

A Literature Review and Comparative Analyses on SQL

Injection: Vulnerabilities, Attacks and their Prevention and

Detection Techniques

Bojken Shehu
1
 and Aleksander Xhuvani

2

1
 Computer Engineering Department, Faculty of Information Technology

Polytechnic University of Tirana

Tirana, Albania

2
 Computer Engineering Department, Faculty of Information Technology

Polytechnic University of Tirana

Tirana, Albania

Abstract
SQL injection is a technique that exploits a security

vulnerability occurring in the database layer of an application.

The attack takes advantage of poor input validation in code and

website administration. It allows attackers to obtain

unauthorized access to the back-and database to change the

intended application generated SQL queries. Researchers have

proposed various solutions to address SQL injection problems.

However, many of them have limitations and often cannot

address all kind of injection problems. What’s more, new types

of SQL injection attacks have arisen over the years. To better

counter these attacks, identifying and understanding existing

techniques are very important. In this research we present all

SQL injection attack types and also different techniques and

tools which can detect or prevent these attacks.

Keywords: SQL injection attacks, Web application, prevention,

detection.

1. Introduction

Internet is a widespread information infrastructure.

Unaware of the security and privacy, the internet is

becoming a repository of information. Information and

data is the most important business asset in today’s

environment and achieving an appropriate level of

Information Security. Applications are vulnerable to a

variety of new security threats. One of the most threads to

web application is SQL injection attack. According to

Open Web Application Security Project (OWASP) [1] top

10 threats for web application security in 2013, injection

attacks stands first. For example, financial fraud, online

banking, theft of private data, shopping and cyber

terrorism. Web applications that are susceptible to SQL

injection may allow an attacker to gain complete access to

their essential databases. To implement security

guidelines inside or outside the database the access of the

sensitive databases should be monitored. Detection or

prevention of SQL injection attacks is a topic of active

research in the industry and academia. To achieve those

purposes, automatic tools and security system have been

implemented, but none of them are complete or accurate

enough to guarantee an absolute level of security on web

application.

2. SQL injection background

SQL injections is one of the many web attack mechanism

used by hackers to steal data from organizations. If it

happens against the information systems of a hospital, the

private information [2] of the patients may be leaked out

which could threaten their reputation or may be a case of

defamation. These attacks not only make the attacker to

breach the security and steal the entire content of the

database but also, to make arbitrary changes to both the

database schema and the contents.

2.1 What is SQL injection?

Most web applications today use a multi-tier design,

usually with three tiers: a) a presentation tier (front end).

This is the topmost level of the application. This tier

displays information related to such services as browsing

merchandise, purchasing, and shopping cart contents. It

communicates with other tiers by outputting results to the

browser/client tier and all other tiers in the network. b)

Application tier (Middle tier). This tier implements the

software functionality by performing detailed processing,

and c) the data tier (Backend). This tier consists of

database servers, keeps data structured and answers to

request from the application tiers. Three-tier is a client-

server architecture in which the user interface, functional

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 28

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

process logic, data storage and access are developed and

maintained as independent modules, most often on

separate platforms. SQL injection is a type of attack

which the attacker adds Structured Query Language code

to input box of a web form to gain access or make changes

to data. SQL injection vulnerability allows an attacker to

flow commands directly to web applications underlying

database and destroy functionality or confidentiality.

2.2 Types of vulnerabilities

In this section, we present the most common security

vulnerabilities found in web programming languages [3]

(see Table 1).

Table 1: Types of vulnerabilities

Vulnerability

Types
Description

Type I

Input validation is an attempt to verify or
filter any input for malicious behavior.
Insufficient input validation will allow code
to be executed without proper verification
of its intention. Attacker taking advantages
of insufficient input validation can utilize
malicious code to conduct attacks.

Type II

Lack of clear distinction between data types
accepted as input in the programming
language used for the web application
development.

Type III

Delay of operations analysis till the runtime
phase where the current variables are
considered rather than source code
expressions.

2.2 Types of SQL injection attacks

The SQL injection attacks can be performed using various

techniques. Some of them are specified as follows:

Tautologies: The main goal of tautology-based attack is to

inject code in conditional statements so that they are

always evaluated as true. Using tautologies, the attacker

wishes to either bypass user authentication or insert

inject-able parameters or extract data from the database.

A typical SQL tautology has the form, where the

comparison expression uses one or more relational

operators to compare operands and generate an always

true condition. Bypassing authentication page and

fetching data is the most common example of this kind of

attack. In this type of injection, the attacker exploits an

inject-able field contained in the WHERE clause of query.

