

An Efficient Protective Layer Against SQL Injection Attacks

Bojken Shehu
1
 and Aleksander Xhuvani

2

1
 Computer Engineering Department, Faculty of Information Technology

Polytechnic University of Tirana

Tirana, Albania

2
 Computer Engineering Department, Faculty of Information Technology

Polytechnic University of Tirana

Tirana, Albania

Abstract
In this paper, we present a detailed discussion on different SQL

injection attacks and their prevention technique. In addition, we

proposed a new scheme for prevention of SQL injection attack,

which consist of three blocks or three tier architecture: the

clients, the application server and the database server. Our

protective layer works between the clients and application

server. Therefore, before sending SQL queries to the database,

the protective layer will analyze the query to check the

vulnerability. If found any, it reported else it forward the query

to database server. The proposed scheme is efficient and

overhead is negligible.

Keywords: SQL Injection, Web Security, Vulnerabilities,

Prevention, Database security.

1. Introduction

In recent years, most of our daily tasks are depend on

database driven web applications because of increasing

activity, such as banking, booking and shopping. SQL

injections are the most common yet critical threats to any

website as it is concern to the database, which is the

valuable to any organization. These websites helps the

users to make personal account there for online

transactions [15], or to store their confidential data. As

the popularity of internet increases, the use of online and

automated processes are also, increases and therefore

huge bulks of sensitive and critical data are being handled

by the web applications. As the stakes on the information

and data stored by the portals become higher, so does the

sophistication of hackers. Developers and hackers are

racing against each other. Developers try to make the web

application secure from the threats and the hacker wish to

find the loophole, so that it can steal or damage the

application or data. Security threats could be with the

intent of stealing confidential information [18], causing

deliberate damage, proves capability or simply for the

thrill of doing something which most others cannot do.

 With SQL injections, cyber-criminals can take

complete remote control of the database, with the

consequence that they can become able to manipulate the

database to do anything they wish, including:

Insert a command to get access to all account details in a

system, including user names and retrieve passwords from

registry.

 Shut down a database.

 Upload files.

 Through reverse lookup, gather IP addresses and

attack those computers with an injection attack.

 Corrupting, deleting or changing files and

interact with the OS, reading and writing files.

 Online shoplifting e.g. changing the price of a

product or service, so that the cost is negligible

or free.

 Insert a bogus name and credit card in to a

system to scam it at a later date.

 Delete the database and its all contents.

There must be some rules that one should be

incorporated in every website to make it secure from SQL

injections. Many Web applications can be exploited

because the user input is being processed in an unsafe

manner. All the data provided by a user must be treated as

untrustworthy. One of the key requirements for a Web

application’s security is the proper user input handling,

which is not always an easy task. To propose the

classification the inputs based on probability and use of

character as a vulnerability that helps to identify in SQL

detection process. Proper neutralization of such special

characters used in an SQL command to avoid the SQL

injection.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 38

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

2. SQL Injection Attack Techniques

The SQL injection attacks can be performed using various

techniques [19]. For each attack we identify a pattern of

the attack. Some of them are specified as follows:

Tautologies: The main goal of tautology-based attack is to

inject code in conditional statements so that they are

always evaluated as true. Using tautologies, the attacker

wishes to either bypass user authentication or insert

inject-able parameters or extract data from the database.

A typical SQL tautology has the form, where the

comparison expression uses one or more relational

operators to compare operands and generate an always

true condition. Bypassing authentication page and

fetching data is the most common example of this kind of

attack. In this type of injection, the attacker exploits an

inject-able field contained in the WHERE clause of query.

He transforms this conditional query into a tautology and

hence causes all the rows in the database table targeted by

the query to be returned. For example, SELECT * FROM

user WHERE id=’1’ or ‘1=1’-‘AND password=’1234’; “or 1=1”

is the most commonly known tautology. In this type of attack the

injected code will always start with a string terminator (‘)

followed by the conditional OR operator. The OR operator will

be followed by a statement that always evaluates to true. The

signature for such attacks is the string terminator (‘) and OR.

