

Organizing Software Architecture based Measurement Analysis

(OSAMA) Model

Osama M. Abu-Elnasr1, Mohammed A. Abo-Elsoud2 , Magdy Z. Rashad3, and Gamal M. Aly4

1,2,3 Computer Science Department, Mansoura University, College of Computers and Information Sciences, 60 El-Gomhorya st,

P.O. 35516, Mansoura,Egypt.

4 Computer Engineering Department, Ain Shams University Name, Faculty of Engineering,

 Cairo, Egypt

Abstract
Today’s software engineering organizations seek to develop and

improve the models that follow and are trying in various ways to

reach the highest levels of quality in order to achieve user

satisfaction.

Organizing Software Architecture based Measurement Analysis

(OSAMA) model provides a way that allows a great control on

management, development, review, prediction and estimation

issues. OSAMA combines a wide range of software quality

assurance (SQA) components and their related static analysis and

testing activities all of which are work together in a coherent

manner to provide cost-effective approach for achieving high

level of quality. It also introduces the mapping between OSAMA

and RUP (Rational Unified Process) model as iterative

development methodologies. An empirical analysis of NASA

CM1 software metrics has been done using statistical regression

analysis approach to justify the model. The results show that the

behavior of the faults and hence the software quality can be

predicted early and accurately based on static measurement

analysis.

Keywords: SQA, Static Analysis, Testing, Fault, OSAMA, RUP,

Regression Analysis.

1. Introduction

Nowadays, the principles of software quality is no longer

just a trail of magnificence or fantasy that the organization

seeks to achieve, but it has already becomes a matter of life

or death. In order to improve software quality, software

testing process responsible for detecting software defects

and assessing the readiness of the product to be released

should be enhanced and integrated early during the

development life cycle.

Software testing and static analysis techniques proved that

a great cooperation has been established, which is reflected

by the fact that their collaboration seem to provide cost-

effective approach for achieving high level of quality [1-3].

Testing as a dynamic technique still necessary at the

validation level, while static analysis techniques provide

complete coverage at the verification level. These static

analysis techniques that can be integrated early in the

development process as a way of re-evaluating the

resulting artifacts through the various stages of the system

development, assessing the quality level of these artifacts

and producing a decision to move towards the next phase

or reassign the artifacts to the development team for repair.

Software measurement analysis, fault prediction and failure

estimation techniques become rich area of research related

to verification activities that give us a complete control of

the behavior of the software and its related quality

attributes. By evaluating the attributes of the software, we

can know its status, characteristics and behavior, [4-6].

The fault proneness [7-10], defect density [11-13], and

failure radiation information [14] provide important

guidelines to testing practitioners to prioritize their testing

effort and assign verification and validation activities.

There have been great efforts in the attempt to the usage of

machine learning techniques in software quality assurance

issues, especially software fault prediction and estimation

for assessing the correctness and reliability factors of the

software quality. These attempts remain work as an

individual unit in isolation from the rest of the other

elements of SDLC (e.g. Management activities, software

testing activities, Static analysis activities, software metrics,

fault prediction and failure estimation activities). Research

in the area of integrating these elements were rarely

articulated to form a unified framework combines all

activities of software quality as an integrated system where

artificial intelligence techniques play an essential roles to

empower the software testing process for better quality,

[15-18].

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 70

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

mailto:mr_abuelnasr@yahoo.com
mailto:dr.gmaly@gmail.com

The proposed model extends the work done by Danel

Galin [1], Yue Jiang [10] and Radhika D. Amlani [19].

Danel Galin [1], has been introduced SQA system that

combines a wide range of SQA components and classified

them into six components; Pre-project components, Project

life cycle quality components, Infrastructure error

preventive and improvement components, Software quality

management components, Standardization, certification

and SQA assessment components, and Organizing for SQA

the human components. Yue Jiang [10], has been

addressed the effects of various software metrics along

SDLC (System Development Life Cycle) on the accuracy

of the fault prediction models. He established that the fault

prediction models built from a combination of requirement,

design, and code metrics provide better performance than

models built from any metrics subset QA framework that

integrates the best test and QA practices for handling

software quality improvement process. Radhika D. Amlani

[19] has been introduced information of the comparative

study of different SDLC models.

 The paper seeks to concentrate on finding the way to

answer the following research questions; it is possible to

incorporate the software quality assurance elements such

as; testing practices, static analysis techniques, software

metrics, fault prediction, and failure estimation activities

into a coherent framework to provide a more realistic

estimate of the software behavior. It is possible to

construct an organization of software measurement

analysis that relates the software artifacts and software

metrics can be generated from these artifacts along SDLC.

