
 

Using Evolutionary Algorithms for Higher-Order Mutation 

Testing  

Ahmed S. Ghiduk1, 2 

 

 1 College of Computers and Information Technology, Taif University 

Saudi Arabia 

asaghiduk@tu.edu.sa 
 

2 Department of Mathematics and Computer Science, Faculty of Science  

Beni-Suef University, Egypt 

asaghiduk@yahoo.com 

 

Abstract 
Most software faults are complex higher-order mutants and their 

fixing needs more changes than first-order mutants. First-order 

mutants are created by inserting a single fault in the tested 

program. Higher-order mutants are created by injecting two or 

more faults in the tested program. Mutation testing has been 

developed to generate test inputs to kill the mutants of the tested 

program. Evolutionary algorithms have been effectively used in 

many software testing activities especially producing the required 

test inputs. In this paper, we introduce a genetic algorithm based 

technique to aid the automatic generation of test inputs for killing 

higher-order mutants. The proposed technique includes two 

policies: the first policy aims at killing the first-order mutants, 

and the second policy aims at killing the higher-order mutants. In 

addition, we introduce two new algorithms to generate the 

higher-order mutants. The paper also presents the results of the 

experiments that have been carried out to evaluate the 

effectiveness of our technique with its two policies. The results 

of the conducted empirical study showed that our proposed 

technique is more efficiency than random tests generation 

techniques in killing higher-order mutants. 

Keywords: Mutation Testing, First-Order Mutants, Higher-

Order Mutants, Test-Inputs Generation, Genetic Algorithms. 

1. Introduction 

Approximately 90% of faults in software are complex 

faults of higher-order mutants and their fixing needs 

several changes [1]. The space of higher-order mutants is 

wider than the space of first-order mutants. Mutation 

testing has been developed by DeMillo et al. [2] and 

Hamlet [3]. It has been developed to find test inputs to kill 

the seeded mutants in the program under test [4]. Mutation 

testing motivation is that injected faults represent errors 

that programmers often create. Many mutation testing 

techniques have been developed to consider the first-order 

mutants (FOMs) which are created by the injection of 

unique fault in the tested program [5]. FOMs represent 

simple faults which are easily killed. Higher-order mutants 

(HOMs) are complex faults which are produced by 

inserting two or more faults in the tested program [6]. 

Higher-order mutation testing techniques are proposed by 

Jia and Harman [6] and used to study the interactions 

between defects and their impact on software testing for 

fault detecting [6].  

Achieving high mutant-killing ratios is important in 

mutation testing and requires generating high-quality test 

inputs which is a crucial issue. Although manually written 

test inputs are valuable, they are not sufficient to  prevent 

faults. Therefore, automatic generation of test inputs is 

required to complement manually written test inputs. 

Many automatic test-inputs generation techniques have 

been presented, some of which [7, 8, 9, 10] generate test 

inputs randomly; other techniques [11, 12, 13] use code 

coverage as the test criterion and generate test inputs to 

satisfy this test criterion; a third approach [5, 14, 15, 16, 17] 

use mutation testing as the test criterion and generate test 

inputs to kill mutants. Jia and Harman [18] provided a 

comprehensive analysis of trends and results of mutation 

testing techniques. Guiding the automatic generation of 

test inputs using mutant killing is intractable process [14]. 

Therefore, many of the existing mutation testing 

techniques use the concepts of weak mutation testing [5] 

for generating test inputs and improving the probability of 

mutant killing. Mutation testing techniques have been 

utilized to evaluate the quality of test data [15]. In addition, 

mutation testing requires fewer number of tests than many 

white box testing criteria such as edge-pair, all-uses and 

prime path coverage [19]. Mutation testing is more robust 

than code coverage in evaluating the effectiveness of test 

data [16]. In practice, there are many challenges that face 

the existing mutation-testing techniques. The automatic 

generation of test inputs for mutant killing is one of the 

main challenges for mutation testing techniques. Although 

there are techniques [5, 14] aiding test-inputs generation 

for killing mutants, they have three main drawbacks. First, 

these techniques construct a whole constraint system for 

each weak mutant killing, making it costly to generate test 

inputs for a large number of mutants. Second, these 

techniques are based on solving statically constructed 

constraint systems, not being able to handle programs with 
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complex data structures, non-linear arithmetic, or array 

indexing with non-constant expressions. Third, these 

techniques don't consider higher-order mutants killing. 

