

Dynamic Round Robin with Controlled Preemption (DRRCP)Dynamic Round Robin with Controlled Preemption (DRRCP)Dynamic Round Robin with Controlled Preemption (DRRCP)Dynamic Round Robin with Controlled Preemption (DRRCP)

Ashiru Simon1, Saleh Abdullahi2 and Sahalu Junaidu3

 1,2,3 Mathematics Department, Ahmadu Bello University (ABU), Zaria, Nigeria

Abstract

Round Robin (RR) CPU scheduling algorithm has been designed
chiefly for time sharing systems. The RR algorithm has proven to
be more useful in multiprogramming environment in which time
slice or quantum is given to processes in the ready queue. An
ideal classical RR uses a static quantum time which is gotten
from the average of processes in the ready queue. One of the
major challenges in classical RR is poor timing in performing
context switching. This will eventually lead to unnecessary
context switching. Using Dynamic Round Robin with Controlled
Preemption (DRRCP), variable quantum time is used to
eliminate this shortcoming. In an attempt to eliminate
unnecessary context switching, the average waiting time, average
turnaround time and number of context switching were as well
improved. All dataset used for this analysis are generated using
normal distribution function.
Keywords: DRRCP, Quantum time (TQ), Waiting time,
Turnaround time, Round Robin, Context switching.

1. Introduction

In computing system many processes are created. These
processes are in need of one or more system resource(s)
that are highly limited. It implies that processes will have
to compete for these available resources. Since that is the
case, how are these resources allocated to these processes?
Which process should wait for a resource and for how
long? Which process should be assign a resource (CPU)?
These questions are answered by a technique used by the
operating system called scheduling. The basic CPU
scheduling algorithms are: First come First Serve (FCFS),
Shortest Job First (SJF), Priority Scheduling and Round
Robin (RR).

The idea of Round Robin (RR), one of the basic CPU
scheduling algorithms is to allocate equal time slice
(quantum time) in a circular manner to processes in the
ready queue. Peradventure the quantum time is greater or
equal to the burst time of the process it will run to
completion without being preempted. Otherwise, the
process must be preempted after it must have exhausted its
quantum time and then return to the tail of the ready queue
to take turn. The beauty of RR is fairness in assigning CPU

to all the processes in the ready queue because equal time
slice is given to each. Its greatest challenge is what should
be the quantum time. Having a small quantum time will
increase the number of context switching thereby reducing
the general performance of the system. A larger one will
practically degrade the system to First Come First Serve
(FCFS) scheduling.
Just like any other CPU scheduling algorithm, RR has its
peculiar features that make it unique. Each time RR
algorithm is evaluated against SJF and FCFS through any
of the evaluation techniques; it average waiting time and
average turnaround time is always higher. But it has gained
more popularity and application in time sharing systems,
and as such the most widely use CPU scheduling
algorithm. This is to say that apart from average waiting
time and average turnaround time, there are other factors
that were considered for it acceptance. Among these
factors are: multiprogramming, response time and so on.

1. 1. Preliminaries

A process is an instance of a program in execution [5].
You might think of it as the collection of data structures
that fully describes how far the execution of the program
has progressed [5]. Processes are like human beings: they
are generated, they have a more or less significant life, they
optionally generate one or more child processes, and
eventually they die. A program by itself is not a process; a
program is a passive entity, such as a file containing a list
of instructions stored on disk, whereas a process is an
active entity, with a program counter specifying the next
instruction and set of associated resources. A program
becomes a process when an executable file is loaded into
memory [10]. It is these processes that are schedule for
resources (CPU), and these processes can be in the
following states:

• New: when a new process is just created.
• Running: the process is being executed.
• Waiting: the process is waiting for some event to

occur such as I/O event and so on.
• Ready: the process is ready to be assign a

processor.
• Terminated: the process has finished execution.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 109

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Fig 1 shows that when a new process is created it is being
admitted in to the ready queue. The scheduler will dispatch
the process in the ready queue for the processor. At this
point, the process is said to be in a running state. The
running process upon completion will exit thereby
changing its state to terminated. Sometimes, running
process may be preempted caused by an interrupt. This
will force the running process to change its state to ready
state which will be schedule later. Also, a running process
may change its state to waiting state because it is waiting
for an I/O event to occur. Similarly, the same process in its
waiting state may return to ready state upon completion of
I/O event. It is important to note that only one process can
be assign a CPU at a time. However, many processes may
be waiting and ready at the same time.