It is possible to address the relationship between faults and

failures, and their causes, their effects and their prediction

and estimation techniques.

The remainder of this paper is organized as follows;

Section 2 highlights the problems associated with current

area of research. Section 3 provides the full description of

the proposed framework. Section 4 introduces justification

of the proposed model. Section 5 introduces the conclusion

and the future work.

2. Problem Description

Nowadays, the efforts that have been done for studying the

software testing for improving software quality still suffer

from several drawbacks such as:

 The absence of a conceptual framework that provide a

clear distinction between software fault and failure,

their causes, effects and their prediction and

estimation models.

 The absence of a clear distinction between validation

and verification activities and their scope in handling

software quality.

 The absence of a complete software metrics

framework that reflects the behavior of the software

being developed or fails to discover the existence of

bugs in early stages.

 The need to complete those frameworks that integrate

the individual units of testing activities, static analysis

techniques and their related quality activities.

It becomes very important to develop a conceptual

framework that completes and integrates the previously

work in relating the correctness of the software and its

reliability. It will also articulate expert beliefs about the

dependencies between different metrics and their effects on

assessing the construction of a robust fault prediction and

failure estimation model.

3. Proposed Model

Organizing Software Architecture based Measurement

Analysis (OSAMA) model is built on the idea of

reorganizing the activities of the software development

process and their related practices in a way that allows a

great control on management, development, review,

prediction and estimation issues, and provides a clear view

of the integration between software quality assurance

components and their related testing activities to work as a

single unit within the model to develop better software

quality.

Section 3.1 introduces the model stages and its related

activities. Section 3.2 introduces the basic sectors of the

model. Section 3.3 introduces a closer view in the

development stage and its related quality assurance

components. Finally, Section 3.4 introduces mapping

between OSAMA and RUP model.

3.1 OSAMA Stages

OSAMA comprised into three distinct interleaved stages;

the Pre-Development, Development and Post-Development

stage. These three stages have a number of internal phases.

3.1.1 Software Pre-Development stage assure that the

project commitments have been clearly defined

considering a set of activities related to the project vision,

resources required, the schedule and budget, project risk

handling, business requirement and various project

management plans through initiation and the planning

phases.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 71

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

3.1.2 Software development stage decomposed into six

distinct, often overlapped / interleaved phases; requirement,

design (High Level Design and Low Level Design) ,code

and unit test, Pre-Testing, Test Execution (Higher Order

Test) and Post-testing phases. For each phase in the

development stage the possible created artifacts have been

introduced to be able to monitor, review, predict and

measure the progress of work done through these phases

and assuring the quality of the produced release.

3.1.3 Software Post-Development stage concerned with

managing the implementation of the produced release in

the operational environment through deployment and

operation phase.

3.2 OSAMA Sectors

OSAMA is built as spiral form and divided into four

sectors; Management, Development, Review and

Prediction and / or Estimation sector. Fig.1 shows the basic

sectors of OSAMA model.
Fig. 1 Basic sectors of OSAMA Model.

3.2.1 Management sector involves the development of

project management plans (PMP) that provide a great

control of the development activities and the introduction

of managerial support actions that mainly prevent or

minimize schedule and budget failures, continually

changes in user requirements and identify and assess the

risks resulting from the change one of the elements

responsible for the software production through the various

stages of the system.

3.2.2 Development sector includes a set of processes that

concerned with developing the various deliverables of the

release / product and managing their delivery to review

sector for auditing and reviewing its quality and be ready

for redeveloping or modifying its construction until it

reaches the desired level of quality.

3.2.3 Review / Measurement Analysis sector includes a

range of verification activities such as walkthrough, design

review, peer review and inspection. It also locates the

associated metrics for each software artifact that reflect the

behav

ior of

the

softw

are

create

d

through the development stage.

3.2.4 Prediction/ Estimation sector includes the

construction of a range of models designed to empower the

software testing process for improving the quality of the

product and so by focusing on reducing the effort required

to determine the presence or eliminate errors in product or

assess the readiness of the product for use.

During the prediction part, fault prediction models that

predict either fault-prone modules or fault content of the

software modules based on collected metrics has been

established. The failure estimation part of this sector

attempts to estimate the current level of reliability of the

software while in execution and determines the readiness

of the system to release. Thus, the number of failures

becomes the goal of estimation instead of faults. Fig.2

shows the classification of the fault prediction and

estimation models and their implementation techniques.

