
 

 

SwarmDroid: Swarm Optimized Intrusion Detection System for 

the Android Mobile Enterprise 

Abimbola Adebisi Adigun1, Temitayo Matthew Fagbola2 and Adekanmi Adegun3 

 

 1 Department of Computer Science and Engineering, Ladoke Akintola University of Technology,  

Ogbomoso, Oyo State, Nigeria 

 

 
2 Department of Computer Science, Federal University, Oye-Ekiti,  

Ekiti State, Nigeria 

 

 
3 Department of Computer Science, Landmark University, 

Omu-Aran, Kwara State, Nigeria 

 

 

 

Abstract 
The inadequacies inherent in the current defense mechanism of 

the mobile enterprise led to the development of new breed of 

security systems known as mobile intrusion detection system. 

The major worry of mobile / ubiquitous device users is the issue 

of data security since no mobile security application is 100% 

efficient. Existing studies conducted on android mobile security 

reveal that Android is the platform with the highest malware 

growth rate by the end of 2011 and that Global System for 

Mobile Communication -based Pivot Attacks, Mobile Botnets 

and Malicious Applications are the major security vulnerabilities 

compromising the confidentiality, integrity and availability of 

this mobile enterprise. In this paper, a SwarmDroid IDS is 

developed following a machine learning approach using Support 

Vector Machine. NSL-KDD dataset was used to test and evaluate 

the performance of the SwarmDroid IDS and compared with J48 

and Random Forest which are state-of-the-art machine learning 

techniques for intrusion detection in mobiles. Particle Swarm 

Optimization was used for feature selection. The malware 

detection systems were simulated in a MATLAB environment. 

The SwarmDroid IDS was evaluated using detection time, true 

positive rate, false positive rate and detection accuracy as 

performance metrics. The result obtained from the evaluation 

revealed that SwarmDroid IDS outperforms J48 in terms of 

detection time and accuracy. Also, feature selection in Android 

application package files using particle swarm optimization 

technique plays a critical role in realizing high accuracy and low 

computational time complexity in SwarmDroid. 
 

Keywords: SwarmDroid, Android, Random Forest, J48. 

1. Introduction 

The Modern mobile platforms are reinventing the mobile 

landscape. These mobile devices run commodity operating 

systems and have complete multi-protocol networking 

stacks, user interface toolkits, file systems and other fully- 

 
 

featured libraries (Jon, 2010). While past mobile platforms 

had limited functionality and were relatively close to third-

party applications and user extensibility, new mobile 

platforms are now being deployed with complex internet, 

productivity, communication and application suites which 

strongly encourage third-party development of 

comprehensive software development kits and application 

delivery mechanisms (Nohl & Melette, 2011).  
 

However, these mobile devices face a wide range of new 

security challenges including malicious threats and 

intrusion (Jon, 2010). The same extensibility that has 

enabled rich functionality and applications has also made 

them an enticing target for attackers. These devices are 

increasingly being used to store sensitive personal 

information such as financial data used for mobile banking, 

but also run applications that pose potential abuse for 

snooping on a mobile user's voice, SMS, data and location 

services (Jon,Veeraraghavan, Cooke, Flinn and Jahanian, 

2008). As such, there is a need for an intrusion prevention 

support system for the mobile enterprise. Intrusion 

prevention in a mobile enterprise aims at identifying any 

entity that attempts to compromise the confidentiality, 

integrity or availability of a computing resource (SANS, 

2002). The android platform, an open-source mobile 

operating system, is susceptible to vulnerabilities such as 

GSM based Pivot Attacks, mobile botnets, Malicious 

Applications, Infection via Personal Computers, Device to 

device Infection and Infection via Rogue Wireless 

Networks (AISEC, 2012; Nohl & Melette, 2011; Jon, 

2010).  
 

Existing studies conducted on android mobile security 

reveal that Android is the platform with the highest 

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 62

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.



 

 

malware growth rate by the end of 2011 (Zarni and Win, 

2013). To deal with these shortcomings, malware detection 

profiles should be updated with a large amount of the 

newest engine and malware definitions at regular interval 

of time (Mark and Smith, 2007). Consequentially, a large 

amount of the engine definitions also increases the 

problem of inconsistency, redundancy and ambiguity and 

thus a need for optimal definition selection. In this paper, 

SwarmDroid, a computationally-efficient swarm-optimized 

android intrusion detection system (IDS) is developed to 

address the major security vulnerabilities infiltrating the 

android mobile platform, so as to realize a more secured 

and reliable android operating environment. 