These limitations cause the existing mutant killing based 

test generation techniques to be inapplicable for real world 

programs, and not to be widely used in practice. 

In 2009, Jia and Harman [6] proposed the concepts of 

higher-order mutation testing. Harman et al. [1, 20] 

introduced the first policy to use search-based techniques 

for higher-order mutation testing (HOMT). This strategy 

uses the genetic programming algorithms to find test data 

to kill higher-order mutants in C programs. The results of 

the experiments showed the efficacy of search-based 

techniques in killing higher-order mutants. Harman et al. 

[21] introduced mutation-based test data generation 

approach that combines dynamic symbolic execution and 

hill climbing. This technique targets strong mutation 

adequacy. Kapoor [22] studied the subsuming relation 

between the first-order mutants and the higher-order 

mutants. Kapoor's technique did not consider higher-order 

mutants killing. Akinde [23] presented an empirical study 

to show that higher-order mutation reduces the number of 

equivalent mutants. 

From the above discussion, it is clear that little attention 

has been given in literature to search-based test data 

generation for killing the higher-order mutants. In addition, 

Langdon et al. [1] reported the problem of non-

determinism in mutation testing for the first time. The 

problems associated with a mutant behaving differently 

between different runs were discussed in the context of the 

mutant causing a local variable not to be initialized and 

hence to take essentially random values on different runs. 

This in turn could cause the mutant to pass tests on some 

runs and fail the same tests (i.e., be killed) on others. The 

problems of non-determinism in mutation testing and the 

equivalent higher-order mutants have not been handled yet.  

Evolutionary Algorithms have been successively used in 

many software testing activities showing significant 

robustness in producing the required test inputs. Only 

genetic programming  and hill climbing [1] [21] have been 

used in higher-order mutation testing. Jia and Harman [24] 

reported their empirical study to identify subsuming 

HOMs using three search based algorithms: greedy 

algorithm, genetic algorithm and hill climbing algorithm. 

Although genetic algorithms (GAs) are considered the 

most powerful and the most widely employed evolutionary 

algorithms in search-based software testing, they have not 

been used in generating test inputs to kill higher-order 

mutants.  

The main contributions of this paper are: 1) introducing a 

genetic algorithm based approach for generating test inputs 

for killing the first-order mutants and higher-order mutants; 

2) using the proposed approach to implement a testing tool 

for automatic generation of test inputs to kill first-order 

mutants and higher-order mutants; 3) using the 

implemented tool to perform set of empirical studies to 

answer the following research questions: 

RQ1: How effective is our proposed genetic algorithm in 

generating test inputs to kill non-equivalent mutants of 

orders one, two, and three? 

RQ2: How effective is our higher-order mutation testing 

technique in generating test inputs compared to random 

testing techniques? 

The rest of this paper is organized as follows. Section 2 

gives some basic concepts and definitions. Section 3 

describes the proposed genetic algorithm for automatic 

generation of test inputs for mutation testing. Section 4 

describes the phases of our proposed genetic algorithm 

based mutation testing system. Section 5 presents the 

results of the experiments that are conducted to evaluate 

the effectiveness of the proposed GA-based technique 

compared to the random-based test inputs generation 

techniques. Section 6 discusses the related work. Section 7 

gives the conclusion and future work. 

2. Background 

We introduce here some basic concepts that will be used 

throughout this work. 

2.1 Mutation testing: 

In mutation testing, a set of faulty programs p', called 

mutants, is generated by seeding faults into the original 

program p. A mutant is generated by making a single small 

change to the original program. For example, Table 1 

shows a first-order mutant in the mutated program p' 

generated by changing the and (&&) operator in the 

original program p into the or (||) operator in the mutated 

p'. In addition, Table 1 gives a second-order mutant by 

changing two operators (&&) and (>) in p into (||) and (<) 

in p'. A transformation rule that generates a mutant from 

the original program is known as a mutation operator [6]. 

Table 1: An Example of Mutation Operation 

Original Program 

p 

Mutated Program p' 

First Order 

Mutant 

Second Order 

Mutant 

if (a >0&& b> 0 )  if (a>0 || b > 0 ) if ( a > 0 || b < 0 ) 

Each mutated program p' will be executed using a test set 

T. If the result of running p' is different from the result of 

running the original program p for any test case in T (i.e., 

p'(t) ≠ p(t) for any t of T), then the mutated program p' is 

said to be “killed”, otherwise it is said to have “survived”. 