Fig. 2 Fault prediction and failure estimation models and their

implementation techniques.

3.3 A closer view in the development stage

The core activities of the testing process have been

incorporated as a sequence of practices with other

development activities along/ through various phases of the

development stage. Fig. 3 relates each development phase

with its related software metrics and relates the test

activities and QA practices along development stage.

Case-based Reasoning

Machine Learning

Swarm Approach

Data Mining

Fault-Prone Models

Defect Density

Regression Analysis

Curve-Fitting

Capture-Recapture

Fault-content Models

Software Reliability Growth model (GRGM)

Architecture based Reliability Assessment Method

Failure Estimation Models

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 72

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 3 Basic activities of the development stage

3.4 OSAMA via RUP Model

OSAMA built upon RUP (Rational Unified Process)

methodology [19] that provides an iterative way for

companies to envision create software programs. Table.1

illustrates the mapping between OSAMA and RUP model.

Table. 1 Mapping between OSAMA and RUP model

4. A Model Justification

This section justifies the idea of using the measurement

analysis techniques as a basis of empowering testing

process. These preliminary results were based on the

regression analysis method to address the effects of various

metrics derived from possible artifacts produced before

executing the higher order testing. It also establishes the

relationships between various software metrics as

independent parameters and the probability of the module

containing faults as an independent parameter.

4.1 Data Collection

The experiments were done on a data set CM1 from the

NASA Metrics Data Program (MDP) repository [20],

which is comprised of 38 features of C code for a NASA

spacecraft instrument system. Table.2 illustrates the

description of NASA CM1 MDP.

Features RUP OSAMA

Specification of all

requirements at

beginning

Yes Not all, and

Frequently

changed Customer Involvement High, after

each iteration

High, after each

iteration
Risk Involvement Low Low , Estimated

Phase overlapping No Yes

Framework Type Iterative Iterative and

Incremental

Testing During

construction

Integrated

Documentation Limited Yes, but not much

Time Frame Long Moderate

Availability of working

Software

At the end of

the life cycle

At the end of

every iteration

Project Scale Large Low to Medium

Primary Objective High Assurance High Assurance ,

Rapid

Development

Release Cycle Big band In Phases

Stages Inception,

Elaboration,

Construction,

Transition

Pre-Development,

Development,

Post-Development

 Table. 2 Details of the CM1 NASA MDP

Project Description Attributes Cases %Defective

cases

CM1 NASA

spacecraft

instrument

38 344 10

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 73

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

4.2 Preliminary Results

Table. 3 illustrates the results of applying statistical

Regression Analysis approach for establishing the

predictive equations for the defective profile based on the

contribution of the independent metrics (Loc Comments,

Halstead Effort, Design Density, Num Unique Operators,

Loc Code And Comment).

As shown from table. 3 above, the first predictor metric

(Loc Comments) contributes by 9.5 % in the interpretation

of the total variance in the dependent variable, and this

indicates that its effect size

is medium. The predictive

equation Eq. (1) can be formulated to predict the defective

class by knowing the profile of Loc Comments as follows:

Profile of Defects = 1.066 + (0.308 × Loc Comments) (1)

The second predictor metrics (Loc Comments and

Halstead Effort) contribute by 12 % in the interpretation of

the total variance in the dependent variable, and this

indicates that their effect size

is medium. The predictive

equation Eq. (2) can be formulated to predict the defective

class by knowing the profile of Loc Comments and

Halstead Effort as follows:

Profile of Defects = 1.060 + (0.455 × Loc Comments - 0.216 ×

Halstead Effort) (2)

The third predictor metrics (Loc Comments, Halstead

Effort and Design Density) contribute by 13.7 % in the

interpretation of the total variance in the dependent

variable, and this indicates that its effect size

is medium.