Logically incorrect query attacks: The main goal of the

Illegal/Logically Incorrect Queries based SQL Attacks is

to gather the information about the back end database of

the Web Application. When a query is rejected, an error

message is returned from the database including useful

debugging information. This error messages help attacker

to find vulnerable parameters in the application and

consequently database of the application. In fact attacker

injects junk input or SQL tokens in query to produce

syntax error, type mismatches, or logical error by purpose.

In this example attacker makes a type mismatch error by

injecting the following text into the input field: 1) Original

URL:http://www.toolsmarket-al.com/veglat/?id_nav=2234 2)

SQL Injection: http://www.toolsmarket-al/veglat/?id_nav=2234’

3) Error message showed: SELECT name FROM

Employee WHERE id=2234\’. From the message error we

can find out name of table and fields: name; Employee;

id. By the gained information attacker can organize more

strict attacks. The Illegal/Logically Incorrect Queries based

SQL attack is considered as the basis step for all the other

techniques. In this type of attack there are several ways to

perform illegal or incorrect queries like incorrectly terminating

the string (‘), using AND operator to perform incorrect logics,

using order by, etc.

Union Query: The main goal of the Union Query is to

trick the database to return the results from a table

different to the one intended. By this technique, attackers

join injected query to the safe query by the word UNION

and then can get data about other tables from the

application. This technique is mainly used to bypass

authentication and extract data. For example the query

executed from the server is the following: SELECT Name, Phone

FROM Users WHERE Id=$id. By injecting the following Id

value: $id =1 UNION ALL SELECT credit Card Number, 1

FROM Credit sys Table. We will have the following query:

SELECT Name, Phone FROM Users WHERE Id=1 UNION ALL

SELECT credit card Number, 1 FROM Credit sys Table. This

will join the result of the original query with all the credit

card users. The signature of this attack is UNION

character of SQL.

Stored Procedures: The main goal of the Stored

Procedures SQL attack is to perform privilege escalation

and try to execute the SQL procedures. SQL injection

attacks of this type try to execute the SQL procedures.

Stored procedure is a part of database that programmer

could set an extra abstraction layer on the database. As

stored procedure could be coded by programmer, so this

part is as inject-able as web application forms. Depend on

specific stored procedure on the database there are

different ways to attack. In the following example [4],

attacker exploits parameterized stored procedure. CREATE

PROCEDURE DBO. is Authenticated @user Name varchar2,

@pass varchar2, @pin int ASEXEC(“SELECT accounts FROM

users WHERE login=’” +@user Name+ “’ and

pass=’”+@password+”’and pin=”+@pin); GO For

authorized/unauthorized user the stored procedure returns

true/false. As an SQL injection attack, intruder input “’;

SHUTDOWN; - -“for username or password. Then the stored

procedure generates the following query: SELECT accounts

FROM users WHERE login=’boni’ AND pass=’’;

SHUTDOWN; -- AND pin= . After that, this type of attack

works as piggy-back attack. The first original query is

executed and consequently the second query which is

illegitimate is executed and causes database shut down. So,

it is considerable that stored procedures are as vulnerable

as web application code. The signature of this attack will

be the same as that of piggy-backed queries.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 39

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Piggy-Backed Queries: The main goal of the Piggy-

Backed Query is to execute remote commands or add or

modify data. In this attack type, an attacker tries to inject

additional queries along with the original query, which

are said to “piggy-back” onto the original query. As a

result, the database receives multiple SQL queries for

execution. Vulnerability of this kind of attack is

dependent of the kind of database [5]. For example, if the

attacker inputs [‘;drop table users--] into the password field,

the application generates the query: SELECT Login_ID FROM

users_ID WHERE login_ID=’john’ and password=’’; DROP

TABLE users-‘ AND ID=2345 After executing the first query,

the database encounters the query delimiters (;) and

execute the second query. The result of executing second

query would result into dropping the table users, which

would likely destroy valuable information. The signature

of this attack is (;), the database line terminator.

Inference: The main goal of the inference is to change

the behavior of a database or application. There are two

well-known attack techniques that are based on inference:

blind injection and timing attacks.

Blind Injection: Sometimes developers hide the error

details which help attackers to compromise the database.