The adequacy level of the test set T can be measured by a 

mutation score [25] that is computed in terms of the 

number of mutants killed by T as follows. 
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𝑀𝑆 𝑃, 𝑇 =
# 𝑜𝑓  𝑘𝑖𝑙𝑙𝑒𝑑  𝑀𝑢𝑡𝑎𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙  𝑛𝑜 .  𝑜𝑓  𝑀𝑢𝑡𝑎𝑛𝑡𝑠 − 𝑛𝑜 .𝑜𝑓  𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡  𝑀𝑢𝑡𝑎𝑛𝑡𝑠
(1) 

The aim of mutation testing is finding the test set T  [2, 3]. 

2.2 Higher-Order Mutation Testing: 

Higher-order mutation (HOM) testing is a generalization 

of traditional mutation testing. Higher-order mutants are 

constructed by inserting one or more of a given set of first 

order mutants into the tested program [20]. 

2.3 Classification of Higher-Order Mutants: 

Higher-order mutants can be classified into six categories 

based on the way that they are „Coupled‟ and „Subsuming‟, 

as shown in Figure 1. Coupled means: complex errors are 

coupled to simple errors, and coupling effect hypothesis 

states that test input sets that detect simple types of faults 

are sensitive enough to detect more complex types of 

faults [2]. A subsuming HOMs is one in which the first-

order constituent mutants partly mask one another. 

Therefore, a subsuming HOM is harder to kill than the 

first-order mutants from which it is constructed. 

The area in the big circle at the centre of Figure 1 

represents the domain of all HOMs. The sub-diagrams 

surrounding the central region illustrate each category for 

case of second-order mutant. In this case, there are two 

FOMs f1 and f2, and h denotes the HOM constructed from 

the FOMs f1 and f2. The two regions depicted by each sub-

diagram represent the test sets containing all the test cases 

that kill FOMs f1 and f2. The shaded area represents the 

test set that contains all test cases that kill HOM h.  

According to the coupling effect hypothesis, if a test set 

that kills the FOMs also includes tests that kill the HOM, 

then the HOM is called a „coupled HOM‟, otherwise it is 

called a „de-coupled HOM‟. In Figure 1, a sub-diagram is 

a „coupled HOM‟ if it contains an area where the shaded 

region overlaps with the un-shaded regions. For example 

the sub-diagrams (a), (b) and (f) are ’coupled HOMs‟, 

while diagrams (c) and (d) are „de-coupled HOMs‟, 

because the shaded region in (c) and (d) don't overlap with 

the un-shaded regions. Diagram (e) is a special case of a 

’de-coupled HOM‟, because there is no test case that can 

kill the HOM. The HOM in (e) is an equivalent mutant.  

According to subsuming definition, the subsuming HOMs 

can be represented as in diagrams (a), (b) and (c) where 

the shaded area is smaller than the area of the union of the 

two un-shaded regions. By contrast, (d), (e) and (f) are 

non-subsuming. The subsuming HOMs can be classified 

into strongly subsuming HOMs and weakly subsuming 

HOMs. By definition, if a test case kills a strongly 

subsuming HOM, it guarantees that its constituent FOMs 

are killed as well. Therefore, if the shaded region lies only 

inside the intersection of the two un-shaded regions, it is a 

strongly subsuming HOM, as depicted in (a), otherwise, it 

is a weakly subsuming HOM, as depicted in (b) and (c). 

 

 

 

 

 

 

 

 

 

 

 

 

The formal definitions of the six HOMs are defined below. 

Let h be a HOM, constructed from FOMs f1, ..., fn. 

