

ASTRO: Architecture of Services Toward Robotic Objects

Jacques Saraydaryan1, Fabrice Jumel2 and Adrien Guenard3

 1 CPE Lyon

Villeurbanne, 69616, France

2 CPE Lyon

Villeurbanne, 69616, France

3 CPE Lyon

Villeurbanne, 69616, France

Abstract
The usage of robots as smart objects becomes a new challenge

for research and industrial teams. In this paper, we introduce an

architecture of services using and integrating robotic objects. On

one hand this architecture allows integrating robotic capabilities

into more complex scenarios using other sensors/actuators. On

the other hand, robot objects could use our architecture to solve

remote problems such as object recognition, map sharing.

Heterogeneous services and capabilities could be dynamically

used and integrated. The architecture has already been

implemented. Global scenarios of usage have been developed

illustrating our approach.

Keywords: Robotic framework, Ontology, Probe-actuator

communication homogenization, Global scenario building,

Robot Communication Web compliant.

1. Introduction

The usage of smart objects into large set of use cases

such as health-care, smart home or adaptive work

environment grows with a continuous need of smarter

objects. Robots appear to be a perfect tool for such use

cases but the integration with other services, sensors and

actuators has suffered from the robot programing and

interface complexity.

 Currently most of robotic objects bring a high level

of usage and programing API. This evolution allows the

usage of high level capabilities such as ”go to

position”, ”speak” or ”take the relevant object”. ROS

(Robotic Operating System) [1] is one of most used robotic

middleware but it only covers robotic object and does not

target web services. Moreover it provides efficient

connections between robot sensors but these connections

establishment are static. Naoqi [2] makes great effort to

make robotic easily programmable (robotic service proxy,

and shared memory for all parameters and service of the

robot), however only one type of robot is targeted, remote

collaboration and communication are limited.

 New challenges appear using such capabilities for

complex use cases. One of the key challenge of use cases

or services composition achievement is the re-usability as

mentioned in [3]. Without such target, new use case or

scenario building would become very complex and time

consuming. More over the user interaction with service

through compliant web protocol for example is limited and

the security aspect not completely covered.

 Despite lots of related works cover by the Service

Object Architecture for various domain (domotic, web

service) [4] or internal robotic architecture [5] , few of

them address the usage of robotic object as smart objects

or offer remote problem solving [3].

In this paper, we intend to provide an architecture of

services focused on robotic object integration called

Architecture of Services Toward Robotic Objects

(ASTRO). This architecture tries to answer to the the

following questions; can we integrate robotic object into

complex scenario? Can we deliver remote problem solving

for robotic object? Is it possible to use dynamically robot

capabilities and services? Can we easily create and

compose service including robotic objects with high level

of capability? Is it possible for the end user to interact with

services?

Nowadays more and more robot objects are brought

with their own hardware constraints and programming

language. Integrating such objects with other controllable

objects [6] (electric lamp, sensors, actuators) could allow

developers to include a new interaction dimension into

their scenario. Some problems need lot of computation

resource to be solved (e.g object recognition) and could

not be done locally by robots [3]. In order to extend

robotic capabilities, some efforts have been made to create

a world wide web for robotics [3]. The need of both

intelligent service robotics and usage of robot solution

capabilities is, as we currently know, not completely

covered. Moreover, in heterogeneous and pervasive

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 1

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

mailto:jacques.saraydaryan@cpe.fr

environment the usage of service should be dynamically

addressed [7]. Calling directly a known service leads to a

no scalable solution. No object would know the result of

thousand services without services names and objective

directory. Because resulted services manipulate robots and

actuators, the security aspect must be taken into account in

order to avoid services malicious usage and to guaranty

body integrity of people. Finally, the design of a high level

scenario must not be reserved to experimented developers,

the service usage and composition should be easy to use.

In this paper we present an architecture that intent to

provide the following points that are not currently covered:

 Enhance user interaction

 Give access to robot and associated service to

web service

 Give access to authorize entity from the web to

robot and associated services

 Provide an abstraction of robot capacities for

service composition

 Integrate security constraint on the architecture

The ASTRO architecture is composed of 5 main blocs:

the View bloc, the Relay bloc, the Processing bloc, the

Provider bloc and the Resource bloc respectively in charge

of the web usage of delivered services (javascript library),

relaying services to the Internet through a REST

architecture, providing the composition of services (OSGI

like), dynamic services and Resources broker and

integrating heterogeneous sensors/actuators and robots to

our architecture.