He transforms this conditional query into a tautology and

hence causes all the rows in the database table targeted by

the query to be returned. For example, SELECT * FROM

user WHERE id=’1’ or ‘1=1’-‘AND password=’1234’;

“or 1=1” is the most commonly known tautology.

Logically incorrect query attacks: The main goal of the

Illegal/Logically Incorrect Queries based SQL Attacks is

to gather the information about the back end database of

the Web Application. When a query is rejected, an error

message is returned from the database including useful

debugging information. This error messages help attacker

to find vulnerable parameters in the application and

consequently database of the application. In fact attacker

injects junk input or SQL tokens in query to produce

syntax error, type mismatches, or logical error by purpose.

In this example attacker makes a type mismatch error by

injecting the following text into the input field: 1) Original

URL:http://www.toolsmarket-al.com/veglat/?id_nav=2234 2)

SQL Injection: http://www.toolsmarket-al/veglat/?id_nav=2234’

3) Error message showed: SELECT name FROM

Employee WHERE id=2234\’. From the message error we

can find out name of table and fields: name; Employee;

id. By the gained information attacker can organize more

strict attacks. The Illegal/Logically Incorrect Queries

based SQL attack is considered as the basis step for all the

other techniques.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 29

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Union Query: The main goal of the Union Query is to

trick the database to return the results from a table

different to the one intended. By this technique, attackers

join injected query to the safe query by the word UNION

and then can get data about other tables from the

application. This technique is mainly used to bypass

authentication and extract data. For example the query

executed from the server is the following: SELECT Name, Phone

FROM Users WHERE Id=$id. By injecting the following Id

value: $id =1 UNION ALL SELECT credit Card Number, 1

FROM Credit sys Table. We will have the following query:

SELECT Name, Phone FROM Users WHERE Id=1 UNION ALL

SELECT credit card Number, 1 FROM Credit sys Table. This

will join the result of the original query with all the credit

card users.

Stored Procedures: The main goal of the Stored

Procedures SQL attack is to perform privilege escalation

and try to execute the SQL procedures. SQL injection

attacks of this type try to execute the SQL procedures.

Stored procedure is a part of database that programmer

could set an extra abstraction layer on the database. As

stored procedure could be coded by programmer, so this

part is as inject-able as web application forms. Depend on

specific stored procedure on the database there are

different ways to attack. In the following example [4],

attacker exploits parameterized stored procedure. CREATE

PROCEDURE DBO. is Authenticated @user Name varchar2,

@pass varchar2, @pin int ASEXEC(“SELECT accounts FROM

users WHERE login=’” +@user Name+ “’ and

pass=’”+@password+”’and pin=”+@pin); GO For

authorized/unauthorized user the stored procedure returns

true/false. As an SQL injection attack, intruder input “’;

SHUTDOWN; - -“for username or password. Then the stored

procedure generates the following query: SELECT accounts

FROM users WHERE login=’boni’ AND pass=’’;

SHUTDOWN; -- AND pin= . After that, this type of attack

works as piggy-back attack. The first original query is

executed and consequently the second query which is

illegitimate is executed and causes database shut down. So,

it is considerable that stored procedures are as vulnerable

as web application code.

Piggy-Backed Queries: The main goal of the Piggy-

Backed Query is to execute remote commands or add or

modify data. In this attack type, an attacker tries to inject

additional queries along with the original query, which

are said to “piggy-back” onto the original query. As a

result, the database receives multiple SQL queries for

execution. Vulnerability of this kind of attack is

dependent of the kind of database [5]. For example, if the

attacker inputs [‘;drop table users--] into the password field,

the application generates the query: SELECT Login_ID FROM

users_ID WHERE login_ID=’john’ and password=’’; DROP

TABLE users-‘ AND ID=2345 After executing the first query,

the database encounters the query delimiters (;) and

execute the second query. The result of executing second

query would result into dropping the table users, which

would likely destroy valuable information.

Inference: The main goal of the inference is to change

the behavior of a database or application. There are two

well-known attack techniques that are based on inference:

blind injection and timing attacks.

Blind Injection: Sometimes developers hide the error

details which help attackers to compromise the database.

