

Comparing Priority and Round Robin Scheduling
Algorithms

Alban Allkoci1, Elona Dhima2, Igli Tafa3

1Information Engineering Department
Polytechnic University of Tirana

Faculty of Information and Technology

1Information Engineering Department
Polytechnic University of Tirana

Faculty of Information and Technology

1Information Engineering Department
Polytechnic University of Tirana

Faculty of Information and Technology

 Abstract

Computer usage has come increasing with time. Nowadays

everybody needs to work with lots of programs at the same

time and unfortunately this leads to slowing down the work.

So software developers have to find a way how deal with

workflows. At first, when I chose this theme, I was interested

in how scheduling was done and with work I came to like and

understand these algorithms. I decided to compare these two

specific ones because they are more heard. In this article we

describe scheduling algorithms in multitasking environments

Keywords: Scheduling, algorithm, multitasking

environments

1. Introduction

Nowadays, most modern systems require to work with

multitasking. This means that there will always be

problems when having to process more than one

process at a time. That’s why it is used scheduling and

Scheduling algorithms. It gives threads, processes the

access to the resources they need. The scheduler

chooses the next one to be admitted and run. There are

tree types of schedulers:[1]

A)Long-Term Scheduling that decides which jobs

to be admitted in the queue, waiting to execute

when their turn comes.

B)Medium-Term Scheduling which removes

processes from secondary memory. This may swap

processes that have not been used or active for a

long time or that have low priority.

C)Short-Term Scheduling decides which of the

processes that are ready to execute should be run.

So these decisions are made more frequently time

after time.

Scheduling algorithms are the ones to decide which

process waiting can access the resource

they are requesting and which not. This depends on the

type of the algorithm and the way they work. I have

studied only two of them, priority scheduling and

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 175

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

round robin. For those who have no idea about the way

this algorithms work, I’ll do a little explaining for each

of the two.

I. Priority Scheduling [8]

This algorithm gives each process a priority well

defined. This way every process has its own priority on

which will depend if it is going to be run or wait. The

first one to run is going to be the process with highest

priority, while others will wait for their turn. This

algorithm can be:

- Pre-emptive when the priority of the newly

arrived process is compared to the process

running and if its priority is higher it will

occupy the CPU.

- Non-preemptive when the recently arrived

process is positioned at the head of the queue.

Anyway, the drawback of this algorithm is indefinite

blocking for lower priority processes which seem to

never have the chance to be run. This is solved with a

technique called aging which gradually increases the

priority of the processes that have been waiting for a

long time.

II. Round Robin Scheduling [6]

This is a priority free algorithm. Processes are given an

equal time slice when they can be executed. The

execution is done on a circular order, one after another.

So each job has a quantum, time when it can be run. If

this quantum is not enough for the process to finish its

execution, it is stopped and the next process will be run.

After a full round is completed, will come its turn again

and so on. If a process is finished, it will go off the list

and if another one comes, it will be positioned at the

end of the list to wait its turn. This algorithm doesn’t

have starvation, but it can be often too long. All the

problem is the time quantum given to each process. It

should not be too large nor too short or the algorithm

might degrade to FCFS(First Come First Served) or it

just might take too much time to finish.

We are going to make some really easy and

understandable testing to compare 3 or more processes

execution time.

2. Related works

Since scheduling algorithms are very important for a

good job, so it is normal that there have been earlier

works about them. Since there ate not only these three

scheduling algorithms, there ate lots of papers that deal

with problems like the one I’m dealing. I will mention

only few of them, the ones which in my opinion are

more interesting.

One by Dan McNulty, Lena Olson and Markus

Pelaquin compares these algorithms for

multiprocessors. They have chosen to compare three

other algorithms, Earliest-Deadline First, P-Fair

algorithm and LLREF, which is an empiric

improvement of the first two. [12]

Another one that attracted my attention was a paper

from Amity University in India. It is about a mixture of

Priority and Round Robin Algorithms in order to

meliorate the drawbacks of one another. [7]

One more I read was from M.Kaladevi, M.Phil,

S.Sathiyabama which deals with real time tasks. So it is

important not only to finish the job as soon as possible,

but the most important part is finishing it within the

deadline.

 One very interesting paper is one about lottery

algorithm. It was written by O.Moonian and G.Coulson.