 This paper is organized as followed, the section II

details related work on the subject, the section III provides

the detailed description of our architecture, the section IV

shows our experimentations and results and finally section

V explains our future works.

2. Related Work

As presented in the previous section, we intent to

create an architecture able to compose complex scenarios

by using services and robot capabilities. This section

covers the related works on architecture that provide

manipulation capabilities, service composition, service for

robot and then architecture dealing with simple capabilities

(domotic scenario).

 Some significant works have been accomplished for

designing and implementing robotic frameworks. Aiming

at dynamically wiring different probes and actuators of

robot, these architectures allow easy integrating of new

capabilities to a robot. [5] provides a survey on such

architectures. Authors argue that robotics middleware

provides significant advantages such as software

modularity, hardware abstraction, platform independence

and portability. The different architectures are compared

across the following criteria:

 System model, representing the internal

middleware engine. e.g from Multi-process

architecture [8] [9] to Service-oriented,

component-based software [10] [11],

 Control model, defining how reaction and

behavior are triggered e.g even-driven [12] [13],

message oriented [1],

 Behavior coordination, defining the ability of

middleware to coordinate tasks of robots parts or

services,

 Dynamic wiring, allowing dynamic configuration

of connections between services of components

[14] [10],

 Fault tolerance, Supported simulation , Open

source nature, Real Time, Distributed

Environment and security supported features

Robotic middleware offers key features to

interconnect capabilities and highlight the importance of an

hardware abstraction and unified access. Some of robotic

architectures focus their work on the dynamic wiring

aspect [10] simplifying the access to the robot capacities.

Moreover [11] design a framework where each basic

function is considered as a component with internal

activity, input/output connection and command support. In

this approach special care are also given to deployment of

new component easily [15].

Fig. 1 Comparison of SOM solution as presented in [4]

Research community (OMG Object Management

Group) made also great effort for providing

standardization concerning robot service specification and

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 2

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

usage with a first standard specification of Robotic

Interaction Service (RoIS) [16]. Current robotic framework

and middleware are mainly focuses on delivery services on

well known resources. Despite some interest given to Web

Compliant communication [?] and service securing, given

computation access of robot to the Web Services and

easily integrate user interaction are not well covered.

[4] defines objectives of service oriented computing

defined by [17] as ”making service available and easily

accessible through standardized models and protocols

without having to worry about the underlying

infrastructures, development models or implementation

details”. Service Oriented Middleware (SOM) becomes

very important to use service oriented computing in order

solve part of SOC (Service-Oriented Computing) issues

(supporting heterogeneous environments and systems and

providing functional and non-functional requirements for

the applications). In [4] and [19] the following criteria are

used to compare SOM solutions:

1) Providing a standardized model for service

provider

2) Ensuring runtime deployment services mechanism

and advertise them (service availability and reliability)

3) Discovering and effectively using published

services mechanism for service consumer

4) Hiding the heterogeneity of underlying

environments.

5) Making transparent the Service integration to client

approach

6) Using an adaptive and autonomous service

discovery

7) Scaling up service consumption (access rate, large

volume of data, communication bandwidth)

8) Ensuring reliable and secure operation

9) Taking into account QoS

The reviewed SOM solution and associated covered

requirements are displayed in figure 1.

 We can figure out the (SI)2 solution [18] which

provide support for sensors, RFID and embedded device. 2

layers are presented in this approach, one platform

dependent layer in charge of handling messages for the

smart component and a service lifecycle manager which is

responsible for deploying starting and stopping service on

component. The platform independent layer gets the

service description from the middleware and search for

possible deployment. Moreover a request processor

module handles the requests for specific service and

transmits if to the correct message handler in platform

dependent layer. The SOA-MM [19] provides an

integration of shop floor equipment (embedded device,

RFID, sensor) to business application. The authors suggest

an integration layer managing the communication between

the actual capabilities and data flows and the services

requested by the business application. Service registration,

device positioning, information retrieval and event

notification process. Both (SI)2 and SOA-MM approach

aims at composing services using sensors or embedded

systems. The service composition itself is not targeted and

the resource qualification is not done dynamically. The

main target of these solutions is to quickly and

automatically provide devices information to services. the

DoMAIns approach [6] is quite different in that they intend

to fully qualify the environment and the capabilities. It is

not a SOM approach but more an ambient intelligence

modeling. In order to well understand interactions between

environment and capabilities, 5 different representation

domains are defined: User, Environment, Actionable

(object that can be ”moved”, e.g. a door), controllable

(”smart” object that software can control e.g sensor) and

AmI (i.e Ambient Intelligence). Each domain is described

through an ontology (DogOnt [20]) that allows to dynamic

request actions on appropriate controllable or actionable

object and develop automation scenarios. Although

DoMAIns do not target the service composition or service

representation, the automation scenario creation is possible

using ontology reasoner.