In this situation attacker face to a generic page provided

by developer, instead of an error message. So the SQLIA

would be more difficult but not impossible. An attacker

can still steal data by asking a series of True/False

questions through SQL statements. Consider two possible

injections into the login field: For example, SELECT

accounts FROM users WHERE id= '1111' and 1 =0 -- AND

pass = AND pin=0 SELECT accounts FROM users WHERE

login= 'doe' and 1 = 1 -- AND pass = AND pin=0 If the

application is secured, both queries would be unsuccessful,

because of input validation. But if there is no input

validation, the attacker can try the chance. First the

attacker submits the first query and receives an error

message because of "1=0 ". So the attacker does not

understand the error is for input validation or for logical

error in query. Then the attacker submits the second query

which always true. If there is no login error message, then

the attacker finds the login field vulnerable to injection.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 30

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Timing Attacks: A timing attack lets an attacker gather

information from a database by observing timing delays in

the database's responses. This technique by using if-then

statement cause the SQL engine to execute a long running

query or a time delay statement depending on the logic

injected. This attack is similar to blind injection and

attacker can then measure the time the page takes to load

to determine if the injected statement is true. This

technique uses an if-then statement for injecting queries.

WAITFOR is a keyword along the branches, which causes

the database to delay its response by a specified time. For

example, declare @ varchar (8000) select @s = db_name () if

(ascii (substring (@s, 1, 1)) & (power (2, 0))) > 0 waitfor delay

'0:0:5' Database will pause for five seconds if the first bit

of the first byte of the name of the current database is 1.

Then code is then injected to generate a delay in response

time when the condition is true. Also, attacker can ask a

series of other questions about this character. As these

examples show, the information is extracted from the

database using a vulnerable parameter.

Alternate Encodings: The main goal of the Alternate

Encodings is to avoid being identified by secure defensive

coding and automated prevention mechanisms. Hence it

helps the attackers to evade detection. It is usually

combined with other attack techniques. In this technique,

attackers modify the injection query by using alternate

encoding, such as hexadecimal, ASCII, and Unicode.

Because by this way they can escape from developer's

filter which scan input queries for special known "bad

character". By this technique, different attacks could be

hidden in alternate encodings successfully. In the following

example the pin field is injected with this string: "0; exec

(0x73587574 64 5f177 6e), " and the result query is: SELECT

accounts FROM users WHERE login=" AND pin=0; exec (char

(0x73687574646j776e)) This example use the char ()

function and ASCII hexadecimal encoding. The char ()

function takes hexadecimal encoding of character(s) and

returns the actual character(s). The stream of numbers in

the second part of the injection is the ASCII hexadecimal

encoding of the attack string. This encoded string is

translated into the shutdown command by database when

it is executed.

3. Related Work

In order to detect and prevent SQL Injection attacks,

filtering and other detection methods are being

researched. This section explains the related work.

Black Box Testing Huang and colleagues [6] propose

WAVES, a black-box technique for testing Web

applications for SQL injection vulnerabilities. The

technique uses a Web crawler to identify all points in a

Web application that can be used to inject SQLIAs. It then

builds attacks that target such points based on a specified

list of patterns and attack techniques. WAVES then

monitors the application’s response to the attacks and

uses machine learning techniques to improve its attack

methodology. This technique improves over most

penetration-testing techniques by using machine learning

approaches to guide its testing. However, like all black-

box and penetration testing techniques, it cannot provide

guarantees of completeness.

WebSSARI [7] use static analysis to check taint flows

against preconditions for sensitive functions. It works

based on sanitized input that has passed through a

predefined set of filters. The limitation of approach is

adequate preconditions for sensitive functions cannot be

accurately expressed so some filters may be omitted.

SecuriFly [8] is tool that is implemented for java. Despite

of other tool, chase string instead of character for taint

information and try to sanitize query strings that have

been generated using tainted input but unfortunately

injection in numeric fields cannot stop by this approach.

Difficulty of identifying all sources of user input is the

main limitation of this approach.

Dynamic Analysis: This approach is also known as post-

generated approach. Post-generated technique are useful

for analysis of dynamic or runtime SQL query, generated

with user input data by a web application. Detection

techniques under this post-generated category executes

before posting a query to the database server [13].

Code Checkers are based on static analysis of web

application that can reduce SQL injection vulnerabilities

and detect type errors. For instance, JDBC-Checker [9] is

a tool used to code check for statically validating the type

rightness of dynamically-generated SQL queries.

However, researchers have also developed particular

packages that can be applied to make SQL query

statement safe [10].

Combined Static and Dynamic Analysis: AMNESIA

[11] is technique that combines dynamic and static for

preventing and detecting web application vulnerabilities

at the runtime. AMNESIA uses static analysis to generate

different type of query statements. In the dynamic phase

AMNESIA interprets all queries before they are sent to

the database and validates each query against the

statically built models. AMNESIA stops all queries before

they are sent to the database and validates each query

statement against the AMNESIA models. However, the

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 31

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

primary limitation in AMNESIA according to article [12]

is that the technique is dependent on the accuracy of its

static analysis for building query models for successful

prevention of SQL injection.