In this situation attacker face to a generic page provided

by developer, instead of an error message. So the SQLIA

would be more difficult but not impossible. An attacker

can still steal data by asking a series of True/False

questions through SQL statements. Consider two possible

injections into the login field: For example, SELECT

accounts FROM users WHERE id= '1111' and 1 =0 -- AND

pass = AND pin=0 SELECT accounts FROM users WHERE

login= 'doe' and 1 = 1 -- AND pass = AND pin=0 If the

application is secured, both queries would be unsuccessful,

because of input validation. But if there is no input

validation, the attacker can try the chance. First the

attacker submits the first query and receives an error

message because of "1=0 ". So the attacker does not

understand the error is for input validation or for logical

error in query. Then the attacker submits the second query

which always true. If there is no login error message, then

the attacker finds the login field vulnerable to injection.

The possible guessing start with the AND operator and

some time attacker also uses conditional operators.

Timing Attacks: A timing attack lets an attacker gather

information from a database by observing timing delays in

the database's responses. This technique by using if-then

statement cause the SQL engine to execute a long running

query or a time delay statement depending on the logic

injected. This attack is similar to blind injection and

attacker can then measure the time the page takes to load

to determine if the injected statement is true. This

technique uses an if-then statement for injecting queries.

WAITFOR is a keyword along the branches, which causes

the database to delay its response by a specified time. For

example, declare @ varchar (8000) select @s = db_name () if

(ascii (substring (@s, 1, 1)) & (power (2, 0))) > 0 waitfor delay

'0:0:5' Database will pause for five seconds if the first bit

of the first byte of the name of the current database is 1.

Then code is then injected to generate a delay in response

time when the condition is true. Also, attacker can ask a

series of other questions about this character. As these

examples show, the information is extracted from the

database using a vulnerable parameter. WAITFOR is a

function used for delaying the response from the database.

In this type of attack the IF ELSE statement is used for

injecting queries. So the possible signatures of this attack

are WAITFOR, IF, ELSE.

Alternate Encodings: The main goal of the Alternate

Encodings is to avoid being identified by secure defensive

coding and automated prevention mechanisms. Hence it

helps the attackers to evade detection. It is usually

combined with other attack techniques. In this technique,

attackers modify the injection query by using alternate

encoding, such as hexadecimal, ASCII, and Unicode.

Because by this way they can escape from developer's

filter which scan input queries for special known "bad

character". By this technique, different attacks could be

hidden in alternate encodings successfully. In the following

example the pin field is injected with this string: "0; exec

(0x73587574 64 5f177 6e), " and the result query is: SELECT

accounts FROM users WHERE login=" AND pin=0; exec (char

(0x73687574646j776e)) This example use the char ()

function and ASCII hexadecimal encoding. The char ()

function takes hexadecimal encoding of character(s) and

returns the actual character(s). The stream of numbers in

the second part of the injection is the ASCII hexadecimal

encoding of the attack string. This encoded string is

translated into the shutdown command by database when

it is executed.

3. Literature Review

After studying many researches on the SQL injection

detection and prevention, it is found that not a single

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 40

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

technique is strong enough to handle all the problems and

vulnerabilities to websites due to SQL injections. Some of

the techniques proposed the changes at the development

stages. As in [1], the proposed technique works for

defending the SQL injections against the stored procedure.

Similarly, various researches provide defending

techniques against SQL injection.

Authors in article [2], proposed a Swaddler which,

analyses the internal state of a web application and learns

the relationships between the application's critical

execution points and the application's internal state.

Authors in article [3] proposed a string tokenizer which,

creates tokens of original query and SQL-injected query,

and creates an array of tokens of both the original and

injected query, if the length of arrays of both query is

found equal, that means no SQL-injection., Otherwise

there is injection.

Authors in articles [4], proposed a proxy filter which can

be effective against SQLIA; they used a proxy to filter

input data and output data streams for a web application,

although correctly specify filtering rules for each

application is required by the developers to input.

Authors in article [5] proposed a mechanism which filters

the SQL Injection in a static manner. The SQL statements

by comparing the parse tree of a SQL statement before

and after input and only allowing to SQL statements to

execute if the parse trees match.