The RoboEarth framework [3] aims at helping robot

to accomplish complex task (serve a drink to patient into

hospital, object recognition). The architecture is composed

of 3 layers, robotic specific layer, generic component layer

and server layer. The robot specific layer provides a skill

abstraction feature allowing communicating with robot in

heterogeneous way. The generic component layer uses an

action execution module to ensure reliable action

execution on the robot. In case of unresolvable problems,

user action is needed and asked. Moreover, the layer is

responsive of the environment modeling. The environment

modeling maintains the global world model state. A

semantic map is built that represents the environment map

where robot would update detected objects or obstacles.

The feedback of robot’s performance task can be evaluated

by user through a learning component. This component

could adjust robot behavior and strategy regarding to the

given feedback. New behavior could be learnt with the

Action and Situation Recognition and Labeling component

that provide to users the ability to record behavior of tele-

operated robot. The server layer stores all necessary data

and available services into a database component (storing

CAD models, point clouds, image data for objects). [3] is

focused on helping robot to resolve complex tasks by

providing a robot’s services. Despite they not center their

work on the service composition, [3] provides key features

that enable to store and use robot capacities and model

robot’s world environment.

Related work currently not completely covers our

purpose of building complex scenarios using robot’s

capabilities and providing services to robot. Architectures

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 3

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

dealing with robot’s capabilities are well covered by the

literature as well as the service composition into service

oriented middleware. Some architectures [6] initiate the

usage of sensors and embedded system but do not provide

real middleware of service composition. Recently projects

deliver key features for services to robot around the notion

of World Wide Web for robots but do not target the

complex scenarios creation using robot’s capabilities.

In order to cover the complex scenarios building

using robot’s capabilities issue, we focus our work on the

dynamic service composition aspect.

Fig. 2 ASTRO Functional architecture and sample scenario

3. Architecture of Service Toward Robotic

Objets

3.1 Overview

As explain in section I, our architecture aims at

providing service composition and a framework using

robot objects. Moreover, it aims at providing services for

robot objects.

We try to cover most of requirements of capabilities

management and Service Oriented Middleware as in

section II into our different architecture blocs. One of our

main goal is to build a modular architecture in order not to

only allow a better scaling up but also to be able to embed

some blocks directly on smart object (robot, desktop, smart

phone). (e.g allowing NAO robot [2] to use ROS ready

tools).Giving access to the service and providing to robot

the ability to use Web Services is also targeted. Web

Compliant communications are available into our

architecture.

 The ASTRO workflow (figure 2) can be illustrated

by the following example. Let assume that we need to use

the NAO in order to present a video embedded into our

web site. The first step is to create a new Resource,

allowing communicating with the NAO. A configuration

file will be associated with this resource containing the

capabilities of such object (gesture, text to speech,

dancing,...).

 The second step involves the creation of a Service

into the Processing bloc. This service will aim at executing

special gesture and text to speech for a given text, and at

going to a given video position representing the current

text.

Now a Web page should be created allowing user to

select a section to be presented. This web page used a

javascript library (Web Bloc) that simplifies the

Fig.3 ASTRO Architecture

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 4

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

communication with the Relay bloc showing available

services through a REST architecture.

 When a end-user will select the item on the web page,

a request will be sent to the Relay bloc on a specific

service. The Relay bloc informs the Processing bloc which

transmits the request to the appropriate service. The

service calls the Provider bloc to say the selected text,

execute a gesture, and freeze the video at a given position.

The Provider bloc researches available resources with

such capacities and links service and found resources

through a communication BUS (publish/subscriber).

The NAO resource gets the text to speech and the

gesture to execute and call the NAO robot to execute the

requests.