In SQL Guard [15] and SQL Check [14] queries are

checked at runtime based on a model which is expressed

as a grammar that only accepts legal queries. SQL Guard

examines the structure of the query before and after the

addition of user-input based on the model. In SQL Check,

the model is specified independently by the developer.

Both approaches use a secret key to delimit user input

during parsing by the runtime checker, so security of the

approach is dependent on attackers not being able to

discover the key. In two approaches developer should to

modify code to use a special intermediate library or

manually insert special markers into the code where user

input is added to a dynamically generated query.

SQL-IDS, a specification based approach to detect

malicious intrusions. Authors in article [16] suggest using

a novel specification-based methodology for the detection

of exploitations of SQL injection vulnerabilities. The

proposed query-specific detection allowed the system to

perform focused analysis at negligible computational

overhead without producing false positive or false

negatives.

SQLrand, [17] is proposed by Boyd and Keromytis. For

the implementation, they use a proof of concept proxy

server in between the Web server (client) and SQL server;

they de-randomized queries received from the client and

sent the request to the server. This de-randomization

framework has 2 main advantages: portability and

security. The proposed scheme has a good performance:

6.5 ms is the maximum latency overhead imposed on

every query.

SQLIA Prevention Using Stored Procedures – Stored

procedures are subroutines in the database which the

applications can make call to [18]. The prevention in

these stored procedures is implemented by a combination

of static analysis and runtime analysis. The static analysis

used for commands identification is achieved through

stored procedure parser and the runtime analysis by using

a SQL Checker for input identification.

Ruse et al.’s Approach, [19], propose atechnique that

uses automatic test case generation to detect SQL

Injection Vulnerabilities. The main idea behind this

framework is based on creating a specific model that deals

with SQL queries automatically. Adding to that, the

approach identifies the relationship (dependency) between

sub-queries. Based on the results, the methodology is

shown to be able to specifically identify the causal set and

obtain 85% and 69% reduction respectively while

experimenting on few sample examples.

SAFELI, [20] proposes a Static Analysis Framework in

order to detect SQL Injection Vulnerabilities. SAFELI

framework aims at identifying the SQL Injection attacks

during the compile-time. This static analysis tool has two

main advantages. Firstly, it does a White-box Static

Analysis and secondly, it uses a Hybrid-Constraint Solver.

For the White-box Static Analysis, the proposed approach

considers the byte-code and deals mainly with strings. For

the Hybrid-Constraint Solver, the method implements an

efficient string analysis tool which is able to deal with

Boolean, integer and string variables.

Ali et al.’s Scheme, [21] adopts the hash value approach

to further improve the user authentication mechanism.

They use the user name and password hash values

SQLIPA (SQL Injection Protector for Authentication)

prototype was developed in order to test the framework.

The user name and password hash values are created and

calculated at runtime for the first time the particular user

account is created.

Thomas et al.’s Scheme, [22] suggest an automated

prepared statement generation algorithm to remove SQL

Injection Vulnerabilities. They implement their research

work using four open source projects namely: (i) Net-

trust, (ii) ITrust, (iii) WebGoat, and (iv) Roller. Based on

the experimental results, their prepared statement code

was able to successfully replace 94% of the SQLIVs in

four open source projects.

Dynamic Candidate Evaluations Approach, [23], Bisht

et al. propose CANDID. It is a Dynamic Candidate

Evaluations method for automatic prevention of SQL

Injection attacks. This framework dynamically extracts

the query structures from every SQL query location which

are intended by the developer (programmer). Hence, it

solves the issue of manually modifying the application to

create the prepared statements.

Haixia and Zhihong’s Database Security Testing

Scheme, [24] propose a secure database testing design for

Web applications. They suggest a few things; firstly,

detection of potential input points of SQL Injection;

secondly, generation of test cases automatically, then

finally finding the database vulnerability by running the

test cases to make a simulation attack to an application.

The proposed methodology is shown to be efficient as it

was able to detect the input points of SQL Injection

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 32

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

exactly and on time as the authors expected. However,

after analyzing the scheme, we find that the approach is

not a complete solution but rather it needs additional

improvements in two main aspects: the detection

capability and the development of the attack rule library.

Swaddler, [25] analyzes the internal state of a web

application. It works based on both single and multiple

variables and shows an impressive way against complex

attacks to web applications. First the approach describes

the normal values for the application’s state variables in

critical points of the application’s components. Then,

during the detection phase, it monitors the application’s

execution to identify abnormal states.