The predictive equation Eq. (3) can be formulated to

predict the defective class by knowing the profile of Loc

Comments, Halstead Effort and Design Density as follows:

Profile of Defects = 0.944 + (0.469 × Loc Comments - 0.219 ×

Halstead Effort + 0.133 × Design Density) (3)

The fourth predictor metrics (Loc Comments, Halstead

Effort, Design Density and Num Unique Operators)

contribute by 15.2 % in the interpretation of the total

variance in the dependent variable, and this indicates that

its effect size

is high. The predictive equation Eq. (4) can

be formulated to predict the defective class by knowing the

profile of Loc Comments, Halstead Effort, Design Density

and Num Unique Operators as follows:

Profile of Defects = 0.840 + (0.396 x Loc Comments - 0.305 x

Halstead Effort + 0.133 x Design Density + 0.190 x Num Unique

Operators) (4)

The fifth predictor metrics (Loc Comments, Halstead

Effort, Design Density, Num Unique Operators, and Loc

Code And Comment) contribute by 16.4 % in the

interpretation of the total variance in the dependent

variable, and this indicates that its effect size

is high. The

predictive equation Eq. (5) can be formulated to predict

the defective class by knowing the profile of Loc

Comments, Halstead Effort, Design Density and Num

Unique Operators as follows:

Profile of Defects = 0.835 + (0.393 x Loc Comments - 0.238 x

Halstead Effort + 0.123 x Design Density + 0.244 x Num Unique

Operators - 0.156 x Loc Code And Comment) (5)

P
red

icto
rs

Metrics

Std.

Error

)S. R(

Beta

R2

Const.

F
irst

P
red

icto
r

Loc

Comments
0.001 0.308 0.095 1.066

S
eco

n
d

P
red

icto
r

Loc

Comments

0.001
0.455

0.120 1.060
Halstead

Effort

0.000
-0.216

T
h

ird
 P

red
icto

r

Loc

Comments

0.001
0.469

0.137 0.944
Halstead

Effort

0.000
-0.219

Design

Density

0.061
0.133

F
o

u
rth

 P
red

icto
r

Loc

Comments

0.001
0.396

0.152 0.840

Halstead

Effort

0.000
-0.305

Design

Density

0.061
0.133

Num

Unique

Operators

0.003

0.190

F
ifth

 P
red

icto
r

Loc

Comments

0.001
0.393

0.164 0.835

Halstead

Effort

0.000
-0.238

Design

Density

0.061
0.123

Num

Unique

Operators

0.003

0.244

Loc Code

And

Comment

0.002

-0.156

Table. 3 Regression Analysis for establishing the relationship between

the the independent metrics and the defective profile.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 74

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Table. 4 illustrates the results of applying statistical

Regression Analysis approach for addressing the effect of

the independent metrics (Loc Comments, Halstead Effort,

Design Density, Num Unique Operators, Loc Code And

Comment) on the defective profile. It finds that the ability

to predict the profile of the defective class by knowing the

profile of the fifth variables is statistically significant at the

level (0.001).

Table 4 The results of ANOVA for significance of regression coefficients

4. Conclusions

This paper investigates the steps towards constructing a

model that complements the existing models of software

testing and quality assurance. It provides an integration

model that relates the various activities of the testing

process, static analysis activities, fault and failure

prediction and estimation that fulfill the quality

management issues related to development process. RUP

model introduced, checked against OSAMA model, in

such way that the mapping between the basic cycles of

their structures and their activities has been established.

A series of tests were performed to experimentally justify

our model. During the course of our experiments we

endeavored to identify the significance of regression

coefficients on the defective profile. The results showed

that the using of measurement analysis as a verification

technique provides a better chance to empower the

software testing process and hence the software quality.

We aim to touch in our future studies the implementation

of prediction and estimation sector of OSAMA using

various intelligent approaches and verify their quality on

real projects to provide a more realistic estimate of

software fault prediction and its reliability.

5. References

[1] Daniel Galin, "Software Quality Assurance from theory to

implementation", Press: Pearson, Addison-Wesley, 2004.

[2] P. Ranjeet Kumar, R. Ramesh, T.Venkat Narayana Rao,

Shireesha Dara, "Software Quality Prediction: A Review and

Current Trends", International Journal of Engineering And

Computer Science (IJECS), Vol. 2, No. 4, 2013, pp. 1147-

1155.

[3] Denis Kozlov, Jussi Koskinen and Markku Sakkinen," Fault-

Proneness of Open Source Software: Exploring its Relations

to Internal Software Quality and Maintenance Process", the

Open Software Engineering Journal, 2013, 7, pp. 1-23.

[4] Hilda B. Klasky, "A study of Software Mertics", M.S. thesis,

Department of Electrical and Computer Engineering, Rutgers

University, New Brunswick, New Jersey, 2003.

[5] Ayman Madi, Oussama Kassem Zein and Seifedine Kadry,

"On the Improvement of Cyclomatic Complexity Metric",

International Journal of Software Engineering and Its

Applications, Vol. 7, No. 2, 2013, pp. 67-82.