3.2 Resource Bloc

The Resource bloc aims at delivering an access to

capabilities of smart object (figure 3). It is composed of :

 a set of Resources describing the different robot

or sensor/actuator drivers and behaviors,

 a Resource Broker module managing the

Resources and register them to the Provider Bloc,

 an API allowing to find other resources or

services,

 a module in charge of providing communication

to the Resource.

User who wants to add a new smart component such as

embedded device, sensors/actuators or robot should

compose its own Resource and provide the following

elements:

 Object Driver, API to the smart object,

 Data Processing, all formatting or processing

operations necessary to deliver information or

send order,

Resource configuration, configuration file describing

the Security information to access to the smart object and

to provide authentication information to the Provider bloc,

Quality of Service (QoS) informing the Provider bloc of

such kind of communication type is needed, capacity

description describing all the capacities available with the

smart object.

3.3 Provider Bloc

The Provider bloc is in charge of registering

Resources and Services using respectively the Resource

Broker and the Service Broker (figure 3). By collecting

information (Directory module) on resources and services

such as capabilities and services usage, the Provider bloc

maintains the mapping of identified resources and

associated capabilities according to the Ontologies module.

 When a service wants to find a capability, the

Provider bloc receives the request by the Directory module

and gets the result through the Ontologies module (E.G list

of resource IDs). The Ontologies module includes the

ontologies of capabilities and services. As mentioned in

[23], an ontologies allow efficient reasoning on context

information and enable service interoperability. Each of

these ontologies is plugged to a reasoner in order to

provide ontology inference and answer to incoming

requests. As soon as elements of response are identified,

the Provider bloc establishes communication from request

initiator to the selected resources. These communications

are managed by the Communication Management module.

When capabilities or services are identified, the

Communication Management module connects the service

initiator to the targeted resources or services. A Bus

Communication is chosen according to the QoS requested

by the Service and the Resource. The communication type

is publisher subscriber. As explained in [21] and

encouraged by in [22] and [1], publisher/subscriber is a

very good candidate for resolving scalability issue,

reducing redundant messages, administration/establishment

cost and decoupling between receiver/provider.

Fig. 4 Astro modular architecture

3.4 Processing Bloc

This bloc is in charge of composing services (custom

services) using robot’s capacities, sensors/actuator or other

services with the help of the Provider bloc (figure 3). The

Service module needs to be developed by the service

producer. Some configuration information is needed such

as security and Qos requested and also the scenario usage

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 5

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

(as describe into the service ontology III-C). In order to

help the developer, a set of API is available. These APIs

allow to easily finding capabilities and other services. The

Service can deliver information to the Internet through the

Relay Communication module that forward information to

the Relay Block. The Service broker module manages the

Service life-cycle and transmits Service registration to the

Provider bloc.

When a service wants to receive information from a

capacity or a given service, it calls the provider bloc

through the API module, and as soon a communication is

established with the associated resources or services, it

uses the Astro Communication Module to send order or

receive information.

3.5 Relay and Web Bloc

In order to interact with the produced services, the

Relay bloc provides a collection of communication to

Internet. When a Service is registered, an associated URL

is automatically assigned to it in order to use the new

Service. Each Service has the capacity to communication

through HTTP (REST architecture [23]) for command

response communication and through WebSockets for

stream communication. The Web bloc, for its part,

provides a javascript library that facilitates the usage of the

services into HTML web pages.

3.6 Security Concern

In order to guaranty a good behavior of the global system,

each Service and Resource is executed into a box. A box

manages the life cycle of the component and controls the

component activity (Thread Usage, memory consumption)

avoiding error and malicious usage. All communication

establishments are controlled by the Provider bloc. This

bloc will control that services and resources have

necessary credential for communicate with other

components.

3.7 A modular Architecture

One of the targets of our architecture is to provide a

scaling up solution. Communications across several

ASTRO architectures are possible. On one hand, the

ASTRO architecture could communicate across the Relay

Bloc (http request or WebSocket) and uses remote services

as other Internet services. On the other hand, the different

Provider bloc could be connected each other using specific

communication Bus (like JMS [24]). Using the second

solution offers to the different architecture the ability to

use remote registered capabilities or services. More over,

subpart can be embedded directly into smart objects (e.g

robot, remote system). If we want to collect information

from a Kinect not directly linked to our server but

connected to a remote Raspberry Pi, we could install some

part of our architecture directly on the remote embedded

system shown figure 4.