Assume the existence of a test set T. T is the set of all test 

cases under consideration. Th is the subset of T that kills 

the HOM h, while T1, ..., Tn are the subsets of T that kill 

the constituent FOMs f1, ..., fn respectively.  

a. Strongly Subsuming and Coupled 𝑇 ⊂  𝑇𝑖𝑖  𝑎𝑛𝑑 𝑇 ≠ ∅. 

b. Weakly Subsuming and Coupled  𝑇  <   𝑇𝑖𝑖  , 𝑇 ≠ ∅   
𝑎𝑛𝑑 𝑇 ∩  𝑇𝑖 ≠  ∅𝑖  

c. Weakly Subsuming and De-Coupled 

 𝑇  <   𝑇𝑖𝑖  , 𝑇 ≠ ∅  𝑎𝑛𝑑 𝑇 ∩  𝑇𝑖 =  ∅𝑖 . 

d. Non-Subsuming and De-coupled  

 𝑇  ≥   𝑇𝑖𝑖  , 𝑇 ≠ ∅  𝑎𝑛𝑑 𝑇 ∩  𝑇𝑖 =  ∅𝑖 . 

e. Non-Subsuming and De-coupled (Equivalent) Th =  ϕ. 

f. Non-Subsuming and Coupled (Useless) 

 𝑇  ≥   𝑇𝑖𝑖  , 𝑎𝑛𝑑 𝑇 ∩  𝑇𝑖 ≠  ∅𝑖 . 

2.4 The Method of Mutation Testing: 

The input parameters to the mutation testing are the tested 

program, a set of mutation operators, and a set of test 

inputs, T. Initially, the program under test must be 

executed with the test set T to show that it is correct and 

produces the desired outputs. If not, then program under 

test contains faults, which should be corrected before 

resuming the process. 

The next stage generates set of mutants of the tested 

program by seeding faults in it. The seeded faults are 

generated by applying the mutation operators.  

The generated mutants are then executed with all tests in T 

and their outputs compared against the outputs of the 

original program. If a mutant produces a different result 

from the tested program for any test, then the mutant is 

said to be “killed”, otherwise it is said to have “survived”. 

3. A SEARCH-BASED ALGORITHM FOR 

HOM TESTING 

This section describes the proposed search-based 

algorithm for automatic test inputs generation for higher- 

Figure 1: Higher Order Mutants Categories. 
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order mutation testing. This algorithm uses the concepts of 

genetic algorithms to search for test inputs that kill the 

first-order mutants and higher-order mutants.  

3.1 Chromosome Representation 

The proposed genetic algorithm uses a binary vector as a 

chromosome to represent the inputs values of the tested 

program. The length, m, of this binary vector depends on 

the required precision and the domain length for each input 

variable. 

Suppose we desire to generate test inputs for a program of 

k input variables x1,…, xk and each variable xi can take 

values from a domain Di = [ai, bi]. Suppose further that di 

decimal places are desirable for the values of each variable 

xi. To achieve such precision, each domain Di should be 

cut into  𝑏𝑖 − 𝑎𝑖 × 10𝑑𝑖  equal size ranges. Let us denote 

by mi the smallest integer such that   𝑏𝑖 − 𝑎𝑖 × 10𝑑𝑖 ≤
2𝑚 𝑖 − 1. Then, a representation having each variable xi 

coded as a binary vector of length mi clearly satisfies the 

precision requirement. The mapping from the binary 

vector into a real number xi from the range [ai, bi] is 

performed by the following formula: 

𝑥𝑖 =  𝑎𝑖 + 𝑥𝑖
′ ×

𝑏𝑖−𝑎𝑖

2𝑚𝑖−1
    (2) 

where ix is the decimal value of the binary vector (26). 

The above method can be applied for representing values 

of integer input variables by setting di to 0, and using the 

following formula instead of formula (2): 

𝑥𝑖 =  𝑎𝑖 + 𝑖𝑛𝑡(𝑥𝑖
′ ×

𝑏𝑖−𝑎𝑖

2𝑚𝑖−1
)    (3) 

Now, each chromosome is represented by a binary string 

of length 𝑚 =  𝑚𝑖
𝑘
𝑖=1 ; the first m1 bits map into a value 

from the range [a1, b1] of variable x1, the next group of m2 

bits map into a value from the range [a2, b2] of variable x2, 

and so on; the last group of mk bits map into a value from 

the range [ak, bk] of variable xk. 

For example, let a program have 2 input variables x and y, 

where –3.0 x 12.1 and 4.1 y 5.8, and the required 

precision is 4 decimal places for each variable. The 

domain of variable x has length 15.1; the precision 

requirement implies that the range [-3.0, 12.1] should be 

divided into at least 15.110000 equal size ranges. This 

means that 18 bits are required as the first part of the 

chromosome: 2
17

 < 151000 2
18

. The domain of variable y 

has length 1.7; the precision requirement implies that the 

range [4.1, 5.8] should be divided into at least 1.710000 

equal size ranges. This means that 15 bits are required as 

the second part of the chromosome: 2
14

 < 17000   2
15

. 