DIWeDa approach, [26] propose IDS (Intrusion

Detection Systems) for the backend databases. They use

DIWeDa, a prototype which acts at the session level

rather than the SQL statement or transaction stage, to

detect the intrusions in Web applications. The proposed

framework is efficient and could identify SQL injections

and business logic violations too.

Manual Approaches, [27] MeiJunjin highlights the use

of manual approaches in order to prevent SQLI input

manipulation flaws. In manual approaches, defensive

programming and code review are applied. In defensive

programming: an input filter is implemented to disallow

users to input malicious keywords or characters. This is

achieved by using white lists or black lists. As regards to

the code review [29], it is a low cost mechanism in

detecting bugs; however, it requires deep knowledge on

SQLIAs.

Automated Approaches, [28] Besides using manual

approaches, MeiJunjin also highlights the use of

automated approaches. The author notes that the two

main schemes are: Static analysis FindBugs and Web

vulnerability scanning. Static analysis FindBugs approach

detects bugs on SQLIAs, gives warning when an SQL

query is made of variable. However, for the Web

vulnerability scanning, it uses software agents to crawl,

scans Web applications, and detects the vulnerabilities by

observing their behavior to the attacks.

Removing SQL query attribute values, [30] Authors

proposed an approach to detect SQL injection attacks is

based on static and dynamic analysis. This method

removes the attribute values of SQL queries at runtime

(dynamic method) and compares them with the SQL

queries analyzed in advance (static method) to detect the

SQL injection. When run the application each dynamical

generated query is compared or performs XOR operation

with fixed query if it results zero then that particular

query allowed to the database and if it not results to zero

then that query reported as abnormal query stop sending

to database.

SQL DOM Scheme, [31], authors closely consider the

existing flaws while accessing relational databases from

the OOP (Object-Oriented Programming) Languages

point of view. They mainly focus on identifying the

obstacles in the interaction with the database via CLIs

(Call Level Interfaces). SQL DOM object model is the

proposed solution to tackle these issues through building a

secure environment for communication.

SQL Prevent, [32] is consists of an HTTP request

interceptor. The original data flow is modified when SQL

Prevent is deployed into a web server. The HTTP requests

are saved into the current thread-local storage. Then, SQL

interceptor intercepts the SQL statements that are made

by web application and pass them to the SQLIA detector

module. Consequently, HTTP request from thread-local

storage is fetched and examined to determine whether it

contains an SQLIA. The malicious SQL statement would

be prevented to be sent to database, if it is suspicious to

SQLIA.

Shin et al.’s approach suggests SQLUnitGen, a Static-

analysis-based tool that automate testing for identifying

input manipulation vulnerabilities: [33]. The authors

apply SQLUnitGen tool which is compared with

FindBugs, a static analysis tool. The proposed mechanism

is shown to be efficient as regard to the fact that false

positive was completely absent in the experiments.

Positive tainting, [34] not only focuses on positive

tainting rather than negative tainting but also it is

automated and does need developer intervention.

Moreover this approach benefits from syntax-aware

evaluation, which gives developers a mechanism to

regulate the usage of string data based not only on its

source, but also on its syntactical role in a query string.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 33

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

4. Comparative Analyses

In this section, the SQL injection detection and prevention

techniques presented in section III would be compared. It

is noticeable that this comparison is based on the articles

not empirically experience.

4.1 Comparison of SQL Injection Detection

Techniques With Respect to Attack Types

Detection techniques are techniques that detect attacks

mostly at runtime. Table 1 shows a chart of the schemes

and their detection capabilities against various SQL

injections attacks and summarize the results of this

comparison. The symbol √ is used for techniques that can

successfully detect all attacks of that type. The symbol ×

is used for techniques that is not able detect all attacks of

that type. The symbol □ refers to techniques that detect

the attack type only partially because of natural

limitations of underlying approach.

