graph G=(V,E) . The set of
successors x is noted T (x) as I (x)={y|(x y)OE} .
The set of predecessors of x is denoted "(x) as
() ={y| (v, X OB . The set of neighbors of X is Definition 10. A circuit of G=(V,E) is one path
denoted ' (x) =M (x) T () . [%.-...%] suchthat x =x,.

Also according to the example of figure 1, all of the The example of figure 1 is a graph without circuit, because
successor peak 1 is givenby(1) = {2,3} , while all of the there are not an edge returns between the peaks.

predecessor vertex is emptylagl) ={} . Then the set of
neighbors of the vertex 11i§1) = {2,3} . 3. Description of the method

Definition 5. Given a graph G =(V,E). Called interior

; In this section, we describe our approach to build a graph
grade or half-degree of a vertex x is the number of

called implicative by using the measure of involvement

elements denoted d™(x) =| T~ () |. Mgk. In most cases, we tried to explore large databases for
In the example of figure 1, there is no peak that is within this purpose, the construction of such implicative graph has
the top one, its degree is zem:(1) = 0, while the degree  become tedious and exhausting, mainly because of the

within the top 3 is at number 3 , sb (3) = 3. problem of course |mpI|cat|yeT way. It. is therefore
necessary to define an efficient algorithm that can
automate the construction. The approach we have adopted

Definition 6. Given a graph G=(V,E) . Called out- s as follows. Formalize the data measuringexM
degree (external degree) or half-degree of a vertex x is the involvement in an adjacency matrix or Boolean matrix to
number of elements noted d* (x) =" (x) . switch to binary mode involvement between associations,
In figure 1, there are two vertices which are beyond the topSUch as: _ _

one, sod* (1) = 2. M :{1’ if Mg (,])= minMg, )
Definition 7. Given a graph G=(V,E) . We call the _ 0 .otherW|.se . N

degree of x (or valence) the sum of the in-degree and out- wherei andj two adjacent itemsM, (i, j) represents the
degree d(x) =d " (x)+d"(x) . value of the ard - j according to the measuhés and

In our example in figure 1, the degree of vertex 1 is noneMiNMgk is the minimum threshold set by the expert. In

other than the out-coming degree because its incomingPther words, we assign the value 1 if the measliee
degree is zero, sd(1)=2. A vertex of degree zero verifies the minimum threshold, and 0 otherwise. Interest is
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Proof 2. Consider a path ¢ which is maximal in the

formalized data, we generated the set of vertices (goingfollowing sense:c:[xl,...,xk] and there is no apexin G

through the implicative path), adapting the situation to the

technique of the search path theory of classical graphs, if'S

which the transition cost function becomes, in our
approach, the involvement measurgiMThe adapted new
technique is defined as follows. Given a set of items (or
vertices) V and a set of arcs E, the generating implicative
graphG,,, =(V,E) such that:

G =TI OVATT(): & D) =min{ & D; &) +Mg (i D} (2)
where j is the natural successor ipl*(i) is the set of
successors of , and d(j) is the minimum weight of at

leastj. As shown inAlgorithm 1, the process is repeated
urtil the implicative graph is generated in st@p|-1. In

[V.%,...%] or [x....x y]as paths of5. Such a path
exists sinceG is without circuit. This means thag is a

source, and, is a well. Well lead to our model, we take an
experiment using a small base in the below table 1.
Table 1. Example of association rule valid undidr;,

d - f(0.15) b - d(0.10)
b - €0.25) d - g(0.30)
d - ¢(0.20) c - (0.20)
e - g(0.10) a - ¢(0.20)
f - g(0.20) ¢ - d(0.15)
a - b(0.15)

the beginning, the parameters of the oriented graph areAs a result, we formalize this data as a Boolean matrix to

obtained byLemma 1 below.

Lemma 1 If anitemj is adjacent to the immediate source
item i, , then the minimum weight j coincides with the

value of the implicative measure Mgk of i, toj as:
o(J) = Mg (io, 1) (4)
When all the nodes of the implicative graph are integrated

in the setV, the lists represent the length of the path from
the source iteni, to all other vertices.