The authors try to work with a lottery algorithm which

isn’t so propabilistic but is more for a high response

time solution.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 176

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

3. Theory of experiment

In this paragraph will be described the work I have

done with the scheduling algorithms. I have

experimented with two very simple algorithms

respectively for priority and round robin scheduling.

3.1Necessary conditions for scheduling

algorithms

In order to experiment with the algorithms, I had to do

several tests. As each one of them has its own

specifications, it is normal that the conditions they

require are different. So for Priority Scheduling I tried

to give as input three different processes and with their

respective priorities. I want to make clear that the

processes I have used are just random names and

numbers that crossed my mind and not real ones.

For Round Robin algorithm were used three processes

and the time they need be processed.

3.1.1 The environment and programming

languages

The operating system where the experiment was held is

Windows7 OS .

The programming language is a very important choice.

I chose C language for pure personal preference. I

might have chosen Java for programming but for the

moment C seemed a more appropriate one.

4. Experimental phase

In this section I’ll present a quick view of the

experiments I have done. Everything consists in some

tests I have realized with each of the algorithms. All the

experiments were performed in the same computer,

under the same conditions, so that nothing could affect

the results. In order to get a more reliable result I have

done different experiments with each of the algorithms,

the results of which I will show summarized in a table

below.

4.1 Priority Algorithm

The priority algorithm first, takes the names of the

processes and their respective priorities. After that, it

compares the priorities with each other and catches the

process with the highest priority and executes it, while

the others wait. The waiting time increases with every

process executing. So at the end the waiting time for the

process with the lowest priority will be the larger one.

When all the calculations will be done, will be printed

the waiting time, turn around time, the average turn

around time and the average waiting time.

Below it is a simplified diagram of this algorithm.

Figure 1: Priority Algorithm scheme

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 177

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Figure 2: Screenshot of Priority Algorithm

4.2 Round Robin Algorithm

The way this algorithm works is nearly the same as the

priority algorithm. First, it takes the name of the

processes and their processing times. After that for

every 3 seconds all processes will be executed until

they have finished. For every process will be calculated

the execution time and the time they have to wait to

finish executing. When is all over, it will be calculated

the total waiting and the average waiting time. All

this is going to be printed. I have made a simple (as

simplified as possible) diagram of this algorithm in

order to be understood better.

Figure 3: Round Robin Algorithm scheme

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 178

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Figure 4: Screenshot of Round Robin Algorithm

4.3 Comparing the algorithms

In order to make real comparisons between algorithms

I have made several experiments with each of them. To

be more precise I have put the results in a table so that

they can be understood better.

Since these two algorithms are very different from each

other the only way I have thought is to give processes

of both algorithms the same execution time. But

considering that one has to do with priority and the

other no, I did some calculations of my own. So I chose

the

executing time and the priorities so that the turn

processes execute one after the other is nearly the same

for both algorithms. I want to make clear once more

that the numbers I have chosen and the process

priorities are totally random numbers. I have chosen to

experiment with tree processes in order not to

complicate the things.

All this are shown in the table above.
Table1: Algorithm Results

5. Conclusions

As you can see from this table, the average waiting time

for Round Robin Algorithm is considerably larger than

for Priority Algorithm. This means that if we use Round

Robin, the processes will need more time to finish

executing compared with Priority. For the examples I

have chosen, can be noticed that the average time for

the first algorithm is nearly twice the time of the other

algorithm. It seems like not a big deal, but in fact it is

since there are only three processes. Imagine what

would happen if there were much more.

So all in all I can say fully convinced that if I hade to

choose between these algorithms, based on the

experiments I did, I would definitely use the Priority

Algorithm with its pros and cons.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 179

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

6. Future work

I came to like this work, so I might think not to let

everything like this.

I might do a comparison of other scheduling

algorithms, and maybe, who knows in the distant future

I might think of a brand new algorithm with no

drawbacks for scheduling or an algorithm where

processes are treated like equal to each other.