Authors in article [6] deals with an application specific

randomized encryption algorithm to detect and prevent it

further its effectiveness was compared with other existing

techniques and its performance was quantified. Hence we

took up this web security vulnerability and analysed its

attack types. The security threat posed SQLIA is really

high and it is very necessary to protect users‟ data in a

web application, since it is very confidential and sensitive.

Authors in article [7] uses a methodology which make use

of an independent web service which is intended to

generalize the syntactic structure of the SQL query and

validate user inputs. The SQL query inputs submitted by

the user are parsed through an independent service and

the correctness of the syntactic structure of the query are

checked. The main advantage of this paper is that the

error message generated does not contain any Meta data

information about the database which could help the

attacker. Since the web service is not integrated with the

web application, any modification that should be done to

the system should be done in such a way that it should be

supported by the web service.

Authors in article [8] proposed a translation and

validation (TransSQL) based approach for detecting and

preventing SQL Injection attacks. The basic idea of this

approach relies on how different databases interpret SQL

queries and those SQL queries with an injection. After

detailed analysis on how different databases interpret SQL

queries, Kai-Xiang Zhang, et.al proposed an effective

solution TransSQL, using which the SQL requests are

executed in two different databases to evaluate the

responses generated.

Authors in article [1] proposed a technique to defend

attacks against the stored procedures. This technique

combines a static application code analysis with a runtime

validation to eliminate injection attacks. In the static part,

a stored procedure parser is designed, and for any SQL

statement that depends on user inputs, and use this parser

to instrument the necessary statements in order to

compare the original SQL statement structure to that

including user input. The underlying idea of this

technique is that any SQLIA will alter the structure of the

original SQL statement and by detecting the difference in

the structures, a SQLIA can be identified.

Authors in article [9] proposed a combinatorial approach

for shielding web applications against SQL injection

attacks. This combined approach incorporates signature

based method, used to address security problems related to

input validation and auditing based method which analyze

the transactions to find out the malicious access. This

approach requires no modification of the runtime system,

and imposes a low execution overhead. It can be inferred

from this approach that the public interface exposed by an

application becomes the only source of attack.

Authors in article [10] used SVM (Support Vector

Machine) for classification and prediction of SQL-

Injection attack. In proposed algorithm, SQL-Injection

attack detection accuracy is (96.47% and which is the

highest among the existing SQL-Injection detection

techniques.

Code Checkers are based on static analysis of web

application that can reduce SQL injection vulnerabilities

and detect type errors. For instance, JDBC-Checker [11]

is a tool used to code check for statically validating the

type rightness of dynamically-generated SQL queries.

However, researchers have also developed particular

packages that can be applied to make SQL query

statement safe [12].

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 41

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Authors in article [13] proposed AMNESIA that

combines dynamic and static for preventing and detecting

web application vulnerabilities at the runtime. AMNESIA

uses static analysis to generate different type of query

statements. In the dynamic phase AMNESIA interprets

all queries before they are sent to the database and

validates each query against the statically built models.

AMNESIA stops all queries before they are sent to the

database and validates each query statement against the

AMNESIA models. However, the primary limitation in

AMNESIA according to article [14] is that the technique

is dependent on the accuracy of its static analysis for

building query models for successful prevention of SQL

injection.

Authors in article [16] proposed an Aspect Oriented

system for detecting and prevent common attacks in web

applications like Cross Site Scripting (XSS) and SQL

Injection and evaluate its performance by measuring the

overhead introduced into the web application. The results

of our tests show that this technique was effective in

detecting attacks while maintaining a low performance

overhead.

4. Proposed Work

Our proposed work consists of four parts: the clients, our

protective layer, the application server and the database

server (Fig.1). We proposed a protective layer approach to

address the problem of SQL injection attacks. By

protective layer we mean a program written in java that

runs between client side and application server. Every

request coming from the client must pass through the

protective layer before being processed by the application

server. If the request contains any of the attacks signatures

mentioned in the previous section, it is illegitimate access

to the database. The goal of this work is to prevent

illegitimate access to the web application and database.

Fig. 1 Proposed architecture

As you can see from our proposed work, the SQL queries

are generated by the application server. Our proposed

protective layer checks the presence of SQL signatures

before the input is processed by the application server.