Definition 12. An implicative graph G=(V,E) is a
directed graph, weighted and not reflexive, where V is the

set of items of context, and E is the set of arcsin pairs of

items. The arc x y represents the rule if x item is chosen, so
y isprobably chosen too.

The weight carried on such afg,y) is defined by the

value the implicative measulM k. The graph in figure 1
is an oriented graph and not reflexive and weighted.

Proposition 1 An implicative graph G=(V,E) is
necessarily without circuit.

Proof 1. By the absurd. Taking an implicative measure
Mg is (transitive and not reflexive) on a finite dét If

c:[xlxk] is a elementary circuit, we deduce by
transitivity of M, , we have:

Mo (%5 %), Mg (%, %), Mg Ky X )= Mg € X, ).

find the items sources and the last item of the graph. Using
the relation (1), the adjacency obtained matrix is in table 2
below.

Table 2. Adjacency matrix of the dalM ;,

alb |c|dle |flg
a|0|1]1] 0 0] 0 O
b|0|O0O|] O] 1] 1] 0] O
c|O0O]j]O0O ]JOf|1]0 |1]0
d|[o]O0O |]O|O]1 1|1
e| 0] 0] 0] 0] O] 0] 1
fl{0o]J]O]O]JO|] O] O] 1
g|0]0] 0] 0] O] O] O

As the column of the itera and a line iteng are all zero
(see table 2), then according to proposition 2, there s no
of Gsuch asH, a, b, c,d, e f,glor[ab,c,defg h]as

the pathsG. In other words, neither item is predecessor of
a and nor successor gf This shows that a & source and

g is the last item. Therefore, the construction of that graph
begins with item a. The calculation steps are carried out as
follows. To do this, denote by the set of vertices and
permanently marked kyyj) the predecessor of item j.

In the O step, the sa&t naturally contains a single item
because a is a source, therefdreda}=a. Then, based on
the adjacency matrix of table 2, we find thatndc are
immediate adjacent to the source item, therL&yma 1,

we have:o(b) =0.15 and J(c) =0.20. We also see that

the itemsd, e, f andg are not adjacent ta immediate, so
they temporarily take a weighte" and a predecessor

Where, M, (x,%,) since x_ = x, Contradiction!! Because

line"-". The result is summarized in table 3 below.
Table 3. ltem parameters at step 0
step | V| sb)pb) | S©p©) | Sd)pd) | SEepE) | f)p(f)| 5(9)p(g)
0 | a| 015a| 020a| - ,— ,— ,—

M ¢ is not reflexive.

Proposition 2 An implicative graph G =(V,E) has at
least one source and a sink.

Copyright (c) 2014 International Journal of Com

In stepl, we see thal(b) =0.15which is the minimum

weight of all the peaks, which will integrate the list of/
and we getV ={al} =ab . Then from table 2 the
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adjacency matrix, we see that d and e are in immediat Table 6. ltem parameters at step 3
adjacent items, we have: S|V | eop) | S@p© | s@p) | dE@PE | DR dP()
a(d) = min{d(d); a(b) + M, (b, d)} =min{ <0.15 +0.10} =0.25 2
and 0 a 0.15,a 0.20,a| - 0, — 00, = 00, =
3(e) = min{d(8); &(b) + M (b ©} =min{ 0.15 +0.25} =0.40 1] ab 020a| 025b] 040K - | =~

(_) {o(e); b a(b O} {er : } 2| abc 025bc| 0400 0404 o -

Initially, the predecessors of these two items are not 3T abcd 570500205 355,

known, they will now argué. While itemsf andg are not
adjacent tob immediate, they keep their old settings
("" and a dash"-" ). The updated parameters are

In step 4, from table 6 wa®(e) =0.40 which is the
minimum distance, there will therefore integrate e in the

summarized in table 4. set S and we gé&f ={abcdg . According to the adjacency
Table 4. Item parameters at step 1 matrix of table 2, only the adjacent item is immediate to e
step | V| S)pb)| S| Sd)p() dEpe)| S(F)p(f] S(g)p(g) g. So,
(9) =min{d( g); A& + M(e g)} =min{0.55;0.4+ 0.1}=0.5# 0.5
0 a 0.15,a 0.20,a] ,— 00, = 00, = 00, = ) A
1 ab 020a] 0250 040B - Py We have a change of values. So the immediate predecessor

of g become®. The result of calculations is in table 7.