3. Scheduling criteria

• CPU utilization: The idea is to keep the CPU as busy as
possible. This criterion should be maximized. The CPU
should be busy 100%.

• Throughput: This is the number of tasks that can be
completed per unit amount of time. If the CPU is highly
utilized, then the number of tasks that can be completed
within a time unit will be high. Just as CPU utilization,
throughput should be maximized.

• Turnaround Time: This is concern on how long it takes
to finish executing a process. The time a process will
take from when it is submitted for execution to when it
finishes execution. Turnaround time is the sum of the
periods spent waiting to get into memory, waiting in the
ready queue, executing on the CPU and doing I/O [10].
The turnaround time should be minimized.

• Waiting Time: This is the sum of the time spend waiting
in the ready queue. As for waiting time, the goal is to
minimize it.

• Response Time: In an interactive system, turnaround
time may not be the best criterion. Often, a process may
produce some output fairly early and continue
computing new results while previous results are being
output to the user. Response time is the time from the
submission of a request to when the first response is
produced. It is the time taking to starts responding. This
also should be minimized.

• Number of context switching: Context switching (CS) is
the act of switching the CPU to another process while
performing a state save of the current process and a state
restore of a different process. Even though switching is
pure overhead because the system does no useful work
while switching, it is needed in time sharing systems
[10]. So, an optimal switching is required for high
system performance.

2. Motivation

The major challenge of RR algorithm is what should be the
quantum time (QT). Having a small quantum time will
increase the number of context switching thereby reducing
the general performance of the system. A larger one will
practically degrade the system to First Come First Serve
(FCFS) scheduling. The classical RR uses the average of
processes in the ready queue as its QT, and it is static. But
this will always create even greater problems of
unnecessary context switching. This will lead to poor
average waiting time, poor average turnaround time and
poor number of context switch. If a process using the CPU
is preempted with a little left over time, preempting the
process should be considered unnecessary. The
unnecessary switching that was done shall lead to poor
average waiting time and poor average turnaround time. In
this kind of scenario, if some of the preempted processes
with little left over time are allowed to run to completion
without preemption, it will produce a better result.

4. Related Works

In recent past years, various researches have been
conducted to improve on the setbacks on the classical
Round Robin CPU scheduling algorithm. Among these are:
Variable Quantum Time (VQT) algorithm which is based
on averaging technique to allocated a variable quantum
time (QT) to each process in the ready queue[13]. In Even
Odd Round Robin (EORR), there are two QT (QT1 and
QT2). QT1 is the average of processes that are in odd
position in the ready queue, while QT2 is the average of
processes in even position in the ready queue. QT1 is
compared to QT2 and the greatest is use as the QT in that
round [6]. Dynamic Quantum Time using Mean Average

Fig 1: Process state diagram

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 110

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

uses the average of processes in the ready queue in each
cycle as its QT [1]. It implies that each cycle will have a
different QT. In Average Mid Max Round Robin
(AMMRR), quantum time is the mean of the summation of
the average and the maximum burst time of the processes
in the ready queue in each cycle. As for Ascending
Quantum Minimum and Maximum Round Robin
(AQMMRR), QT is calculated by multiplying the
summation of the minimum and maximum CPU burst by
80 percent [2]. Multi Dynamic Quantum time Round
Robin (MDQTRR) uses two different QT in single cycle.
Up to the median process, the quantum time used is gotten
using the median quartile formula MQT (Median Quantum
Time) while for the succeeding processes, the Upper
Quartile formula is used to calculate the quantum time,
UQT (Upper Quartile Quantum time) [4].