The total length of a chromosome is then m = 18+15=33 

bits; the first 18 bits code x and remaining 15 bits code y. 

Let us consider an example chromosome: 

010001001011010000111110010100010. 

Using formula (2), first 18 bits, 010001001011010000, 

represents x =1.0524, and next 15 bits, 111110010100010, 

represents y = 5.7553. So the given chromosome 

corresponds to the data values 1.0524 and 5.7553 for the 

variables x and y, respectively. 

3.2 Initial population 

As mentioned above, each chromosome is represented by a 

binary vector of length m. We randomly generate ps of m-

bit vectors to represent the initial population, where ps is 

the population size which is experimentally determined. 

Each chromosome is converted to k decimal numbers 

representing values of k input variables x1,…, xk by using 

formula (2) or (3). 

3.3 Evaluation Function 

To measure the robustness of the test inputs to kill the 

FOMs or HOMs, the algorithm uses a fitness function to 

evaluate these test inputs. We define the killing ability of a 

set of test inputs Ti (i = 1, …, population size) as follows: 

Killing Ability (Ti) =  
number  of  killed  mutants  by  Ti

total  number  of  mutants
     (4) 

The fitness value of a set of test inputs Ti is its killing 

ability. The target of the proposed genetic algorithm is 

maximizing this fitness function.  

3.4 Selection 

After computing the fitness of each test input in the current 

population, the algorithm uses the cumulative fitness 

method [26] to select test inputs from the members of the 

current population to be parents of the new population. 

3.5 Recombination  

The algorithm uses two genetic operators, crossover and 

mutation [26], which are the key to the power of GAs. 

These operators create new individuals from the selected 

parents to form a new population.  

Crossover: It operates at the individual level with a pre-

determined probability xp. During crossover, two parents 

(chromosomes) exchange some information at a random 

position in the chromosome to produce two new offspring. 

Any offspring that does not lie inside the domain of the 

required variables will be discarded.  

Mutation: It is performed on a gene-by-gene basis. 

Mutation always operates after the crossover operator, and 

changes each gene with the pre-determined probability mp. 

Every gene (in all chromosomes in the whole population) 

has an equal chance to undergo mutation. A gene is 

mutated by changing its value from 0 to 1 and vice versa. 

If the mutated chromosome does not lie inside the domain 

of the required variables, it will be discarded. 
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3.6 Stop Condition 

The algorithm will stop if the maximum number of 

generations is reached or if there isn't any enhancement in 

the evaluation of the generated population. In our 

empirical study, the algorithm stops if 97% of mutants (or 

more) are killed. 

4.The Proposed GA-Based Higher-order 

Mutation Testing System (GAMTS) 

This section describes the phases that form the proposed 

GA-based mutation testing system (GAMTS). The system 

is written in Java and consists of the following phases:  

1. Program Analysis Phase. 

2. Mutants Generation Phase. 

3. Test Inputs Generation Phase. 

4. Test Execution Phase. 

These phases are described in more details below.  

4.1 Program Analysis Phase: 

This phase consists of one Module that performs the 

following tasks: 1) reading the Java source code of the 

program under test (PUT.java), 2) identifying the number 

of input variables and their data types. 

Inputs of this phase: The input of this phase is the source 

code of the program under test in Java (PUT.java). 

Output of this phase: is list of the input variables, and 

their data types. The outputs of this phase are passed to the 

Test Inputs Generation Phase. In addition, this module 

passes the source code of the program under test to the 

Mutants Generation Module. 

 Figure 2.(a) shows a Java example program which reads 

three integers and finds the maximum value. This phase 

finds for this example program (Maximum.java) the 

number of required inputs which is 3 and their data types 

which are int. 

4.2 Mutants Generation Phase: 

This phase applies the MuJava tool to achieve its tasks. 

MuJava automatically generates FOMs for both traditional 

mutation testing and class-level mutation testing for Java 

programs [27]. Table 2 shows the first set of mutation 

operators: the 22 “mothra” Fortran mutation operators 

[28]. MuJava [29] uses a subset of the 22 “mothra” Fortran 

mutation operators to generate the first-order mutants. 