In step 2, from table 4 it is seen thalc) = 0.20which is Table 7. Item parameters at step 4

T ) . . Y Sb)pb) | Q)P | S@)p@)| S@pE | (P (0)p(g)
the minimum weight of all vertices. We will then move cin |
the setV, and we have/ ={abg . From table 2 of the P
] ) ) ) 0 a 0.15a| 0.20a - o0, ~ o0, ~ o0, ~
adjacency matrix, we see thdt and f are immediate 1| ab 020a| 025b 0400 - o=
adjacent ta. For this purpose, was 2| abc 0.25bc| 040b] 0404 o -
o(d) = min{d(d); o(c) + M, (c d)} =min{0.25;0.2+ 0.15}= 0.25 3| abcd 0.40,bd  0.40,c 0.55,
abcde 0.40,c 0.50,¢

We have the same value as before, this means that the tV\TPF:
solutions (0.25, b) and (0.25, c) are possible, but we will
choose b arbitrarily for further calculations. For f, we have:

step 5, from table 7, the minimum distance of all
vertices isd(f) =0.40, so we will include f in S and we

S(f) = min{( f); Kc) + My, (¢ )} =min{ 0.20 +0.20} =0.40. get V ={abcdef} . Then g is the only immediate adjacent
The immediate predecessorfds c. The result is in table ~ Vvertex f (see table 2). So,
5. o(g) =min{ g); & f) + M (f, @)} =min{0.50;0.40+ 0.20}= 0.5C
Table 5. Item parameters at step 2 We have the same value as before, the two solutions
S B RCCLON RECLC R OLOI RECLCA UL B OLO) (0.50e) and ¢.50f) are possible, but we kept arbitrarily
5 5T 530 — — — — (0.50€). The result is summarized in table 8 below.
T ; 48 5 éo: 0’25 5 (’)40 —— —— Table 8. Item parameters at step 5
> abc 25 b 0400040 — s v Sb)pb) | QP | ad)p)| aE@pE | of)p(f) ala)p(a)
' e
p
In step 3, table 5 shows that the minimum weight of all the (1) 2 0.15a 00'22002 S e A
vertices isd(d) = 0.25, which is going to include in the |5+ [ 025bd 040§ 040§ oo
list of the setV, andV ={abcd; . From table 2, its 3| abcd 0.40bd _ 0.40cfl 0554
. . . . . 4 abcde 0.40,c 0.50,€
immediate adjacent vertices are e, f and g, we have: 5T abcdef 0.50.¢f

o(€) = min{d(); A(d) + M (d, €} =min{0.40,0.25+ 0.20}= 0.40 In step 6, it is obvious that the minimum distance is
So we have the same value as b_efore, the two .solution%'(d) =0.50, because it is the only remotely compare. We
040y e g s o o s il et in th st of o se and we have

5(f)=,min{5(f);c¥(d)+MGK(d, )} =min{0.40;0.25+ 0.15)= 0.40’ V ={abcdefg . .ThIS is the end of step calculations,
We also have the same value as before, so the twéaecause no top is to go.