Table 1: Comparison of SQL injection detection techniques with respect to

attack types

Attacks
S

A
F

E
L

I[2
0

]

S
Q

L
-ID

S
[1

6
]

S
w

ad
d
ler[2

5
]

S
Q

L
 P

rev
en

t[3
2
]

S
Q

L
ran

d
[1

7
]

S
Q

L
IP

A
[2

1
]

A
M

N
E

S
IA

[1
1
]

A
u
to

m
ated

 A
p
p
ro

ach
es[2

8
]

C
A

N
D

ID
[2

3
]

D
IW

eD
a[2

6
]

T
au

to
lo

g
y
 C

h
eck

er[3
5
]

R
em

o
v
in

g
 S

Q
L

 q
u
ery

[3
0
]

S
Q

L
C

h
eck

[1
4
]

S
Q

L
 G

u
ard

[1
5
]

Tautologies × √ □ √ √ √ √ √ □ × √ √ √ √

Piggy-
backed

√ √ □ √ √ × √ √ □ × × √ √ √

Illegal/
Incorrect

√ √ □ √ √ × √ √ □ × × √ √ √

Union √ √ □ √ √ × √ √ □ × × √ √ √

Stored
Procedure

√ √ □ √ × × × × □ × × √ × ×

Inference √ √ □ √ √ × √ √ □ √ × √ √ √

Alternate
Encodings

√ √ □ √ √ × √ × □ × × √ √ √

Table 2 illustrates the addressing percentage of SQL

injection attacks among SQL injection detection

techniques. The percentage of techniques that detect

tautology is calculated by this formula (1):

 (1)

Table 2: Comparison of SQL injection detection techniques with respect to

attack types

Attack Types

Techniques

that can detect

all attacks of

that type (√)

Techniques

that can

detect the

attacks only

partially (□)

Techniques

that is not

able to

detect

attacks of

that type (×)

Tautologies 72% 14% 14%

Piggy-backed 64% 14% 22%

Illegal/
Incorrect

64% 14% 22%

Union 64% 14% 22%

Stored
Procedure

29% 14% 57%

Inference 72% 14% 14%

Alternate
Encodings

57% 14% 29%

4.2 Comparison of SQL Injection Prevention

Techniques With Respect to Attack Types

Prevention techniques are techniques that statistically

identify vulnerabilities in the code. Table 3 shows a chart

of the schemes and their prevention capabilities against

various SQL injections attacks and summarize the results

of this comparison.

Table 3: Comparison of SQL injection preventiontechniques with respect to

attack types

Attacks

JD
B

C
 C

h
eck

er[9
]

P
o
sitiv

e T
ain

tin
g
[3

4
]

S
ecu

riF
ly

[8
]

S
ecu

rity
 G

atew
ay

[3
6

]

S
Q

L
D

O
M

[3
1

]

W
A

V
E

S
[6

]

W
eb

S
S

A
R

I[7
]

Tautologies □ √ □ □ √ □ √

Piggy-backed □ √ □ □ √ □ √

Illegal/
Incorrect

□ √ □ □ √ □ √

Union □ √ □ □ √ □ √

Stored
Procedure

□ √ □ □ × □ √

Inference □ √ □ □ √ □ √

Alternate
Encodings

□ √ □ □ √ □ √

Table 4 illustrates the addressing percentage of SQL

injection attacks among SQL injection prevention

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 34

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

techniques. The percentage of techniques that detect

tautology is calculated by this formula:

(2)

Table 4: Comparison of SQL injection prevention techniques with respect to

attack types

Attack Types

Techniques

that can

prevent all

attacks of that

type (√)

Techniques

that can

prevent the

attacks only

partially (□)

Techniques

that is not

able to

prevent

attacks of

that type (×)

Tautologies 43% 57% 0%

Piggy-backed 43% 57% 0%

Illegal/
Incorrect

43% 57% 0%

Union 43% 57% 0%

Stored
Procedure

29% 57% 11%

Inference 43% 57% 0%

Alternate
Encodings

43% 57% 0%

4.3 Comparison of detection or prevention techniques

based on deployment and evaluation criteria.

The result of this classification are summarized in table 5.

Table 5: Comparison of detection or prevention techniques based on

deployment and evaluation criteria.

Techniques Detection

time

Detection

Location

Code

Modify

Additional

infrastructure

JDBC
Checker [9]

Coding
time

Server side
application No N/A

Positive
Taintitng

[34]
Run time Server side

application No N/A

SecuriFly
[8] Run time Server side

application No N/A

Security
Gateway

[36]
Run time Server side

proxy No Required

SQL DOM
[31]

Compile
time

Server side
application Yes Required

WAVES [6] Testing
time

Client side
application No N/A

WebSSARI
[7] Run time Server side

application No Required

SQL Guard
[15] Run time Server side

application Yes Required

SQL Check
[14] Run time Server side

proxy Yes Required

Removing
SQL query

[30]
Run time Server side No N/A

Tautology
Checker

[35]
Run time Server side

application No N/A

DIWeDa
[26] Run time Server side

application No N/A

CANDID
[23] Run time Server side

application Yes Required

Automated
Approaches

[28]
Run time Server side

application No N/A

AMNESIA
[11] Run time Server side

application No N/A

SQLIPA
[21] Run time Server side

application No N/A

SQLrand
[17] Run time Server side

Proxy Yes N/A

SQL
Prevent [32] Run time Server side

application No N/a

Swaddler
[25] Run time Server side

application No Required

SQL-IDS
[16] Run time Server side

proxy No N/A

SAFELI
[20]

Compile
time

Server side
application No N?A

5. Conclusions

In this paper, we have presented a survey report on

various types of SQL injection attacks, vulnerabilities, and

detection and prevention techniques. We assessed SQL

injection attacks among current SQL Injection detection

and prevention techniques. To perform this evaluation, we

first identified the various types of SQL injection attacks.