2. Literature Review 

This section introduces a brief literature, conceptual 

framework and major security challenges of the Android 

mobile enterprise.  

 

The Android Platform  

Mobile operating systems preinstalled on all currently sold 

smart phones need to meet different criteria than desktop 

and server operating systems, both in functionality and 

security. Mobile platforms often contain strongly 

interconnected, small and less well controlled applications 

from various single developers, whereas desktop and 

server platforms obtain largely independent software from 

trusted sources (Ekberg & Kyl, 2007). Also, users typically 

have full access to administrative functions on non-mobile 

platforms. Mobile platforms, however, restrict 

administrative control through users. As a consequence, 

different approaches are deployed by the Android platform 

to maintain security. Applications for Android are 

developed in Java and executed in a virtual machine, 

called Dalvik VM (Jon, 2010). They are supported by the 

application framework, which provides frequently used 

functionality through a unified interface. Various libraries 

enable applications to implement graphics, encrypted 

communication or databases easily (AISEC, 2012). The 

Standard Library (“bionic”) is a BSD derived library for 

embedded devices. The respective Android releases‟ 

kernels are stripped down from Linux 2.6 versions. Basic 

services such as memory, process and user management 

are all provided by the Linux kernel in a mostly 

unmodified form (AISEC, 2012). The Android system 

architecture is presented in figure 1 below. However, for 

several Android versions, the deployed kernel‟s version 

was already out of date at the time of release. This has led 

to a strong increase in vulnerability (Wenjia & Anupam, 

2003), as exploits were long publicly available before the 

respective Android version‟s release. 

 

Fig. 1  Android System Architecture. Source: AISEC (2012) 

Security Challenges in Android Mobile Network  

Mobile environments differ significantly from traditional 

fixed computing environments. While some differences are 

straightforward, others may have subtle consequences that 

can have a significant impact on the security of a mobile 

device. The major security vulnerabilities of the android 

enterprise addressed in this paper include mobile botnets, 

GSM-based pivot attack and malicious applications.  
 

A. Mobile Botnets: Compared to traditional fixed 

computing, the case for mass ownage of mobile devices for 

creating a botnet is not as straightforward. Traditionally, 

attackers are able to monetize their botnets of 

compromised hosts through spam, denial of service 

extortion, sensitive data theft and phishing of confidential 

details (Dagon and Starner, 2004). Compromised hosts are 

often considered valuable to an attacker if they have high-

throughput, low-latency, stable connectivity to the Internet 

and significant system resources; which are attributes that 

are not common with today's mobile devices (Ekberg & 

Kyl, 2007). However, as more and more sensitive data 

such as login credentials are stored on mobile devices, 

attackers may still wish to target them for harvesting data.  
 

B. GSM based Pivot Attacks: The GSM implementation 

by many base transceiver stations is prone to various easily 

conductible attacks. Recent results presented at the 28th 

Chaos Communication Congress have demonstrated that 

most European GSM networks are not capable of 

prohibiting impersonation attacks (Brunner, Hofinger, 

Krauss, Roblee, Schoo and Todt, 2010). This occurs when 

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 63

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.



 

 

an attacker fakes the identity of another GSM subscriber, 

thus receiving any communication addressed to the 

attacked person (Brunner et al, 2010). Hence, just one 

mobile device under an attacker‟s control in a radio cell is 

sufficient to attack any other subscriber and to serve as a 

remote long range wiretap. This matter, though 

theoretically feasible, is of very high difficulty and no 

further research into it has been conducted yet (Brunner et 

al, 2010).  
 

C. Malicious Applications: Malicious applications are 

software used or created to disrupt computer operation, 

gather sensitive information or gain access to private 

computer systems and mobile devices (Nohl & Melette, 

2011). Incidents have many causes, such as malware 

(worms & spyware), attackers gaining unauthorized access 

to systems from the Internet and authorized users of 

systems who misuse their privileges or attempt to gain 

additional privileges for which they are not authorized. 

Although many incidents are malicious in nature, many 

others are not; for example, a person might mistype the 

address of a computer and accidentally attempt to connect 

to a different system without authorization (Bace & 

Rebecca, 2000). Some Intrusion Prevention System (IPS) 

technologies can remove or replace malicious portions of 

an attack to make it benign.  