Inputs of this phase: are two files; the first is the Java 

source code of the program under test (PUT.java) and the 

second is the class file (PUT.class). 

Output of this phase: is set of mutated versions of the 

Java source code of the program under test. Each mutated 

program is seeded by single fault which can be selected 

from an available list of Java mutation operators 

(transformations) [29].  

Tasks of this phase are: 1) creating set of FOMs by 

seeding the original program with single fault. Figure 

2.(b). gives an example for first-order mutant for the 

example program. Table  3 shows the generated FOMs by 

MuJava for the example program, Maximum.java, 2) 

creating set of HOMs mutants of the original program each 

mutated program contains higher-order mutants of order n 

where 𝑛 ≥ 2 . Figure 3.(a) gives an example for the 

second-order mutant and Figure 3.(b) gives an example for 

third-order mutant for the example program. In fact, 

MuJava tool generates only first-order mutants. Therefore, 

an algorithm to generate higher-order mutants is required 

for our technique. Our higher-order mutants generation 

procedures are described below, 3) passing the mutated 

versions of the program under test to the test inputs 

generation phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: a) Java Example Program; b) Its FOM Mutated Example. 

 

1. import java.lang.*; 

2. import java.util.Scanner; 

3. public class Maximum{ 

4. public static void main(String[] args){ 

5. int x, y, z; 

6. Scanner in = new Scanner(System.in); 

7.  x = in.nextInt(); 

8. y = in.nextInt(); 

9. z = in.nextInt(); 

10. z = max(x,y,z); 

11. System.out.println("max = "+z); 

12. } 

13. public static int max(int a, int b, int c){ 

14. int m = a; 

15. if(b < m){ 

16. m = b; 

17. } 

18. if (c > m){ 

19. m = c; 

20. } 

21. return m; 

22. } 

23. } 

(b) 

1. import java.lang.*; 

2. import java.util.Scanner; 

3. public class Maximum{ 

4. public static void main(String[] args){ 

5. int x, y, z; 

6. Scanner in = new Scanner(System.in); 

7.  x = in.nextInt(); 

8. y = in.nextInt(); 

9. z = in.nextInt(); 

10. z = max(x,y,z); 

11. System.out.println("max = "+z); 

12. } 

13. public static int max(int a, int b, int c){ 

14. int m = a; 

15. if(b > m){ 

16. m = b; 

17. } 

18. if (c > m){ 

19. m = c; 

20. } 

21. return m; 

22. } 

23. } 

(a) 
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Higher-order mutants generation algorithm: There are 

many procedures that can be implemented to generate 

higher-order mutants for Java programs using MuJava. 

Polo et al. [30] proposed some procedures to generate 

second-order mutants. In the following, we introduce two 

algorithms to generate higher-order mutants of order 

greater than or equal two. To illustrate our algorithms, we 

use the results in Table  3  which lists the names of the 56 

mutants that the MuJava tool generates for the example 

program, Maximum.java. The application of the operators 

AOIU,  AOIS,  ROR, COI, and LOI generated 4, 28, 14, 2, 

and 8 mutants, respectively. In the following, we show our 

mutants generation algorithms. 

Circular Incremental Algorithm (CIA): finds the list of 

mutation operators which we can apply on the program 

under test by checking the list of operators in MuJava and 

puts these operators in circular order. CIA algorithm finds 

the operators AOIU, AOIS, ROR, COI, and LOI for the 

example program and puts them in the previous order. CIA 

applies MuJava tool to find the list of first-order mutants 

for the tested program. First-order mutants of the example 

program are shown in Table  3 . Then, the CIA Algorithm 

generates 2-order mutants in incremental manner by 

applying the first operator (AOIS) on the mutants files of 

the second operator (AOIU) and the second operator 

(AOIU) on the mutants files of the third operator (ROR), 

and so on till the last operator (LOI) is applied on the 

mutants files of the first operator (AOIS). Table 4 gives 

the second-order mutants that is generated for the example 

program by the algorithm CIA. AOIU (AOIS) means that 

applying AOIU such that AOIS was already applied. 

Table 2: Set of Mutation Operators. 