Then we investigated SQL injection detection and

prevention techniques. After that we compared these

techniques in terms of their deployment and evaluation

criteria. Different authors have presented their work at

deferent levels of detail, extracting uniform data from

such a diverse range of papers was very tedious task .Our

future work will be to extend our research in terms of

their evaluation criteria.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 35

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

References
[1] The Open Web Application Security Project,”OWASP TOP

Project”, https://www.owasp.org/SQL_Injection.

[2] Sh. Bojken, A. Shqiponja, A. Marin, and Xh. Aleksander,

"Protection of Personal Data in Information Systems",

International Journal of Computer Science, Vol. 10, No. 2,

July 2013, ISSN (Online): 1694-0784.

[3] N. Seixas, J. Fonseca, M. Vieira, and H. Madeira.“Looking

at Web Security Vulnerabilities from the Programming

Language Perspective: A Field of Study”, ISSRE 2009

pp.129-135.

[4] P. Y. Yane, M.S. Chaudhari, "SQLIA: Detection And

Prevention Techniques: A Survay", IOSR Journal of

Computer Enginerering (IOSR-JCE), 2013, Vol. 2, pp.56-60.

[5] G. T .Buehrer, B. W. Weide, P.A.G. Sivilotti.“Using Parse

Tree Validation to Prevent SQL Injection Attacks”, In

International Workshop on Software Engineering and

Middleware, 2005.

[6] Y. Huang, S. Huang, T. Lin, and C. Tsai. Sivilotti.“Web

Application Security Assessment by Fault Injection and

Behavior Monitoring”, In Proceedings of the 11th

International Word Wide Web Conference, May 2003.

[7] Y. Huang, F. Yu, C. Yang, C. H. Tsai, D. T. Lee, and S. Y.

Ku. “Securing Web Application Code by Static Analysis and

Runtime Protection”, In Proceedings of the 12th International

Word Wide Web Conference, May 2004.

[8] M. Martin, B. Livshits, and M. S. Lam “Finding Application

Errors and Security Flaws Using PQL: A Program Query

Language”, ACM Notices, Volume 40, Issue:10 pages,

2005.

[9] C. Gould, Z. Su, and P. Devanbu, "JDBC checker: A static

analysis tool for SQL/JDBC applications," 2004, pp. 697-

698.

[10] R. A. McClure and I. H. Krüger, "SQL DOM: compile time

checking of dynamic SQL statements," 2005, pp. 88-96

[11]W. G. J. Halfond and A. Orso, "Preventing SQL injection

attacks using AMNESIA," presented at the Proceedings of

the 28th international conference on Software engineering,

Shanghai, China, 2006.

[12]IndraniBalasundaram and Ramaraj, "An Approach to Detect

and Prevent SQL Injection Attacks in Database Using Web

Service," International Journal of Computer Science and

Network Security, vol. 11, pp. 197-205, 2011.

[13] B.I.A. Barry and H.A. Chan, “Syntax, and Semantics-Base

Signature Database f or Hybrid Intrusion Detection

Systems,” Security and Comm. Networks, vol. 2, no. 6, pp.

457-475, 2009.

[14] Z. Su and G. Wassermann. “The Essence of Command

Injection Attacks in Web Applications”.In The 33rd Annual

Symposium on Principles of Programming Languages

(POPL 2006), Jan. 2006.

[15] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti. Using

Parse Tree Validation to Prevent SQL Injection Attacks. In

International Workshop on Software Engineering and

Middleware (SEM), 2005.

[16]K. Kemalis, and T. Tzouramanis. “SQL-IDS: A

Specification-based Approach for SQL Injection Detection”,

SAC, 2008, Brazil, ACM, pp.2153-2158.

[17]S. W. Boyd and A. D. Keromytis. “SQLrand: Preventing

SQL Injection Attacks”, In Proceedings of the 2nd Applied

Cryptography and Network Security Conference, pages 292–

302, June 2004.

