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Abstract

We will describe in this article a method allowing the sim-
ulation of financial models. This method is often useful
in the context of financial mathematics, because it allows
calculating the price of any option as long as we know
to express it in the form of the expectation of a random
variable that we simulate. In this case, the Monte Carlo
method described later allows then writing quickly an al-
gorithm to evaluate this option and it is often very greedy
in time calculation. Effective procedure leads to a suffi-
cient precision at the cost of a limited calculation time.
To identify more precisely the efficiency notation and in-
dicate some techniques to increase it, we assume that we
want to estimate by Monte Carlo simulations, a parameter

e of the distribution of V (T,
−→
Y (t)). It can be a quantile of

this distribution (that is the case when it comes to appre-
ciating a V aR), of an expectation (for example if we try
to evaluate an option) or of any time of the distribution

V (T,
−→
Y (t)). On the other hand, Monte Carlo simulations,

in the standard form is not suitable for the evaluation of
american options. The reason is that the opportunity to
exercise at any time requires to calculate at each date and
each trajectory a conditional expectation, thus to remove
trajectories at each step. This is infeasible in practice,
even if it is limited to a finite number of possible exer-
cise dates. Thus, we use the techniques of improving the
adaptation of Monte Carlo method to make it suitable for
the evaluation of american options.

Keywords: Monte Carlo, Financial models, Preci-
sion, Computation time.

1 Introduction

In most applications, a compromise must be made be-
tween two antinomical objectives: precision and richness
of empirical information obtained (that is desired max-
imum), which increases with the number of simulations
carried out; the calculation time (that is desired mini-
mum). Consider the case of a simple Monte Carlo[1] that
integrates sophisticated techniques. Call M the number
of simulations that lead to an estimator ê of the param-
eter e. The standard error of ê, equal to the square root
of the variance of ê divided by M , is inversely propor-
tional to

√
M : the number of simulations should there-

fore be quadrupled if we want to double the precision of
ê (when this one is measured with the standard error).
However, several techniques[2] can be implemented to im-
prove the effectiveness of simulations. The Monte Carlo
simulations, in the standard form are not suitable for the
evaluation of american options[3]. The reason is that the
trajectories are separated and the induction reverse (back-
ward) of the value (i.e. the calculation of an updated ex-
pectation from T to 0), possible in the case of a tree, is

not realizable in the case of a beam trajectories dissoci-
ated. From then on, at a time ti < T , the simulation
cannot allow to simply determine the value of continu-
ation which must be compared to the intrinsic value in
order to decide to exercise the option or keep it. This is
why the two competing digital methods, trees and finite
difference methods, have been considered for a long time
the only ones capable of american option valuation. How-
ever, since the mid-90s, adaptations of the Monte Carlo
method also exist to make it suitable for the evaluation
of these options. The most used method was originally
proposed by Carrire [4](1996), then improved, developed
and popularized by Longstaff and Schwartz[5] (2001). It
couples least squares regression to a Monte Carlo simula-
tion.

2 Precision, computation time and
some techniques for variance re-
duction

Monte Carlo simulations are often very gourmand in com-
putation time. In fact, in most applications, a compro-
mise must be made between two antinomic objectives:
the precision and the richness of the empirical informa-
tions obtained (that is to maximum), which increase with
the number of operated simulations, the calculation time
(that is to minimum). An effective procedure leads to
sufficient precision at the cost of a limited computation
time. To delimite more precisely this notation of the ef-
fectiveness and indicate some techniques to increase it, we
assume that we want to estimate by Monte Carlo simu-

lations, a parameter e of the distribution of V (T,
−→
Y (t)).

It can be a quantile of this distribution, an expectation

or any moment the distribution of V (T,
−→
Y (t)). However,

several techniques to reduce the variance can be imple-
mented to improve the effectiveness of simulations. We
quote two techniques: antithetical variables and control
variables.

2.1 Antithetical variables

It is based on the principle of associating to each toss Ui

its opposite −Ui, but we must check that their average
equal to 0, and variance equal to 1. If this is not the case:
we subtract the average and we divide by the standard
deviation to standardize the sample.

2.2 Control variable

The e parameter to estimate is the expectation of V (T, S(T )).
Suppose that there is a V ′(T, S(T )) highly correlated with
V (T, S(T )) whose expectation e′ ≈ e (although it is dif-
ferent) and e is known. Instead of estimating e by using

the standard estimator ê = 1
M

∑M
i=1 V (T,

−→
Y ), we will es-

timate the difference δ = e − e′ by using simulation on
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V − V ′. Therefore, in its simplest form, the method of
the control variable is as follows:
. We calculate from N simulations
Yi:δ̂ = 1

M

∑M
i=1(V (T,

−→
Yi)− V ′(T,

−→
Yi))

. The estimator used for e will be ê1 = e′ + δ̂ (instead of
ê standard).