5. Proposed Approach

The main concern of DRRCP technique is the control
applied on preemption to processes that are using the CPU
in RR scheduling. As much as possible, DRRCP tries not
to ruin the basic RR idea but to improve on its preemptive
technique. The classical RR uses the average of processes
in the ready queue as the quantum time, so is DRRCP. The
only addition to classical RR is avoidance to unnecessary
preemption of processes. This is the reason why this
technique has a dynamic QT as opposed to the classical
RR which has a static QT. Let us look at it this way, why
should a process be preempted with left over job of 5
percent or less having completed 95 percent of its job? In
fact, there are cases where 1 or less than 1 percent is
preempted. At least, even if multiprogramming cannot be
achieved in a particular set of processes in the ready queue,
you should be able to achieve minimal average waiting
time and average turnaround time. But this is not the case
with classical RR, it always incur unnecessary preemption
cost which can be avoided. The proposal is if the quantum
time allows a process to execute up to 95 percent of its job,
it should be allowed to execute its left over job without
being preempted. In this scheduling, a process using the
CPU may or may not be preempted even if its quantum
time is exhausted. It can only be preempted if its quantum
time finishes and within the time slice it only processed
less than 95 percent of its job. On the other hand, if the
quantum time finishes and greater than or equal to 95
percent of the job is processed, that process should be
allowed to run to completion, otherwise, it should be
preempted. This technique can be applied to all RR
algorithms, classical or dynamic. It gives priority to
processes using the CPU while having a smaller left over
time of 5 percent or less to run to completion. The
dynamism has to do with allowing a process not to be

preempted unnecessarily. As long as 95 percent of a
process job is executed, quantum time increases
automatically from the average value to its actual CPU
burst.

Algorithm 1: DRRCP ALGORITHM

1. //N= Number of processes
//Pi= ith Process
//i=1 Loop variable
QT = quantum time
//BT= Burst time of the processes

2. While(RQ !=NULL)
// RQ= Ready Queue
Set Sum=0, Count=0
// Count= Counts number of processes in the ready queue.
//Calculation of Quantum time (QT)
for i=1 to N Loop
{ Sum = Sum + BTi
Count++ }
QT =Sum/Count // take the floor value

3. // Assign QT to (1 to N) processes.
for i=1 to N loop
{ If P i*95% >= QT
QT = BTi
Else
QT: remain unchanged
End if }
Pi=QT
Calculate the remaining Pi Burst time of the process.
End of for

4. If (new process arrived)
 then go to step1
else if (new process is not arrived and BT!=0)
go to step 3
else
go to step 5
end of if
end of while

5. Calculate AWT, ATAT, CS
//ATAT=Average Turnaround time.
//AWT=Average waiting time.
//CS=Number of context switch.

6. End

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 111

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Figure 1: DRRCP FLOW CHART

START

 RQ != NULL?

Set i=1, Sum=0, Count=0

Yes

No

Yes

TQ=Sum/Count

Is i <= N?

TQ =BTi

Pi=TQ

Calculate the remaining Pi burst and do same for next process

Is TQ>=Pi*95% ?

No

Sum = Sum+BTi

Count++, i++

Yes

No

Is new process arrived?

Calculate AWT, ATAT, CS

STOP

No

 Is BT !=0?

Yes

No

Yes

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 112

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

6. Illustrations/Analysis

Case1:
Using mean =80 and deviation=60, the following processes
and their associated CPU burst are generated.
{P1=110, P2=89, P3=113, P4=137, P5=86, P6=131,
P7=95}

6.1. Classical RR

In a classical RR the quantum time is the average of
processes CPU burst time in the ready queue.
Quantum time (QT) = (110+89+113+137+86+131+95)/7
=761/7 = 109.
The following left over time are obtained after applying
Round Robin:
Processes left over time are:: P1=1, P3=4, P4=28, P6=22.
These lefts over will be use in round two (2) with same
QT.