. ) Table 9. ltem parameters at step 6
so_lutlons (0.40, c) and (0.40, d) are also possible, but wes v SO0 JOp0 ] adp@)] @p© ]| aNet] da)r@)
will keep (0.40, c). Andd(e)=45(f)=0.40 , so we :
arbitrarily choose between e and f, and we have chosen ¢.2
h i 0 a 0.15,a 0.20,a| ©,— 0,= 0,= 0,=
For g, we have: _ 1] ab 020a| 0250 0408 @- | w-
o(g) = min{d(g); A(d) + M, (d, g)} =min{ «0.25 +0.30}=0.55 2 abc 0.25bc| 0400  040f o-
The immediate predecessor of g is initially unknown, it[ 3] abcd 0.40bd | 0.40,cd | 0.55d
will now argue d. The results are in table 6. 4| abcde 0.40c| 0504
5 abcdef 0.50,eff
6 abcdefg 0.50,¢|
1JCSI
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From table 9 (summary of all stages of calculations), the Algorithm 1 Construction of implicative graph (CGI)
implicative graph our method is built in this way. Item input : Matrix My ; mingg, : ig item source; V set of vertices.
from the source, draw arcs fromto b, and ¢ to the output: &y = (1, E) @ Impliestive graph.

respective distances 0.15 and 0.20. Then from item b, drav 1 begin o

arcs from b to d and b to c respective distances 0.25 ani 2 | * s S

0.40. From item ¢, draw arcs c to d and f to ¢ respective 15 .

distances 0.25 and 0.40. From item d, draw arcs d to f, anc | M{ij) 1 else M{i, )« 0

3
4
5

d to e and d to g, respective distances 0.40, and 0.40 an g —
B
g

if Megli,5) = ming_,. then

0.55. From item e, draw the arc e to g, 0.50 distances o

end
Finally, draw arc f to g, 0.50 distances. The implicative B: SAT + SomAdiIml{ia);

|:ll'.lrr--:' 2B

graph matching is as follows (see figure 2). if “rf Rl 4

= ol Mg,k

: 12 end
13 for all § = (V\SAl) do
14 | #(3) & oo;
15 | end
16 i¢—1in; arret + 0;
17 repeat
12 SAl +— SomAdjim(i);
149 for all 3 £ 54T do
20 (7)) — man{dzh (1} + Mog i1, 7]} :
21 G imp 4 Gionp U (1, 7)1
22 enid
25 min — F(¥ (1))
24 for &+ 2 to || do
25 a1+ SVik));
26 if §1 < min then
7 | min 81 V(k);
28 end
25 emd
30 mrret+ 4

Fig. 2 : Implicative graph of our method || Ml (e et}

32end

As we have indicated, the manual construction of a graphrirstly, the algorithm formalizes the dats « to the

implicative is revealed to. bg difficult when we have a large adacency matrix (lines 2 to 8). The algorithm CGI begins
database (large association rules) mainly due to theg;n finding the items sources because [fmAdjim

different steps Qf implicative_ paths. _It is_ therefore ¢ ,nction (line 9). Beginning with the source item, the
necessary to define an effective algorithm in order 10 4qorithm will generate the natural successor of item

automatfe the construction. The following section presentsg ,rce and found (lines 10 to 15). As a result, the
an algorithm that we have proposed.

algorithm determines the parameters of these successor

peaks to put them in order in ascending order (lines 10 to
. . 12). It then performs the update of all other vertices that

4. Presentation of the algorithm are not adjacent to the immediate source item (lines 13 to

In this section, we shall present a proposal of an aIgorithmlS)' Tlhen comes tlr_'e phlagse (;flconhstrukction of ?}Ter new
generating a problem implicative graph according to natural successor (lines 16 to 31), thanks toSimAdjim

implicative measuréM, . The implementation of this functlt_)n (line 18.)' In j[h's casg,_the algonthm starts by
. ) ) ) including a new item with the minimal weight, then for the
problem is described in the pseudo code of the algorithm 1.+ step, it generates all the new vertices adjacent

and 2 below. The first algorithm is called graph jmmegiate newly included in this item. This procedure is
construction implicative (CGI) which has an objective of repeated until the implicative graph is extracted in

elaborating an implicative graph of association rules. It A . .
receives the data of the d¢d the minimum threshold steq\/| 1 (lines 17 to 31). The algorithm will stop when
minMex and all itemsV. The algorithm generates the CGI all the peaks are placed (line 31). The use of the other
implicative graph with a single source; however the secondSOurces is presented in Algorithm 2 below. The overall
algorithm, called algorithm for constructing global algorithm implicative graph (GIG) receives as input a set
implicative graph (GIG), generates all other existing of items sources. It generates the implicative graphs from
sources items. all sources (lines 1 to 7) through tl@mp function (line