The proposed work uses protective layer to prevent SQL

injections, we will implement our protective layer in sixth

steps.

Algorithm:

1. First, we checked the link request from client.

2. We parse the input.

A. If parser return TRUE (String Parse

successfully), go to step 4.

B. If parser return FALSE (String Parse un-

successful), go to step 3.

3. Check attack pattern, this step check the existing

signature to compare with.

A. If the signature found, generate error

message.

B. If the signature not found, go to step 4.

4. Make transaction, the inputted data does not

contain any vulnerable character.

5. Call error page to record every event in a log file

6. Exit.

We just need to embed the protective layer between client

side and application server of any website, will the help of

proposed technique we will able to prevent SQL injection

attacks.

5. Implementation

The complete implementation of the proposed work

carried out using Visual Studio 2008, SQL server 2008

and a vulnerability scanner tool. Through which we can

scan our own developed website for any vulnerability

threat and SQL attacks. To discuss the effectiveness of our

protective layer approach, we also demonstrate the whole

project by different web applications along with the

database in SQL server 2008. The demonstrated website

works in two modes at every instance. Whether its login

or search, inserting or updating, etc.

1. Safe mode: In this mode the website works under

the guidance of protective layer, which sanitizes

the inputs and always looking for any intrusions

or malicious code in the input. In this mode the

protective layer works by checking the presence

of these attack signatures in the user input before

it is processed by the application server. The

most important feature of our proposed

framework is that it is generic and does not

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 42

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

depend on the application server as well as the

underlying database, it never overhead the data

in the database. It can be applied to any existing

web model without performing any alteration.

2. Unsafe mode: The unsecure mode in the

demonstrating website is never uses any SQL

injection prevention strategy. It simply pas the

data from client to the database.

6. Experimental Results and Analysis

While working with demonstrating website, by using the

vulnerability scanners and concurrent users, we

successfully generate the above number of request in five

different iterations. The proposed implemented protective

layer gives the appropriate results by analyzing the inputs

provided to them and finally output the counts of the valid

and injected queries. Table 1 and figure 2, shows the

results of the different testing sessions on the proposed

implemented work. It shows the actual number of requests

made to the web application out of which the proposed

layer successfully detects the injections.

 Table 1: Results obtain by using the vulnerability scanner

 Total Request Injected Data Valid Data

Test 1 4808 3345 1463

Test 2 3204 2121 1083

Test 3 1765 1173 592

Test 4 2968 1984 984

Test 5 4178 3045 1133

 Fig.2 Graphical representation of results

7. Conclusions

In this paper, we have concentrated on the specific area of

SQL injection. According to OWASP’s Ten Most Critical

Web Application Security Vulnerabilities [17], many SQL

injection-related issues are among the most harmful

threats to web applications. Though this is a narrow

subject, we believe that this area need of further

investigation, mainly because of two reasons: first, we can

not be certain that we have compiled a definite list of all

components that could be taken into consideration.

Secondly, SQL injection attacks are most likely to evolve

and new vulnerabilities will be found, together with new

countermeasures to deal with them. One of our goals in

this paper was to increase the level of security awareness

among organization regarding web applications,

especially towards SQL injection threats. The protective

layer is generic and does not depend on the application

server as well as the underlying database. The efficiency

of the protective layer was tested by using a vulnerability

scanner tool.

References
[1] K. Wei, M. Muthuprasanna, S. Kothari, “Preventing SQL

Injection Attacks in Stored Procedures”. Proc of the 2006

Australian Software Engineering Conference (ASWEC‟
06).

[2] C. Marco, B. Davide, F. Viktoria, and V. Giovanni,

"Swaddler: An approach for the anamoly based character

distribution models in the detection of SQL Injection

attacks", Recent Advances in Intrusion Detection System,

Pages 63-86, Springerlink, 2007.

[3] N. A. Lambert and K. Song Lin,” Use of Query Tokenization

to detect and prevent SQL Injection Attacks”, IEEE, 2010.

[4] G. J. William, F. Hal, O. Alessandro, “A Classification of

SQL Inject ion Attacks and Countermeasures”, College of

Computing, Georgia Institute of Technology.Gatech.edu.