4. Experimentation

In order to illustrate our architecture, we implement

and test the scenario described in I (figure 5). The purpose

of the scenario is to provide a web interface to the user that

can select topic on a HTML page. Two resources are

available, NAO robot with set of capabilities (text to

speech, gesture, dancing, face recognition ...) and a video

controller that allows displaying information. The video

controller holds a single video describing all topics

provided into the HTML page. The figure 5 shows the

scenario in action. When user select a topic, the ASTRO

architecture selects the appropriate service, chooses the

targeted resources according to their capacities and then

launches the behavior on the NAO robot (Text to speech

Fig.5. ASTRO Implementation: Web based Scenario of interaction with NAO robot and Video Controller

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 6

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

and gesture) and on the video controller (pause the video

on targeted frame and release video lecture when the NAO

finish its speech).

The Web bloc is composed of set of javascript

libraries helping to call services (based on jquery). The

Relay bloc and services are made above a java Grizzly [25]

server (section III) that provides service as a REST

architecture. The Services bloc, Provider bloc and

Resource bloc are written in Java. For the communication

bus, we used the MBassador java Bus (managing message

priorities). Currently, we have developed a set of different

resources including NAO Robot resource (using NaoQi),

ROS resource (currently using RosBridge, a java ROS

resource is under development), IP video resource, USB

Video resource, Kinect resource (using NITE and Openni)

and a general TCP/UDP socket connector. We developed a

remote ASTRO agent including Provider bloc and

Resource bloc. Current communication are not Bus to Bus

(e.g JMS) but done through java Remote Method

Invocation communication.

5. Conclusion and Future Work

Robots and smart devices capabilities to web oriented

services. Moreover, robots or smart devices can use high

level services provided by the Astro architecture.

We evaluate our architecture across the service

oriented middleware [4], of robots middleware [5]

requirements. Concerning the service oriented Middleware

requirements:

 Service composition and standardization:

Partially Covered, the service composition is

possible by requesting Provider bloc in order to

find a service corresponding to the targeted usage.

Communications Service to Service are then

possible (publisher/subscriber communication).

Currently any service standardization is strongly

defined.

 Service registry and publishing, Service discovery

and integration: Covered, as soon as a service or

resource is created, the associated broker registers

them to the Provider bloc. Then services and

capabilities become available on the ASTRO

architecture.

 Heterogeneity: Covered, effort has been made to

allow integrating heterogeneous Resources into

our architecture. To do so, user needs to develop

the object driver. Then the heterogeneity is

hidden by the usage of capacities ontology.

 Integration transparency to client applications:

Partially covered, using ontology of services and

capacities allows to discover Resource or Service

without prior knowledge. But the usage of

associated resource and service is currently not

standard and need a custom implementation.

 Adaptation and autonomicity: Not Covered,

Despite that resource of services are found by

ontology search, the continuity of service is not

supported, the initiator is not dynamically noticed

if the service or resource is no more available

 Scalability and efficiency: Partially Covered, our

architecture can communicate with other ASTRO

architectures and share resources and services, but

no benchmark has been currently done on transfer

rate and high communication load.

 Reliability and security, QoS requirements: Not

currently Covered, the security and QoS of

services and resources are specified but no

implementation is currently available.

Concerning the robot middleware requirements:

 Simulation: Not Covered, no simulation of

workflow is currently available.

 Open Source: Partially Covered, we still work on

enhance packaging before sharing our work.

 Behavior coordination: Partially Covered, the

behavior coordination of capabilities can be done

indirectly by developing a service which

coordinates high level actions on robots or smart

objects.

 Real Time, Not Covered, the Real Time aspect is

not targeted by our architecture.

 Distributed environment, Partially Covered, we

provide some tools to communication between

different ASTRO architecture through the Relay

bloc or the Provider bloc but effort are still

needed to provide a complete distributed

architecture (Provider bloc Peer to Peer

communication).

 Dynamic wiring: Covered, using the ontology of

capacities or services, composed service or robot

resource can be dynamically wired to suitable

service or resource.

The implementation of ASTRO is still in progress.

Qos service still need to be implemented. The

communication between different ASTRO architecture is

currently partially addressed (Remote Method Invocation)

and needs to be well defined (services and capabilities

across different ASTRO architectures discovery).

Moreover, the capacities and service ontologies definition

are still in progress and current implementation provides

only basic skills (discovery of capabilities and services into

predefined lists).