 

3.  Review of Related Works  
 

Zarni and Win (2013) proposed a framework for machine 

learning-based malware detection system on Android to 

detect malware applications and to enhance security and 

privacy of smartphone users. This system monitors various 

permission-based features and events obtained from the 

android applications and analyze these features by using 

machine learning classifiers to classify whether the 

application is a goodware or malware.  

Sven and Stephan (2013) presented the design and 

implementation of FlaskDroid, a policy-driven generic 

two-layer MAC framework on Android-based platforms. 

They introduced an efficient policy language that is 

tailored for Android‟s middleware semantics. The 

applicability of the design was prototyped on Android 

4.0.4. Evaluation of the system shows that the clear API-

oriented design of Android benefits the effective and 

efficient implementation of a generic mandatory access 

control framework like FlaskDroid.  

Rafael, Julian and Marcel (2013) evaluated how well 

Android antivirus software performs under real world 

conditions, as opposed to retrospective detection rate tests. 

The authors conducted various tests on several antivirus 

apps for Android. The test setup considers the ability to 

cope with typical malware distribution channels, infection 

routines and privilege escalation techniques. It was 

concluded that it is easy for malware to evade detection by 

most antivirus apps with only trivial alterations to their 

package files.  

Shabtai, Kanonov, Elovici, Glezer and Weiss (2011) 

developed a malware detection framework for android 

devices and tagged it Andromaly. The framework monitors 

both the behavior of Android users using eighty-eight (88) 

features via several parameters, ranging from CPU usage 

to sensors activities by selecting the features that describe 

users‟ behavior and pre-processed using feature selection 

algorithms.  

Dini, Martinelli, Saracino and Sgandurra (2012) proposed 

a Multi-Level Anomaly Detector for Android Malware 

(MADAM) which uses thirteen (13) features to detect 

android malware for both user level and kernel level. The 

application was tested on real malware and uses a global-

monitoring approach that can detect malware contained in 

unknown applications.  

Karen (2009) developed an IDPS that could report mobile 

attacks and security breaches to security administrators, 

who could quickly initiate incident response actions to 

minimize the damage caused by the incident.  

Kruegel & Chris (2004) developed a malware detector that 

can identify reconnaissance activity in Android, which may 

indicate that an attack is imminent. For example, some 

attack tools and forms of malware, particularly worms, 

perform reconnaissance activities such as host and port 

scans to identify targets for subsequent attacks. The IDPS 

is able to block reconnaissance and notify security 

administrators, who can take actions if needed to alter 

other security controls to prevent related incidents. 

Because reconnaissance activity is so frequent on the 

Internet, reconnaissance detection is often performed 

primarily on protected internal networks.  

 

4.  Materials and Method  
 

The detailed methodology and design approach adopted 

are described as follow:  

 

A. Support Vector Machine  
 

In machine learning, Support Vector Machines (SVM) are 

learning models with learning algorithm that analyze data 

and recognize patterns, used for classification (Cortes et 

al., 1995). Classification is the problem of identifying to 

which of a set of categories (sub-population) a new 

observations (or instances) whose category membership is 

known. The basic SVM takes a set of input data and 

predicts, for each given input, which of two possible 

classes forms the output. Given a set of training samples, 

each marked as belonging to one of two categories, an 

SVM training algorithm builds a model that assigns new 

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 64

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.



 

 

samples into one category or the other. It represents these 

samples as point in space mapped so that the samples of 

the separate categories are divided by a clear gap that is as 

wide as possible.  

New samples are then mapped into that same space and 

predicted to belong to a category based on which side of 

the gap they fall on. SVM constructs a hyper-plane in a 

high dimension space which functions as a separating 

plane for classification. Points with different class labels 

are separated by the hyper-plane while those with the same 

class labels are kept in the same partition. 

There are two classes (Fagbola et al., 2012): 

 

                           (1) 

and there are N labeled training examples: 
d
                  (2) 

where d is the dimensionality of the vector. If the two 

classes are linearly separable, then one can find an optimal 

weight vector  such that   is minimum; and  

 
 1                                   (3) 

or equivalently 

 1                                   (4) 

Training examples that satisfy the equality are termed 

support vectors. The support vectors define two hyper-

planes, one that goes through the support vectors of one 

class and one goes through the support vectors of the other 

class. The distance between the two hyper-planes defines a 

margin and this margin is maximized when the norm of the 

weight vector  is minimum.  