6.1.1. Analysis

Context switching: According to case1, in classical RR,
P1, P3, P4 and P6 having associated left over time of 1, 4,
28 and 22 respectively, went for second round while the
rest ran to completion in the first round. They displayed
some level of multiprogramming in which some were
unnecessary. What is the use of preempting P1 and P3
having just a little left over time of 1 and 4 respectively? If
P1 with burst time of 110 and P3 with burst time 113 will
be allowed to run up to QT of 109 time unit in their first
round, it does not make much sense to preempt these
processes for just 1 and 4 left over time for P1 and P3
respectively. It may not be a good practice to preempt a
process which is very close to finishing its task. P1 and P3
do not deserve to go for the next round. In other word,
their switching time was not good at all. This problem is
common in an ideal classical RR. Their average results are:
AWT=509, ATAT=617.71, CS=11

6.2. DRRCP

In DRRCP, QT is the same as the classical RR. That is:
Quantum time (QT) = (110+89+113+137+86+131+95)/7
=761/7 = 109. It only addition is that a process may run to
completion even if it should have a left over time. Once its
QT will allow up to 95 percent a process’ job to be
executed, it will run to completion, otherwise it will be
preempted.

Method:
Step1: Calculate 95% of each processes burst.

P1=110, its 95% = 110*0.95=104.5, P2=89, its 95%=
89*0.95=84.6, P3=113, its 95%=113*0.95=107.4,
P4=137, its 95%=137*0.95=130.1, P5=86, its
95%=86*0.95=81.7, P6=131, its 95%=131*0.95=124.5,
P7=95, its 95%=95*0.95=90.3.
Step2: Compare QT (109) with 95% of each processes
burst.
Once the QT is greater than or equal to 95 percent of the
process’ burst, that process will be allowed to run to
completion. In this case, it implies that P1, P2, P3, P5, and
P7 will run to completion. But P4 and P6 will be
preempted for the next round because QT is less than 95
percent of each of their processes burst. In the case of P4
and P6, the QT which is 109 will be use, leading to left
over time of 28 and 22 for P4 and P6 round respectively.
This will then be use in the second round.

6.2.1. Analysis

Context switching: According to case1, In DRRCP, P4
and P6 are the only processes that went for second round.
All the rest processes ran to completion in the first round.
Surely, this takes care of P1 and P3 that went for second
round in the classical RR which were considered
unnecessary. It provides a better switching time for P1 and
P3 by allowing them to run to completion. This solution is
common with DRRCP. Their average results are:
AWT=368.27, ATAT=312, CS=9

Figure 1 below shows the Gantt between Classical RR and
DRRCP of case 1.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 113

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Fig 2: Classical RR and DRRCP Gantt chart

Case2:
Using mean=54 and deviation=32, the following processes
and their associated CPU burst are generated.{P1=74,
P2=62, P3=51, P4=61, P5=64, P6=58, P7=46}
QT=(74+62+51+61+64+58+46)/7=59

Classical RR:
Context switching: P1, P2, P4 and P5 went for second
round while the rest ran to completion in the first round.
After the first round, P1 has left over time of 15, P2 has 3,
P4 has 2 and P5 has 5. At least, looking at their left over
time, P2 and P4 were not supposed to go for the second
round. Their average results are:
AWT=304.43, ATAT=363.86, CS=11

DRRCP:
Context switching: Only P1 and P5 went for second
round while the rest ran to completion in the first round.
The problem encountered for allowing P1 and P5 to go for
next round in the classical RR is solve here. P2 and P4
need not to go for next round with just left over time of 2
and 3 time unit respectively.
AWT=240.43, ATAT=299.85, CS=9