 In the current paper we provide an new architecture

allowing the composition of service of robot and smart

objects. By oriented our work on Web Compliant

communication we give the opportunity to open our

services to the Web and allow robot to use Web services.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 7

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Moreover the user interaction is facilitate by using well

known program language (Java, Javascript) and

communication protocol(HTTP, WebSockets). The service

composition use an abstract robot capacity usage (ontology)

that can dynamically ”wired” service to resource (robots,

smart devices). Finally, by executing services and

resources into boxes and control communication access

between service and resource, we provide a first step of

robot service securing.

Acknowledgments

The authors would like to thank the contribution of master

students, Thomas Bracher and Romain Huet who worked

more than 6 months on the implementation of the ASTRO

architecture. Authors would like to thank also the Robot

Forum incubator of Cpe Lyon to have integrated this

project into its smart room.

References

[1] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J.

Leibs, R. Wheeler, and A. Y. Ng, “Ros: an open-source robot

operating system,” in ICRA Workshop on Open Source

Software, 2009.

[1] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J.

Leibs, R. Wheeler, and A. Y. Ng, “Ros: an open-source robot

operating system,” in ICRA Workshop on Open Source

Software, 2009.

[2] Aldebaran robotics. [Online]. Available:

http://www.aldebaranrobotics.com

[3] M. Waibel, M. Beetz, R. D’Andrea, R. Janssen, M. Tenorth, J.

Civera, J. Elfring, D. G´alvez-L´opez, K. H¨aussermann, J.

Montiel, A. Perzylo, B. Schießle, O. Zweigle, and R. van de

Molengraft, “Roboearth - aworld wide web for robots,”

Robotics & Automation Magazine, vol. 18,no. 2, pp. 69–82,

2011.

[4] J. Al-Jaroodi and N. Mohamed, “Service-oriented

middleware: Asurvey.” J. Network and Computer

Applications, vol. 35, no. 1, pp.211–220, 2012.

[5] A. Y. Elkady and T. Sobh, “Robotics middleware: A

comprehensive literaturesurvey and attribute-based

bibliography,” Journal of Robotics, vol. 2012, 1 2012.

[6] D. Bonino and F. Corno, “Domains: Domain-based modeling

forambient intelligence.” Pervasive and Mobile Computing,

vol. 8, no. 4,pp. 614–628, 2012.

[7] N. Ibrahim and F. L. Moul, “A survey on service

compositionmiddleware in pervasive environments,” CoRR,

vol. abs/0909.2183, 2009.

[8] Webots, “http://www.cyberbotics.com,” commercial Mobile

RobotSimulation Software. [Online]. Available:

http://www.cyberbotics.com

[9] O. Michel, “Webots: Professional mobile robot simulation,”

Journal of Advanced Robotics Systems, vol. 1, no. 1, pp. 39–

42, 2004.

[10] C. Schlegel and R. Worz, “The software framework

smartsoft forimplementing sensorimotor systems,” in

Intelligent Robots and Systems,1999. IROS ’99. Proceedings.

1999 IEEE/RSJ International Conference on, vol. 3, 1999, pp.

1610 –1616 vol.3.

[11] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W.-K.

Yoon, “Rtmiddleware:distributed component middleware for

rt (robot technology).”in IROS. IEEE, 2005, pp. 3933–3938.

[12] S. Magnenat, V. Longchamp, and F. Mondada, “Aseba, an

event-basedmiddleware for distributed robot control,” in

Workshops and TutorialsCD IEEE-RSJ 2007 International

Conference on Intelligent Robotsand Systems. IEEE Press,

2007.

[13] H. Utz, S. Sablatnog, S. Enderle, and G. Kraetzschmar,

“Miro -middleware for mobile robot applications,” Robotics

and Automation,IEEE Transactions on, vol. 18, no. 4, pp.

493–497, Dec. 2002.

[14] H. Bruyninckx, P. Soetens, and B. Koninckx, “The real-time

motioncontrol core of the Orocos project,” in IEEE

International Conferenceon Robotics and Automation, 2003,

pp. 2766–2771.

[15] G. B. T. S. H. N. T. K. Noriaki Ando, Shinji Kurihara,

“Softwaredeployment infrastructure for component based rt-

systems,” Journalof Robotics and Mechatronics, vol. 23, pp.

350–359, 2011.