This minimization can be performed by maximizing the 

following function with respect to the variables  

 (5) 

subject to the constraint: where it is assumed there 

are N training examples, xi is one of the training vectors, 

and  represents the dot product. If then  is 

termed a support vector. For an unknown vector  

classification then corresponds to finding 

   (6) 

 Where 

     (7) 

and the sum is over the ϒ nonzero support vectors (whose 

 are nonzero). 

The advantage of the linear representation is that  can 

be calculated after training and classification amounts to 

computing the dot product of this optimum weight vector 

with the input vector. 

 

For the non-separable case, training errors are allowed and 

minimizing 

   (8) 

subject to the constraint 

   (9) 

Where  is a slack variable and allows training examples 

to exist in the region between the two hyper-planes that go 

through the support points of the two classes. 

 

B. Particle Swarm Optimization  
 

Particle swarm optimization (PSO) is a stochastic global 

optimization technique developed by Eberhart and 

Kennedy in 1995 based on social behavior of birds (Clerc, 

2002). PSO incorporates swarming behaviors observed in 

flocks of birds, schools of fish, or swarms of bees, and 

even human social behavior, from which the idea is 

emerged (Kennedy, 2001). PSO performs searches using a 

population (called swarm). The population consists of 

potential solutions, named particles, which are a metaphor 

of birds in flocks. These particles are updated from 

iteration to iteration.  

In PSO, a set of particles or solutions traverse the search 

space with a velocity based on their own experience and 

the experience of their neighbors. Each particle updates its 

own velocity and position based on the best experience of 

its own and the entire population. This process is repeated 

till an optimal solution is obtained. 

 

The detailed operation of particle swarm optimization 

is given below (Karl, 2005): 

Step 1: Initialization. The velocity and position of all 

particles are randomly set to within pre-defined ranges. 

Step 2: Velocity Updating. At each iteration, the 

velocities of all particles are updated according to: 

(10) 

where  and  are the position and velocity of particle i, 

respectively;  and   is the position with the 

„best‟ objective value found so far by particle i and the 

entire population respectively; w is a parameter controlling 

the flying dynamics; R1 and R2 are random variables in 

the range [0, 1]; c1 and c2 are factors controlling the 

related weighting of corresponding terms. The inclusion of 

random variables endows the PSO with the ability of 

stochastic searching. The weighting factors c1 and c2 

compromise the inevitable tradeoff between exploration 

and exploitation. After updating,  should be checked and 

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 65

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.



 

 

secured within a pre-specified range to avoid violent 

random walking. 
 

Step 3: Position Updating. Assuming a unit time interval 

between successive iterations, the positions of all particles 

are updated according to: 

                      (11) 

After updating,  should be checked and limited to the 

allowed range. 

Step 4: Memory updating. Update  and  when 

condition is met.  

   If f ( ) > f ( ) 

   If f ( ) > f ( )                  (12) 

where f (x) is the objective function subject to 

maximization. 
 

Step 5: Termination Checking. The algorithm repeats 

Steps 2 to 4 until certain termination conditions are met, 

such as a pre-defined number of iterations or a failure to 

make progress for a certain number of iterations. Once 

terminated, the algorithm reports the values of  and f 

( ) as its solution. 

 

 
      

Fig. 2 The Flowchart of PSO Algorithm (Lin et al., 2008). 

 

C. J48 Decision Tree Algorithm  
 

Input: training sample set T, the collection of candidate 

attribute attribute_list  

Output: a decision tree.  

Steps:  

1. Create a root node N;  

2. If T belongs to the same category C, then return N as a 

leaf node, and mark it as class C;  

3. If attribute_list is empty or the remainder samples of T 

is less than a given value, then return N as a leaf node, and 

mark it as the category which appears most frequently in 

attribute_list, for each attribute, calculate its information 

gain ratio.  

4. Suppose test_attribute is the testing attribute of N, then 

test_attribute = the attribute which has the highest 

information gain ratio in attribute list:  

5. If testing attribute is continuous, then find its division 

threshold;  

6. For each new leaf node grown by node N  

    {  

a. Suppose T is the sample subset corresponding to 

the leaf node.  

b. If T has only a decision category, then mark the 

leaf node as this category;  

c. Else continue to implement J48_Tree (T‟, 

T‟_attributelist)  

    }  

7. Calculate the classification error rate of each node and 

then prune the tree.  