Case3:
Using mean=163 and deviation=76, the following
processes and their associated CPU burst are generated.
{P1=191, P2=187, P3=191, P4=219, P5=202, P6=178,
P7=165}
QT= (191+187+191+219+202+178+165)/7=190

Classical RR:
Context switching: Only P1, P3, P4 and P5 went for the
next round having associated burst of 1, 1, 29 and 12
respectively, while the rest ran to completion in the first
round. Clearly, P1 and P3 were not supposed to go the
second round. Their left over burst is too little which
should have been completed in the first round.
AWT=956.57, ATAT=1147, CS=11

DRRCP:
Context switching: Only P4 and P5 went for the next
round while the rest ran to completion in the first round.
The problem encountered for allowing P1 and P3 to go for
next round in the classical RR is solve here. P2 and P4
need not to go for next round with just left over time of 1
for each. They ran to completion.

AWT=696.86, ATAT=887.29, CS=9

7. Description of the Simulation

The simulator is designed using Visual Basic 6.0 as the programming language and was executed on windows 7operating
system. The size of the ram used is 2.0GB, the speed is 1.56GHz and the size of the hard disk is 300GB. The simulator
considers all processes to be in the ready queue and their arrival time set to be zero. Also, processes are considered to be of
same priority. The simulator uses normal distribution function which requires three input parameters to generate processes

Classical RR Gantt chart: AWT=509, ATAT=617.71, CS=11

Round1 Round2

0 109 198 307 416 502 611 706 707 711 739 761

 P1 P2 P3 P4 P5 P6 P7 P1 P3 P4 P6

D RRCP Gantt chart: AWT=368.27, ATAT=477, CS=9

Round1 Round

0 110 199 312 421 507 616 711 739 761

 P1 P2 P3 P4 P5 P6 P7 P4 P6

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 114

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

and their associated CPU burst. The input parameters are: mean (µ), standard deviation()σ , and number of process. These

parameters are variables, meaning they can assume any value. The maximum number of process is set to be 100 while the
maximum number of the mean and standard deviation is set to be 1000 each. When the program is executing, it will request
the user to supplier number of process, the mean and the standard deviation. The simulator computes the average waiting
time, average turnaround time, and number of context switching for each algorithm (Classical RR and DRRCP). The results
of the experiments are given in the table and figure below when the simulator is run for 10 times with number of processes
starting with 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. The simulator is able to find the average waiting time, average
turnaround time and the number of context switch. Fig 3 below shows the interface of the simulator.

Fig 3: Interface of the simulator

Table 1

Simulation result between Classical RR and DRRCP

No of Process

Deviation

Mean

Classical RR DRRCP
AWT ATAT CS AWT ATAT CS

10 67 98 854.7000 995.0000 14 799.000 939.300
0

13

20 321 107 2792.700 3041.700 30 2597.70
0

2846.70
0

29

30 131 307 7404.330 7777.270 44 6863.70
0

7236.63
0

40

40 356 407 16752.18 17351.60 59 16189.0
8

16788.5
0

57

50 543 589 30987.04 31841.02 76 29153.4
0

30007.3
8

72

60 354 453 26860.93 27492.00 92 24069.2
0

24700.2
7

84

70 754 687 50562.21 51606.37 105 46628.9
7

47673.1
3

98

80 567 832 62758.11 63850.98 123 53881.9
0

54974.7
6

105

90 765 876 78786.34 80052.39 135 74473.7
8

75739.8
2

128

100 895 986 101629.4 103074.7
5

152 95753.8
6

97199.2
1

145

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 115

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Table 1 above shows that when the simulator is run for 10
processes, using a deviation of 67 and mean of 98, the
classical RR will have AWT to be 854.7 time unit, ATAT
to be 995 time unit, and number of context switching to be
14, while the DRRCP will have AWT to be 799, ATAT to
be 939.3 and contexts switching to be 13. The procedure is
repeated when number of process increases from 10 to 100
with variable mean and standard deviation. The results
gotten are recorded in table 1. The below charts of
Average Waiting Time (AWT), Average Turnaround Time
(ATAT) and number of context switching (CS) were
generated from table 1.