[16] “Robotic interaction service (rois),” Object Management

Group(OMG), 2013. [Online]. Available:

http://www.omg.org/spec/RoIS/1.0/

[17] C. Crick, G. Jay, S. Osentoski, and O. C. Jenkins, “Ros and

rosbridge:Roboticists out of the loop,” in Proceedings of the

Seventh AnnualACM/IEEE International Conference on

Human-Robot Interaction,ser. HRI ’12. New York, NY, USA:

ACM, 2012, pp. 493–494

[18] M. Bichler and K.-J. Lin, “Service-oriented computing,”

Computer,vol. 39, no. 3, pp. 99–101, 2006.

[19] P. Jain, D. Dahiya, and W. Solan, “An architecture of a

multi agententerprise knowledge management system based

on service orientedarchitecture,” IJCSI International Journal

of Computer Science Issues,vol. 9, pp. 395–404, 2012.

[20] J. Anke and al., “A service-oriented middleware for

integration andmanagement of heterogeneous smart items

environments,” in 4thMiNEMA Workshop, 2006, pp. 7–11.

[21] C. Groba, I. Braun, T. Springer, and M. Wollschlaeger, “A

serviceoriented approach for increasing flexibility in

manufacturing.” Proceedingsof 7th IEEE International

Workshop on Factory CommunicationSystems,

COMMUNICATION in AUTOMATION (WFCS

2008),Dresden, Germany, 2008.

[22] D. Bonino and F. Corno, “Dogont - ontology modeling for

intelligentdomotic environments,” in Proceedings of the 7th

International Conferenceon The Semantic Web, ser.

ISWC ’08. Berlin, Heidelberg:Springer-Verlag, 2008, pp.

790–803.

[23] H. Guermah, T. Fissaa, H. Hafiddi, M. Nassar, and A.

Kriouile, “Anontology oriented architecture for context

aware services adaptation,”IJCSI International Journal of

Computer Science Issues, vol. 11, pp.24–33, 2014.

[24] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.

Kermarrec, “Themany faces of publish/subscribe,” ACM

Comput. Surv., vol. 35, no. 2,pp. 114–131, Jun. 2003.

[25] P. R. Pietzuch and J. Bacon, “Hermes: A distributed event-

basedmiddleware architecture,” in Proceedings of the 22Nd

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 8

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

InternationalConference on Distributed Computing Systems,

ser. ICDCSW ’02.Washington, DC, USA: IEEE Computer

Society, 2002, pp. 611–618.

[26] R. T. Fielding, “Rest: Architectural styles and the design of

networkbasedsoftware architectures,” Doctoral dissertation,

University ofCalifornia, Irvine, 2000.

[27] R. Monson-Haefel and D. Chappell, Java Message Service.

Sebastopol,CA, USA: O’Reilly & Associates, Inc., 2000.

[28] Project grizzly. [Online] Available:

https://grizzly.java.net/overview.html

Jacques Saraydaryan holds a Master’s Degree in Telecoms and
Networks from National Institute of Applied Sciences (INSA), Lyon
–France in 2005, and a Ph.D. in computer sciences from INSA,
Lyon France in 2009. He was a Research Engineer at the
Exaprotect Company, France during seven years. His research
focus began on IS Security especially on Anomaly intrusion
detection system (published in international conferences such as
Secrureware’08, SEC 2008). Currently, Jacques is a member of
the engineers School of CPE Lyon as associate professor. His
experience into behavior modeling helps him to integrate the
robotic research team of the school.

Fabrice Jumel is associate professor in computer science and
robotic of service at the CPE Lyon Engineering School. He
received its Ph.D. degree from "Mines de Nancy" Engineering
School and the INRIA (TRIO team) in 2003. Its dissertation was
about "quality of service of control systems". His researches focus
on biomedical systems, domotic systems and robotics. He is a
the head of the robot forum initiative of CPE Lyon in which they
build, improve and work on a smart experimentation area. This
area includes a lot of robotic solutions, Human Machine
Interfaces, cameras, depth cameras, light, heat controllers and
biomedical devices.

Adrien Guenard holds a Master’s Degree in control desgin and
robotics from ENSEM engineering school. Adrien was a Research
Engineer at INRIA, working on models and simulation of wireless
sensor networks and mobile platforms during 2 years. After that,
he worked at the Loria laboratory as a multirotor UAV expert. He
joined the robotics research team of CPE school in 2012.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 9

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