 

D. The Random Forest Algorithm  
 

Random forests (RF) are a combination of tree predictors 

such that each tree depends on the values of a random 

vector sampled independently and with the same 

distribution for all trees in the forest. The generalization 

error of a forest of tree classifiers depends on the strength 

of the individual trees in the forest and the correlation 

between them.  
 

Steps:  

1. Select ntree, the number of trees to grow, and mtry, a  

number larger than number of variables.  

2.  For i = 1 to ntree:  

3.  Draw a bootstrap sample from the data. Call those not 

in the bootstrap sample the "out-of-bag" data. 

4. Grow a "random" tree, where at each node, the best split 

is chosen among mtry randomly selected variables. The 

tree is grown to maximum size and not pruned back.  

5.  Use the tree to predict out-of-bag data.  

6. In the end, use the predictions on out-of-bag data to 

form majority votes.  

7.  Prediction of test data is done by majority votes from  

predictions from the ensemble of trees. 

 

E. The SwarmDroid Model Design  
 

The SwarmDroid IDS model design treats malware 

detection as a binary classification problem with Android 

application package files containing either malware or 

goodware. For malware detection on Android platform, 

features were retrieved for each Android application from 

its corresponding application package (APK) files. 

However, some of these features were redundant and 

irrelevant and could make the detection process 

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 66

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.



 

 

computationally very expensive. To address this, PSO was 

used for optimal feature selection to help reduce the 

computational burdens (memory and CPU time required to 

detect attack) of the intrusion detection system and also 

improve the classification accuracy while SVM was used 

for binary classification of the optimally-selected features.  
 

The feature selection process can be considered a problem 

of global combinatorial optimization in machine learning, 

which reduces the number of features, removes irrelevant, 

noisy and redundant data, and results in acceptable 

classification accuracy (Fagbola et al., 2012).  

Feature subset selection can involve random or systematic 

selection of inputs or formulation as an optimization 

problem which involves searching the solution space of 

feature set for an optimal or near-optimal subset of 

features, according to a specified criterion.  

 

Conducting feature selection is usually directed toward one 

of two goals (Fagbola et al., 2012):  

1. Ability to minimize the number of features 

selected while  satisfying some minimal level of 

classification capability  

 

2. Ability to maximize classification performance 

for a subset of prescribed cardinality. The feature 

selection process can be improved by optimizing 

its corresponding feature subset selection 

technique(s) using some appropriate metaheuristic 

optimizers.  

 
The main steps of the developed SwarmDroid model are as 

follows: 

1. Feature extraction of APK files.  

2. Particle Swarm Optimization to generate and select 

both the optimal feature subset and SVM parameters 

at the same time.  

3. Classification of the resulting optimal features by 

SVM.  

 

Firstly, the best feature subset is selected using PSO. Each 

particle represents a solution, which denotes the selected 

subset of features and parameter values. 

 

The selected features, parameter values and training 

dataset are used to train the SVM classifier model as 

shown in figure 3. If n features are required to decide 

which features are chosen, then 2 + n decision variables 

must be adopted (Lin et al., 2008). The value of n variables 

ranges between 0 and 1. If the value of a variable is less 

than or equal to 0.5, then its corresponding feature is not 

chosen. Conversely, if the value of a variable is greater 

than 0.5, then its corresponding feature is chosen. The 

developed SwarmDroid IDS architecture is presented in 

figure 4. 

 

 
 

Fig. 3 The SwarmDroid IDS Model Design 
 

 

 
 

Fig. 4 The Developed SwarmDroid IDS Architecture 

 

F. The NSL-KDD Dataset  
 

In this paper, the NSL-KDD, a publicly available dataset 

(which consists of selected records of the complete KDD 

data set and does not suffer from uneven distribution of 

attacks as noticed in KDD) suitable for the evaluation of 

Intrusion Detection Systems (Debar, 2009), is used to test 

and evaluate the performance of the developed 

SwarmDroid IDS and compared with J48 and Random 

Forest machine learning techniques considered for 

benchmark purpose. This dataset is characterized by 

mobile botnets, GSM-based Pivot Attacks and Malicious 

Application malwares among others which makes it 

suitable for testing and evaluation purpose in this work.  