 Chart 1: average waiting time (AWT) graph

 Chart 2: average turnaround time (ATAT) graph

 Chart 3: context switch graph

From chart 1, 2, and 3 shown above, it is clear that
DRRCP is a direct improvement of the classical RR.
DRRCP minimizes average waiting time, average
turnaround time and number of context switching than its
classical RR counterpart.

8. Why DRRCP is better than Classical RR

DRRCP algorithm tries as much as possible to preserve the
characteristics of the classical RR. It changes nothing but
support the classical RR. The quantum time calculation
and the operation are the same. The only addition to this
algorithm is the ability to controlled unnecessary
preemption so as to achieve optimal performance. On one
hand, it may work exactly as classical RR, preempting
processes whose CPU burst are above average. But on the
other hand, processes that are due for preemption are
executed to completion without being preempted. As long
as 95 percent of a process job is executed, that process will
not be preempted even if its QT has been exhausted. It may
be considered as process blocking because process that is
due for preemption may or may not be preempted for
certain reason. The simple reason is that: a particular
process that has executed 95 percent of its job, it may not
be wise to be preempted. For example, consider a process
with CPU burst of 89ms having a quantum time of 88ms.
This process will be preempted after running for 88ms
leaving left over time of 1ms. This does not make much
sense. This is because if it must be allowed for that long
time of 88ms, it should be allowed for just 1ms to run to
completion so as to minimize average waiting time,
average turnaround time and as well as reduce the cost of
performing context switching.
Another issue is a situation whereby a process will context
switched itself. For example, let say P1=88ms and
P2=89ms while QT=88ms. P1 will run to completion, P2
will run for just 88ms with left over time of 1ms. This
same P2 will have to context switched itself. That is, P2
being the last and the only process will have to go for
second round as a result of timer interrupt that will be
generated. Even though its waiting time will not increase
but the switching has now become an overhead.
The reason for chosen DRRCP to be better than the
classical RR is: given any dataset, DRRCP will perform
the same or better than the classical RR. Mathematically, it
can be stated as performance for DRRCP >= Performance
of classical RR algorithm. The justification for this
equation is that depending on the given dataset, DRRCP
may work purely as classical RR. If the data set may not
favor classical RR, it will adjust itself and perform better
than classical RR. On a final note, the concept of DRRCP
algorithm can also fit into any of the proposed dynamic RR
CPU scheduling algorithms.

Clas si ca l RRDRRCP

995 939.3

3041.7 2846.7

7777.27 7236.63

17351.6 16788.5

31841.02 30007.38

27492 24700.27

51606.37 47673.13

63850.98 54974.76

80052.39 75739.82

103074.75 97199.21
0

20000

40000

60000

80000

100000

120000

10 20 30 40 50 60 70 80 90 100A
ve

ra
ge

 tu
rn

ar
o

u
n

d
 t

im
e

 (
A

TA
T)

number of processes

ATAT: Classical RR Vs DRRCP

Classical RR

DRRCP

class ica l DRRCP

854.7 799

2792.7 2597.7

7404.33 6863.7

16752.18 16189.08

30987.04 29153.4

26860.93 24069.2

50562.21 46628.97

62758.11 53881.9

78786.34 74473.78

101629.4 95753.860

20000

40000

60000

80000

100000

120000

10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 W

a
it

in
g
 t

im
e

 (
A

W
T
)

number of processes

AWT:Classical RR Vs DRRCP

Classical RR

DRRCP

Class ica l RRDRRCP

14 13

30 29

44 40

59 57

76 72

92 84

105 98

123 105

135 128

152 145

0

20

40

60

80

100

120

140

160

10 20 30 40 50 60 70 80 90 100n
u

m
b

e
r

o
f

co
n

e
xt

 s
w

it
ch

in
g

 (
C

S
)

number of processes

CS: Classical RR Vs DRRCP

Classical RR

DRRCP

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 116

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

7. Conclusion

This has demonstrated clearly why DRRCP is better than the classical RR. The QT is made dynamic for maximum
improvement. By simply performing a checking, unnecessary context switching encountered in the classical RR are avoided.
Through this simple technique, average waiting time, average turnaround time and context switching are greatly improved.