[18]K. Amirtahmasebi, S. R. Jalalinia, S. Khadem, "A survey

of SQLinjection defense mechanisms," Proc. Of ICITST

2009, pp.1-8, 2009.

[19] M. Ruse, T. Sarkar and S. Basu. “Analysis & Detection of

SQL Injection Vulnerabilities via Automatic Test Case

Generation of Programs”, 10th Annual International

Symposium on Applications and the Internet pp. 31 – 37,

2010.

[20] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao.

“A StaticAnalysis Framework for Detecting SQL Injection

Vulnerabilities”,COMPSAC 2007, pp.87-96, July 2007.

[21]Shaukat Ali, Azhar Rauf, Huma Javed “SQLIPA:An

authentication mechanism Against SQL Injection”

[22]S. Thomas, L. Williams, and T. Xie, “On automated

prepared statement generation to remove SQL injection

vulnerabilities”. Information and Software Technology,

2009.

[23] P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan.

“CANDID:Dynamic Candidate Evaluations for Automatic

Prevention of SQL Injection Attacks”. ACM Trans. Inf. Syst.

Secur, 2010.

[24] Haixia, Y. and Zhihong, N., “ A database security testing

scheme of web application”. Proc. of 4th International

Conference on Computer Science & Education 2009 (ICCSE

'09),July 2009.

[25]M. Cova, D. Balzarotti. “Swaddler:An Approach for the

Anomaly-based Detection of State Violations in Web

Applications”, Recent Advances in Intrusion Detection,

Proceedings, volume: 4637 Pages: 63-86 ,2007.

[26] A. Roichman, E. Gudes, “DIWeDa - Detecting Intrusions in

WebDatabases”. In: Atluri, V. (ed.) DAS 2008. LNCS, vol.

5094, pp. 313–329. Springer, Heidelberg (2008).

[27]M. Junjin, “An Approach for SQL InjectionVulnerability

Detection”, Sixth International Conferenceon Information

Technology: New Generations ITNG, pp. 1411-1414, 2009.

[28] Mei Junjin, “An Approach for SQL Injection Vulnerability

Detection,” Proceedings. of the 6th Int. Conf. on Information

Technology: New Generations, Las Vegas, Nevada, pp.

1411-1414, Apr. 2009.

[29]R. A. Baker, “Code Reviews Enhance Software Quality”. In

Proceedings of the 19th international conference on

Software engineering ICSE, Boston, MA, USA, 1997.

[30] I. Lee , S. Jeong, S. Yeoc, J. Moond, “A novel method for

SQL injection attack detection based on removing SQL

query attribute”, Journal Of mathematical and computer

modeling, Elsevier 2011.

[31]McClure, and I.H. Kruger, "SQL DOM: compile time

checking of dynamic SQL statements," Software

Engineering, ICSE 2005, Proceedings. 27th International

Conference on, pp. 88- 96, 2005.

[32]P. Grazie, “SQL Prevent thesis”, University of British

Columbia (UBC) Vancouver, Canada,2008.

[33] Y. Shin, L. Williams and T. Xie, "SQLUnitGen: Test Case

Generation for SQL Injection Detection," North Carolina

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 36

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

StateUniv., Raleigh Technical report, NCSU CSC TR 2006-

21, 2006.

[34] G. William, J. Halfond, A. Orso, “Using Positive Tainting

and Syntax Aware Evaluation to Counter SQL Injection

Attacks, 14th ACM SIGSOFT international symposium on

Foundations of software engineering, 2006.

[35]G. Wassermann, Z. Su, “An analysis framework for security

in web applications,” In: Proceedings of the FSE Workshop

on Specification and Verification of Component-Based

Systems, SAVCBS, pp. 70–78, 2004.

[36] D. Scott and R. Sharp, “Abstracting Application-level Web

Security”, in Proceedings of the 11th International

Conference on the World Wide Web, pages 396–407, 2002.

Bojken Shehu. He is a pedagogue in Polytechnic University of

Tirana, Faculty of Information Technology, in Computer Engineering

Department. In 2007 he has finished the Bachelor Thesis in Saint

Petersburg State Polytechnic University, Russia and in 2010 he has

finished the Master Thesis in Bauman Moscow State Technical

University, Russia and now he is a PhD student in Polytechnic

University of Tirana, Albania.

Aleksander Xhuvani. He is a pedagogue in Polytechnic University
of Tirana, Faculty of Information Technology, in Computer
Engineering Department. He has finished the PhD study at Bordeaux
in France. At 2004 he is graduated as Prof. Dr.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 37

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