6. References

[1]http://en.wikipedia.org/wiki/Scheduling_(computing)

[2]http://web.cs.wpi.edu/~cs3013/c07/lectures/Section05-

Scheduling.pdf

[3]http://www.moreprocess.com/process-2/priority-lottery-

fair-share-scheduling-algorithm

[4]http://lass.cs.umass.edu/~shenoy/courses/fall10/lectures/Le

c06.pdf

[5]http://inst.eecs.berkeley.edu/~cs162/sp11/sections/cs162-

sp11-section5-answers.pdf

[6]http://siber.cankaya.edu.tr/OperatingSystems/ceng328/nod

e125.html

[7]http://ijiet.com/wp-content/uploads/2012/11/1.pdf

[8]http://siber.cankaya.edu.tr/OperatingSystems/ceng328/nod

e124.html

[9]http://www.personal.kent.edu/~rmuhamma/OpSystems/My

os/prioritySchedule.htm

[10]http://compfuter.wordpress.com/category/process-

scheduling-c-programs/

[11]http://electrofriends.com/source-codes/software-

programs/c/c-program-for-priority-cpu-scheduling-algorithm/

[12]http://pages.cs.wisc.edu/~markus/750/smp_scheduling.pd

f

7. Appendix

7.1 Priority Algorithm [11]

#include<stdio.h>
int main()
 {
 int process[30],priority[30],btime[30],temp,max,waitime[30],
 totalavarage[30],sum=0,sum2=0,i,j,n;
 float avgwait,avgturn;

 waitime[0]=0;
 printf("Enter the number of processes to execute=");
 scanf("%d",&n);
 printf("Enter the processing time for each process");
 for(i=0;i<n;i++)
 {
 process[i]=i+1;
 printf("\np%d=",i+1);
 scanf("%d",&btime[i]);
 printf("\nPriority of p%d=",i+1);
 scanf("%d",&priority[i]);
}

 for(i=0;i<n;i++)
 { max=i;
 for(j=i+1;j<n;j++)
 {
 if(priority[j]<priority[max])
 max=j;
 }
 temp=priority[max];
 priority[max]=priority[i];
 priority[i]=temp;
 temp=btime[max];
 btime[max]=btime[i];
 btime[i]=temp;
 temp=process[max];
 process[max]=process[i];
 process[i]=temp;
 }

 for(i=0;i<n;i++)
 { waitime[i+1]=btime[i]+waitime[i];
 totalavarage[i]=btime[i]+waitime[i];
 sum+=totalavarage[i];
 sum2+=waitime[i];
 }
 avgturn=(float)sum/n;
 avgwait=(float)sum2/n;

 for(i=0;i<n;i++)
 {
 printf("\n Waiting time for process
p[%d]=%d",process[i],waitime[i]);
 printf("\t Turn around time for process
p[%d]=%d",process[i],totalavarage[i]);
 }
 printf("\n\n Average turn around time for all processes=
%f",avgturn);
 printf("\n\n Average waiting time for all processes= %f",avgwait);
 return 1;
}

7.2 Round Robin Algorithm[10]

#include<stdio.h>
#include<conio.h>
#include<process.h>
#include<string.h>
int main(){
 char process[10][10];
int exetime[10],waitime[10], timer=3,count,ptime[10], remainingtime
,i,j,totwaitime=0, t,n=3,found=0,m;
 float avgwaitime;
 for(i=0;i<n;i++){
 printf("Enter the %d process name : ",i+1);
 scanf("%s",&process[i]);
 printf("Enter the processing time : ");
 scanf("%d",&ptime[i]);

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 180

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

 }
 m=n;
 waitime[0]=0;
 i=0;
 do{
 if(ptime[i]>timer)
 {remainingtime=ptime[i]-timer;
 strcpy(process[n],process[i]);
 ptime[n]=remainingtime;
 exetime[i]=timer;
 n++; }
 else{
 exetime[i]=ptime[i];
 }
 i++;
 waitime[i]=waitime[i-1]+exetime[i-1];
 }while(i<n);

count=0;
for(i=0;i<m;i++)
 {
 for(j=i+1;j<=n;j++)
 {
if(strcmp(process[i],process[j])==0)
 {
 count++;
 found=j;
 }
}
if(found!=0)
 {
waitime[i]=waitime[found]-(count*timer);
 count=0;
 found=0;
 }
}
for(i=0;i<m;i++)
 {
 totwaitime+=waitime[i];
 }
avgwaitime=(float)totwaitime/m;
for(i=0;i<m;i++)
 {
 printf("\n%s\t%d\t%d",process[i],ptime[i],waitime[i]);
 }
printf("\n\nTotal waiting time %d\n\n",totwaitime);
printf("Avarage waiting time %f",avgwaitime);
getchar();
}

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 181

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