[6] Saddam H. Ahmed, Taysir Hassan A. Soliman , and Adel A.

Sewisy, " A Hybrid Metrics Suite for Evaluating Object-

Oriented Design", International Journal of Software

Engineering, Vol. 6, No. 1, 2013, pp. 65-82.

[7] Kaur, A.; Sandhu, P.S.; Bra, A.S., "Early Software Fault

Prediction Using Real Time Defect Data", in 2nd International

Conference on Machine Vision (ICMV), 2009, pp. 242 – 245.

[8] Kaur et al., " A Hybrid Metrics Suite for Evaluating Object-

Oriented Design", International Journal of Software and Web

Sciences (IJSWS), Vol. 3, No. 1, 2012, pp. 54-57.

[9] Rachna, R.; Navneet S.; Parneet, K.; Gurdev, S., "Early

Prediction of Fault Prone Modules using Clustering Based

vs. Neural Network Approach in Software Systems",

International Journal of Electronics & Communication

Technology (IJECT), Vol. 3, No. 4, 2011, pp. 47-50.

[10] Yue Jiang, "Incremental Development and Cost-based

Evaluation of Software Fault Prediction Models", Ph.D.

thesis, Department of Computer Science and Electrical

Engineering, West Virginia University, Morgantown, West

Virginia, 2009.

[11] Nirvikar Katiyar, Raghuraj Singh, "Prediction of Number of

Faults And Time To Remove Errors", International Journal

of Computational Engineering Research, Vol. 3, No. 4, 2013,

pp. 57-65.

P
red

icto
rs

Model

Sum of

Square

Mean

Square

F Sig.

F
irst

P
red

icto
r

Regression 3.501 3.501
35.882

0.001

Residual 33.371 0.098

Total 36.872

S
eco

n
d

P
red

icto
r

Regression 4.421 2.210
23.226

0.001

Residual 32.451 0.095

Total 36.872

T
h

ird

P
red

icto
r

Regression 5.064 1.688
18.043

0.001

Residual 31.808 0.094

Total 36.872

F
o

u
rth

P
red

icto
r

Regression 5.617 1.404
15.231

0.001

Residual 31.255 0.092

Total 36.872

 F
ifth

P
red

icto
r

Regression 6.062 1.212
13.302

0.001

Residual 30.810 0.091

Total 36.872

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 75

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

[12] S.Kim, T.Zimmermann, E.J.W.Jr., and A.Zeller, "Predicting

faults from cached history", in 29th International Conference

on Software Engineering (ICSE), 2007, pp. 489-498.

[13] T.J.Ostrand, E.J.Weyuker, and R.M.Bell, "Predicting the

location and number of faults in large software system",

IEEE Transactions on Software Engineering, Vol. 31, No. 4,

2005, pp. 340-355.

[14] Anshu Basal, and Sudhir Pundir, " A Review on approaches

and models proposed for software reliability Testing",

International Journal of Computer & Communication

Technology (IJCCT), Vol. 4, No. 2, 2013, pp. 7-9.

[15] Heena Kapila, Satwinder singh, "Analysis of CK Metrics to

predict Software Fault-Proneness using Bayesian Inference",

International Journal of Computer Applications (IJCA), Vol.

74, No. 2, 2013, pp. 1-4.

[16] Chayanika Sharma, Sangeeta Sabharwal, Ritu Sibal, " A

Survey on Software Testing Techniques using Genetic

Algorithm ", International Journal of Computer Science

Issues (IJCSI), Vol. 10, No. 1, 2013, pp. 381-393.

[17] Hassan Najadat and Izzat Alsmadi, "Enhanced Rule

Based Detection for Software Fault Prone Modules",

International Journal of Software Engineering and its

Applications, Vol. 6, No. 1, 2012, pp. 75-85.

[18] Rita G. Al gargoor, and , Nada N. Saleem, "Software

Reliability Prediction Using Artificial Techniques",

International Journal of Computer Science Issues (IJCSI),

Vol. 10, No. 2, 2013, pp. 274-281.

[19] Radhika D. Amlani, "Comparison of different SDLC

Models", International Journal of Computer Applications &

Information Technology, Vol. 2, No. 1, 2013, pp. 1-8.

[20] http://nasa-softwaredefectdatasets.wikispaces.com/, Last

Accessed March 2014.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 76

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

http://nasa-softwaredefectdatasets.wikispaces.com/