4).
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Grand Peureux Comigque Sale Tetu Stupide
Alporithm 2 Generation global implicative graph{ G1G)
input : V set of itoms sources; V' set of item ; Matriz Mok ; manag .
output: 96 = (V, £) : Clobal lmplicative Graphe
1 begin
2| gG+0
3 for all sourre s £V do
4 triz Mg, ming,., .8 V); r
5 GG GG UG imp “iolent Dur AngoissamanguinaireCraintif Bete
b end
7 end
4. Experimentation ,

Majestueukiechant Sauvage Agressif

The objective of this section is to test the feasibility of our
approach. We evaluate our algorithm in terms of
generation of implicative graph. We have implemented our
algorithm in R language and C++, inspired from the work
of R. Couturier (CHIC) [11].

Beau Discret Sournois

Our experiments were performed on a PC with 4 GB of
RAM under Windows system. In this context, we have ) S T
conducted a series of experiments on a synthetic databas@ith this new tool, we can present the implicative graph
“animaux” [11]. This database includes 71 items and 410N the same figure. Figure 4 presents of |mpllcqt|ve graph
variables describing the characteristics of animals. OurOf threshold 95% (green) and 97% (red). While figure 5 as
experiments were performed on a PC with 4 GB of RAM 90% threshold (green) and 97% (red).

under Windows system. In this context, we have conducted
a series of experiments of a synthetic database.

The main objective of this experiment is to observe the
quality of implicative graph obtained when the minimal
threshold varies minkk. As a result, we varied the
minimal minMgx a 90%, 95% and 97%, the obtained
results found in figures 3, 4 and 5. As we have mentioned
the calculation of the implicative graph of our method
provides a graph on which the variables that have a value
greater than or equal to a certain threshold implication, are
connected with an arrow. Figure 3 below shows an
implicative graph with a 97% threshold. The figure 3
shows a graph of implicative six sources (“Grand”,
“Peureux”, “Comique”, “Sale”, “Tetu”, and “Stupide”) and
four wells (“Beau”, “Discret”, “Sournois”, and “Bete”).

Fig. 3: Implicative graph tested our algorithmify M, = 97%)

Grand Puissant Mortel Sanguinaire

wiolent Dur Fort Dangereu¥ Angoissang

\ >
Fig. 4: Implicative graph tested our algorithmify M, = 95%, 97%)
As we have noted, the implicative graph allows the user to
highlight the important features of the data. As indicated in
the given examples, we can interpret the Figure 4 as
follows. With 95%, a Grand admits animal characters and
violent. It is majestic and wicked. At 95% of chance, an
animal “Powerful” is a violent and wicked animal. It is
7% strong and hazardous animal. At 95%, the animal
Mortal” is scary and mean, but 97% sneaky. An animal
%Ioody“ is 95%, mean and nasty. At 97%, it is aggressive
and sneaky. Character both sinister and cunning is made
95% chance. The figure 5 below shows the feasibility of
our approach that provides the set of graphs to several

paths implicative step in very reasonable time. As we have
seen in Figure 5, we observe that when the threshold is

Agressif Sinistre

MechantSauwvage Sournois

With a threshold of 95%, we have 18 most frequent
transitions. To interpret it, we rely on the concept of
implicative measure Wk and visualize in knots transitions
dtatistically significant involvement. Specifically, the
involvement is considered that of the rule which is defined
by the premise leading to the branch node and entering th
transition in question. Transitions are represented and mos]
characteristic of the node in the sense that they are the one
whose relative frequency of against-examples within the
group is the significantly lower than the proportion of other
transitions in the node initial. In each node transitions
meaningful involvement are ordered from bottom to top in
order to decrease the significance.
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reduced mingx (90%), we have implicative graphs larger Reunion, France. We acknowledge the AUF (University
due the increase in the size of rules of significant Agency of the Francophone), for his financial support.
associations. We can say that our approach is operational

even if the size is big bass. References
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