3 Examples

3.1 Example 1 : Evaluation of Path-Dependent
option

3.1.1 Statement

Suppose a Monte Carlo simulation is to evaluate a pur-
chase path-dependent option. The estimateion of the lat-
ter requires simulations ”tightened” throughout the tra-
jectory of the underlying, very time-consuming calcula-
tion. Suppose the European call option is evaluated by
Black-Scholes[6] . The price e′ of the European option is
therefore known and equal to the risk-neutral expectation
of payoffs
V ′(T, S(T )) updated: e′ = exp(−rT )E(V ′(t, S(t))). The
price e of path-dependent exotic option is unknown, slightly
more inferior than e′ and equal to the present value of the
risk-neutral expectation of the payoff induced. These pay-
off depend on the trajectory of S(t). Remember that the
simple method of Monte Carlo consists in simulating M
trajectories of N points to S(t), in associating with each
i simulated trajectory (Si

1, S
i
2, ..., S

i
N ) an updated payoff

ψ(Si
1, S

i
2, ..., S

i
N ) and in estimating the price of this option

by the average ê = 1
M

∑M
i=1 ψ(Si

1, S
i
2, ..., S

i
N ) The use of

the control variable (e′, V ′(t, S(t))) consists in estimating
the difference δ = e − e′ by using the empirical average.
δ̂ = 1

M

∑
i=1Mψ(Si

1, S
i
2, ..., S

i
N )−exp(−rT )E(V ′(T, S(T )))

and in using ê1 = e′+ δ̂ as an estimator of the price of the
exotic option.

3.1.2 Data of example

Figure 1: Data of Example 1

3.1.3 Generate the S(ti)

Figure 2: Generate the S(ti)

3.1.4 Calculation of payoff”Call” et ψ

Figure 3: payoff ”Call”(V (t;S(t))) and ψ
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3.1.5 Calculation of payoff”Put” et ψ

Figure 4: payoff ”Put”(V (t;S(t))) and ψ

3.1.6 the estimated premium for a European op-
tion and path dependent option

Figure 5: the estimated premium for a European option
and path-dependent

3.2 Example 2: Monte Carlo and Ameri-
can options

3.2.1 Description

The idea consists in estimating at each date tj to which
S takes the value Sj a continuation value Vc(tj ;Sj). This
value may be compared to the exercise value Ve(Sj) (or
intrinsic value) to decide whether to exercise or to con-
tinue. The value of an American option dated tj is de-
noted O(tj ;Sj). It is such that:

O (tj ;Sj) = Max[Vc(tj ;Sj)Ve(Sj)]
Vc(tj ;Sj) = exp(−r∆t)E[O(tj+1)S(tj+1)|ij ]
∆t = tj+1 − tj = T/N is the time step of the simulation,
E[.|Ij ] is the risk-neutral conditional expectation, devel-
oped with the information Ij in time tj . In the case of
an option whose price depends only on the final value of
a single underlying, we write:

Vc(tj ;Sj) = exp(−r∆t)E[O(tj+1)S(tj+1)|S(tj) = Sj ] As
this mode is selected, the option price can be determined
by getting back in time tn 0, in the spirit of the method
of standard trees.

3.2.2 Estimation of the continuation value by re-
gression (Carrire, Longstaff and Schwartz)

The determination of the conditional expectation, so the
continuation value can be based on a regression made with
q+ 1 regressors: 1, Φ1(Sn−1)........Φq(SN−1) :
E[O(tj+1, S(tj+1)|S(tj) = Sj ] = aj +

∑q
k=1 βk,jΦk(Sj)

The techniques differ in the number q of explanatory vari-
ables, the form of the functions φi chosen and the estima-
tion method.

Figure 6: The trajectories of the price of the underlying
and the terminal value of the put
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Figure 7: Americans put

Multiple linear regression is: Y (Payoff) = α0+α1X1(S(t =
2))+α2X2(S(t = 1))

Figure 8: Prevision of payoffs

Figure 9: Analysis of the exercise decision at t = 2

Table 10 below represents the payoffs of the option
in the hypothesis of an exercise possible only at the dates
2 and 3 and their corresponding present value at date 2 of
the 10 trajectories.

Figure 10: Payoffs of the option in the hypothesis of a
possible exercise

Multiple Linear Regression

Figure 11: Prevision of payoffs

Figure 12: Analysis of the exercise decision at t = 2

Table 13 below represents the payoffs of the option in
the hypothesis of an exercise possible only at the dates 2
and 3 and their corresponding present value at date 1 of
the 10 trajectories.
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Figure 13: Payoffs of the option in the hypothesis of a
possible exercise

4 Conclusion

The Monte Carlo method is unfortunately not very ef-
fective and we only use it if we do not know to explicit
option price in analytical form. Similarly, when we ask
ourselves complex questions about a strategy of portfolio
management (e.g., what is the law in a month of a hedged
portfolio every 10 days in delta neutral), the correct an-
swer is analytically inaccessible. Simulation methods are
then necessary.
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