 

G. The Performance Evaluation Metrics  
 

Given a particular attack category, the rate of detection by 

malware detection algorithms differ in performance. 

Hence, there is a need for performance evaluation of these 

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 67

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.



 

 

algorithms. The performance of the proposed swarm 

optimized technique over the machine learning techniques 

comparatively considered were evaluated using detection 

time, true positive rate, false positive rate and detection 

accuracy as performance evaluation metrics as defined 

below:  

1. True Positive Rate (TPR): Percentage of correctly 

identified goodware application files. TPR = (TP / 

TP + FN) where FN is the false negative, the number 

of wrongly identified goodware applications.  

2. False Positive Rate (FPR): Percentage of wrongly 

identified malware application files where FPR = (FP 

/ FP + TN).  

3. True Negative (TN): Number of correctly identified 

malware application files.  

4. False Negative (FN): Number of wrongly identified 

goodware application files.  

5. Detection Accuracy: Percentage of correctly 

identified applications (TP+TN / TP+TN+FP+FN).  

6. Detection Time: This represents the total time 

required to process and detect all malware 

application files.  

 

5.  Results and Discussion  
The result of evaluation of the developed SwarmDroid is 

presented in this section: 

Figure 5 presents the menu for the four (4) machine 

learming techniques considered in this paper. These are 

SVM, J48, Random Forest and SwarmDroid. 

 

 
 

     Fig 5 The Menu for the Machine Learning Technique 

In figure 6, the numbers indicate the number of malware 

detected by each intrusion detection system. J48 shows 

remarkable improvement over random forest and SVM 

however, SwarmDroid outperforms SVM, J48 and 

Random Forest in the detection of mobile botnets, GSM-

based Pivot Attacks and Malicious Applications as it 

scores the highest detection rate. 

 

Fig. 6 The Summarized Evaluation Result of SVM, SwarmDroid, J48 

and Random Forest 

Table 1 presents the summary of the result obtained using 

SVM and SwarmDroid for malware detection. The 

evaluation was conducted using NSL-KDD dataset and 

SVM and SwarmDroid were introduced to varying feature 

sizes of 100, 300 and 600 Android apk files. Each training 

set contained 75% of the original set while the test set 

contained 25% of the original dataset and were randomly 

selected. 

Table 1: SVM-based and SwarmDroid Malware Detection Results 

 
 

It is observed that SwarmDroid yields a higher detection 

accuracy of 80.4375%, 90.5625% and 93.1937% within 

lesser computational times of 2.0625, 0.5625, and 0.1938 

seconds while ordinary SVM yields lesser detection 

accuracy of 68.3438%, 46.7062% and 18.015% with 

higher computational time of 6.3281, 60.1563 and 91.465 

seconds for NSL-KDD feature sizes of 100, 300 and 600 

respectively. This result confirms the report of Andrew 

(2010) and Liyang et al. (2005) that though SVM is much 

more effective than other conventional non-parametric 

classifiers in terms of classification accuracy, 

computational time and stability to parameter setting; it is 

weak in its attempt to classify highly dimensional dataset 

with large number of features (Andrew 2010). This implies 

that the malware detection efficiency of SwarmDroid 

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 68

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.



 

 

surpassed that of conventional SVM due to optimal feature 

subset selection using PSO. 

6. Conclusions 

Android platform, an open-source operating system, is 

susceptible to major vulnerabilities such as GSM based 

Pivot Attacks, Mobile Botnets and Malicious Applications. 

These challenges necessitate the development of a security 

support application for the Android enterprise. However, 

in this paper, SwarmDroid, a swarm optimized Android 

IDS is developed to address these vulnerabilities. Three (3) 

state-of-the-art machine learning techniques for intrusion 

detection were considered. 

 

However, SwarmDroid was found to be the most efficient 

in terms of detection time and accuracy. This reveals that 

feature selection of Android APK files using PSO plays a 

critical role in realizing higher accuracy with minimum 

computation resource requirement. Future research work 

can extend the detection of malware in Android to other 

vulnerabilities not considered in this paper. 

 

References 
[1] Bace and Rebecca “Intrusion Detection,” Macmillan 

Technical Publishing, 2000.  

[2] T. Brunner, H. Hofinger, C. Krauss, C. Roblee, P. Schoo 

and S. Todt, “Infiltrating Critical Infrastructure with Next 

Generation Attacks; Stuxnet as a Showcase Threat”, 2010.  