[5] G.T. Buehrer, B.W.Weide and P.A..G.Sivilotti, "Using Parse

tree validation to prevent SQL Injection attacks", In proc. Of

the 5th International Workshop on Software Engineering

and Middleware(SEM'056), Pages 106-113, Sep. 2005.

[6] A. Srinivas, G. Narayan, S. Ram. “Random4: An Application

Specific Randomized Encryption Algorithm to prevent SQL

injection, in Trust, Security and Privacy in Computing and

Communications (TrustCom)”,2012 IEEE 11th International

Conference, pp.no. 1327 – 133, 25-27 June 2012.

[7] V. Shanmughaneethi, C. Emilin Shyni and S.Swamynathan,

“SBSQLID: Securing Web Applications with Service Based

SQL Injection Detection” 2009 International Conference on

Advances in Computing, Control, and Telecommunication

Technologies, 978-0-7695-3915-7/09, 2009 IEEE.

[8] K. Zhang, Ch. Lin, Sh. Chen, Y. Hwang, H. Huang, and F.

Hsu, “TransSQL: A Translation and Validation-based

Solution for SQL-Injection Attacks”, First International

Conference on Robot, Vision and Signal Processing, IEEE,

2011.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 43

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

[9] R. Ezumalai, G. Aghila, “Combinatorial Approach for

Preventing SQL Injection Attacks”, 2009 IEEE International

Advance Computing Conference (IACC 2009) Patiala, India,

6-7 March 2009.

[10] R. Romil, R. Shailendra, "SQL injection attack Detection

using SVM", in International Journal of Computer

Applications, Volume 42– No.13, March 2012.

[11] C. Gould, Z. Su, and P. Devanbu, "JDBC checker: A static

analysis tool for SQL/JDBC applications," 2004, pp. 697-

698.

[12] R. A. McClure and I. H. Krüger, "SQL DOM: compile time

checking of dynamic SQL statements," 2005, pp. 88-96

[13]W. G. J. Halfond and A. Orso, "Preventing SQL injection

attacks using AMNESIA," presented at the Proceedings of

the 28th international conference on Software engineering,

Shanghai, China, 2006.

[14]B. Indrani and Ramaraj, "An Approach to Detect and

Prevent SQL Injection Attacks in Database Using Web

Service," International Journal of Computer Science and

Network Security, vol. 11, pp. 197-205, 2011.

[15]A. Marin, I. Marsida, and Sh. Bojken "Using PKI to

Increase the Security of the Electronic Transactions" 8th

Annual South-East European Doctoral Student Conference.

September 2013. Greece.

[16]K. M. Elinda, K. Lorena, V. Enid and Sh. Bojken

"Protection of Web Application Using Aspect Oriented

Programming and Performance Evaluation", 5th Balkan

Conference in Informatics, 16-20 September 2012. Novi Sad,

Serbia.

[17] The Open Web Application Security Project. A guide to

building secure web applications, Version 1.1.1 Online

documentation, sep 2002.

[18] Sh. Bojken, A. Shqiponja, A. Marin, and Xh. Aleksander,

"Protection of Personal Data in Information Systems",

International Journal of Computer Science, Vol. 10, No. 2,

July 2013, ISSN (Online): 1694-0784.

[19] Sh. Bojken, “Analysis of SQL Injection Attacks on Web

Applications”, 4th International Conference in Information

Systems and Technology Innovation: towards a digital

Economy. ISTI-2013. Tirana, Albania.

Bojken Shehu. He is a pedagogue in Polytechnic University of

Tirana, Faculty of Information Technology, in Computer Engineering

Department. In 2007 he has finished the Bachelor Thesis in Saint

Petersburg State Polytechnic University, Russia and in 2010 he has

finished the Master Thesis in Bauman Moscow State Technical

University, Russia and now he is a PhD student in Polytechnic

University of Tirana, Albania.

Aleksander Xhuvani. He is a pedagogue in Polytechnic University
of Tirana, Faculty of Information Technology, in Computer
Engineering Department. He has finished the PhD study at Bordeaux
in France. At 2004 he is graduated as Prof. Dr.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 44

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