References

[1] Abbas N, Ali K and Seifedine K., 2011. “A New Round Robin Based Scheduling Algorithm for operating systems:

Dynamic Quantum using the mean average”. IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3,
No.1. pp. 224-229.

[2] Ali D.J. 2012. “Improving efficiency of Round Robin scheduling using Ascending Quantum and Minimum-Maximum
burst time”, J. of university of anbar for pure science. Vol.6:NO.2. pp.23-27.

 [3] Bashir A., Doja1 M.N., Biswas R., and Alam .M. 2011. “Fuzzy Priority CPU Scheduling Algorithm”. IJCSI

International Journal of Computer Science Issues, Vol. 8. pp. 386-390

[4] Behera H.S., Rakesh M., Sabyasachi S. and Sourav B.K. 2011. “Comparative performance analysis of Multi-dynamic

Quantum time Round Robin (MDQTRR) Algorithm with Arrival Time”. Indian Journal of Computer Science and
Engineering (IJCSE), Vol. 2. pp. 262-271.

[5] Bovet D. P, Cesati M. 2006. 3rd edition, Understanding the Linux Kernel, O’Reilly Media, Inc., USA. pp. 1- 923.

[6] Pallab B., Proba B. and Shweta D.S. 2012a. “Comparative Performance Analysis of Even Odd Round Robin

Scheduling Algorithm (EORR) using Dynamic Quantum time with Round Robin Scheduling Algorithm using static
Quantum time”. International Journal of Advanced Research in Computer Science and Software Engineering. Volume
2. pp. 62-70.

[7] Pallab B. Proba B. and Shweta D.S. 2012b. “Comparative Performance Analysis of Average Max Round Robin

Scheduling Algorithm (AMRR) using Dynamic Quantum time with Round Robin Scheduling Algorithm using static
Quantum time”, International Journal of Innovative Technology and Exploring Engineering (IJITEE). Volume-1. pp.
56-62.

[8] Pallab B., Proba B. and Shweta D.S. 2012c. “Performance Evaluation of a New Proposed Average Mid Max Round

Robin (AMMRR) Scheduling Algorithm with Round Robin Scheduling Algorithm”. International Journal of
Advanced Research in Computer Science and Software Engineering, Volume 2. pp.143-151.

[9] Puneet V.K., Nadeem A. and Faridul S.H. 2012. “Efficient CPU Scheduling Algorithm Using Fuzzy Logic”.
International Conference on Computer Technology and Science, IPCSIT vol. 47. pp. 13-18.

[10] Silberschatz A, Galvin P.B. and Gagne .G, 2005, Operating Systems Concepts, (7th ed), John Wiley and Sons,
 USA. pp. 1-885.

[11] Sunita B., Bhavik K. and Chittaranjan H. 2011. “Dynamic Task-Scheduling in Grid Computing using Prioritized
Round Robin Algorithm”. IJCSI International Journal of Computer Science Issues, Vol. 8. pp. 472-477.

[12] Tanenbaun A.S. 2008. “Modern Operating Systems”. (3rd ed), Prentice Hall, pp. 1104.

[13] Yashasvini S. 2013. “Determining the Variable Quantum Time (VQT) In Round Robin and importance over Average
Quantum Time Method”, International Journal of Science, Engineering and Technology Research (IJSETR) Volume
2. pp. 613-617.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 117

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