[3] T. Dagon Martin and T. Starner, “Mobile phones as 

computing devices: The viruses are coming”, IEEE 

Pervasive Computing”, 2004.  

[4] K. Ekberg and M. Kyl “Mobile Trusted Module (MTM), An 

Introduction” Nokia Research, 2007.  

[5] AISEC “Android OS Security: Risks and Limitations”, 

AISEC 2012.  

[6] Jon Oberheide, K. Veeraraghavan, E. Cooke, J. Flinn, and 

F. Jahanian “Virtualized In-Cloud Security Services for 

Mobile Devices in Workshop on Virtualization in Mobile 

Computing (MobiVirt '08)”, Breckenridge, Colorado, 2008.  

[7] Jon Oberheide “remote kill and install on google android,”. 

http://jon.oberheide.org/blog/2010/06/25/remotekillandinsta

llongoogleandroid/, 2010.  

[8] Karen Scarfone “Guide to Intrusion Detection and 

Prevention Systems (IDPS), 2009”  

[9] K. Nohl and Melette L. “Defending mobile phones,” in 28th 

Chaos Communication Congress, 

http://events.ccc.de/congress/2011/Fahrplan/attachments/19

94_111217.SRLabs28C3Defending, 2011.  

[10] Rafael Fedler, Julian Schütte, Marcel Kulicke , “On the 

Effectiveness of Malware Protection on Android, An 

evaluation of Android antivirus apps”, Applied and 

Integrated Security (2013).  

[11] SANS Institute “Intrusion Prevention Systems- Security”, 

2002.  

[12] S. Bugiel and Stephan Heuser, “Flexible and Fine-

Grained Mandatory Access Control on Android for 

Diverse Security and Privacy Policies”, The Internet 

Society (2013). 

[13] L. Wenjia and J. Anupam, “Security Issues in Mobile 

Ad Hoc Networks- A Survey” 2003. 

[14] Karl o. Jones, Comparison of Genetic Algorithm and 

Particle Swarm Optimization, International Conference 

on Computer Systems and Technologies - 

Compsystech’2005.  

[15] Zarni Aung and Win Zaw. “Permission-Based Android 

Malware Detection”, International Journal of Scientific 

and Technology Research, Volume 2, Issue 3, 2013.  

[16] L. Garfinkel and M. Rosenblum “When virtual is 

harder than real: Security challenges in virtual machine 

based computing environments. In 10th Workshop on 

Hot Topics in Operating Systems”, 2005 

[17] Fagbola, T., Olabiyis, S., & Adigun, A. (2012): Hybrid 

GA-SVM for Efficient Feature Selection in E-mail 

Classification. Computer & Intelligent System, ISSN 

2222-28263, vol. 3, No. 3  

[18] Liyang, W., Yongyi, Y., Nishikawa, R. M. & Yulei, J. 

(2005). A study on several machine-learning methods 

for classification of malignant and benign clustered 

microcalcifications. IEEE Transactions on Medical 

Imaging, 24(3), pp. 371–380.  

[19] Andrew Webb (2010), Statistical Pattern Recognition. 

London: Oxford University Press.  

[20] A.H. Mark, Lloyd A. Smith, “feature Subset Selection: 

A Correlation Based Filter Approach”, 1997.  

[21] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, Y. 

Weiss: Andromaly: A behavioral malware detection 

framework for android devices. Journal of Intelligent 

Information Systems, 38(1), January 2011, pp. 1610-

190.  

[22] G. Dini, F. Martinelli, A. Saracino, D. Sgandurra: 

MADAM: A multi-level anomaly detector for android 

malware, 2012.  

[23] S. Lin, K. Ying, S. Chen and Z. Lee, “Particle swarm 

optimization for parameter determination and feature 

selection of support vector machines”. Expert Systems 

with Applications. 35, 2008, PP. 1817–1824.  

[24] H. Debar ,“Towards a taxonomy of intrusion detection 

systems”, Computer Network, pp. 805-822, April 

2009.  

[25] Kruegel, Chris et al (2004): “Intrusion Detection and 

Correlation: Challenges and Solutions”, Springer.  

[26] J. Kennedy, Some issues and practices for particle 

swarms, in: IEEE Swarm Intelligence, Honolulu, USA, 

2001. 

 

 

 

 

 

 

 

 

 

 

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 2, May 2014 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 69

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.