Mutation 

Operator 
Description 

AAR array reference for array reference replacement 

ABS absolute value insertion 

ACR array reference for constant replacement 

AOR arithmetic operator replacement 

ASR array reference for scalar variable replacement 

CAR constant for array reference replacement 

CNR comparable array name replacement 

CRP constant replacement 

CSR constant for scalar variable replacement 

DER DO statement alterations 

DSA DATA statement alterations 

GLR GOTO label replacement 

LCR logical connector replacement 

ROR relational operator replacement 

RSR RETURN statement replacement 

SAN statement analysis 

SAR scalar variable for array reference replacement 

SCR scalar for constant replacement 

SDL statement deletion 

SRC source constant replacement 

SVR scalar variable replacement 

UOI unary operator insertion 

Table  3 : The Generated FOMs by Mujava for the example program. 

Mutation Operator 

(Transformation) 

# of Mutants 

(Frequency) 

AOIU: Arithmetic Operator Replacement (Replace 
basic unary arithmetic operators with other 

unary arithmetic operators). 

4 

AOIS: Arithmetic Operator Insertion (Insert short-
cut arithmetic operators). 

28 

ROR: Relational Operator Replacement (Replace 

relational operators with other relational 

operators, and replace the entire predicate 
with true and false). 

14 

COI: Conditional Operator Insertion (Insert unary 

conditional operators). 
2 

LOI: : Logical Operator Insertion. (Insert unary 
logical operator). 

8 

Total # of FOMs for the example program 56 

To find the third-order mutants, CIA applies the mutation 

operators in the same circle such that the first operator 

AOIU in row #1 in Table 4 is applied on the mutated files 

of operators AOIS(ROR) in row #2 (i.e., the first operator 

Figure 3: a) Second-Order Mutation and b) Third-Order Mutation for 

the Example Program. 

1. import java.lang.*; 

2. import java.util.Scanner; 

3. public class Maximum{ 

4. public static void main(String[] args){ 

5. int x, y, z; 

6. Scanner in = new Scanner(System.in); 

7.  x = in.nextInt(); 

8. y = in.nextInt(); 

9. z = in.nextInt(); 

10. z = max(x,y,z); 

11. System.out.println("max = "+z); 

12. } 

13. public static int max(int a, int b, int c){ 

14. int m = ++a; 

15. if( b < m ){ 

16. m = b; 

17. } 

18. if (c >= m){ 

19. m = c; 

20. } 

21. return m; 

22. } 

23. } 

(b) 

1. import java.lang.*; 

2. import java.util.Scanner; 

3. public class Maximum{ 

4. public static void main(String[] args){ 

5. int x, y, z; 

6. Scanner in = new Scanner(System.in); 

7.  x = in.nextInt(); 

8. y = in.nextInt(); 

9. z = in.nextInt(); 

10. z = max(x,y,z); 

11. System.out.println("max = "+z); 

12. } 

13. public static int max(int a, int b, int c){ 

14. int m = a; 

15. if( b <  m ){ 

16. m = b; 

17. } 

18. if (c > m){ 

19. m = ++c; 

20. } 

21. return m; 

22. } 

23. } 

(a) 
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in a row in Table 4 is applied on the mutated files of the 

operators in the next row). Table 5 gives the third-order 

mutants generated for the example program by applying 

the algorithm CIA. 

In this manner, the Circular Incremental algorithm can 

generate any other order of mutants. For example, to find 

fourth-order mutants CIA uses Table 5 and applies the 

operators in the same approach (e.g., LOI is applied of the 

mutated files of AOIU(AOIS(ROR )) and so on). 

Table 4: The Generated 2OMs by CIA for the example program. 

# 
Mutation Operator 

(Transformation) 

#of Mutants 

(Frequency) 

1 AOIU(AOIS) 98 

2 AOIS (ROR) 392 

3 ROR (COI) 28 

4 COI (LOI) 16 

5     LOI (AOIU) 32 

Total # of 2OMs  566 

Table 5: The Generated 3OMs by CIA for the example program. 

# 
Mutation Operator 

(Transformation) 

# of Mutants 

(Frequency) 

1 LOI (AOIU(AOIS)) 784 

2 AOIU (AOIS (ROR)) 1372 

3 AOIS (ROR (COI)) 784 

4 ROR (COI (LOI)) 224 

5    COI(LOI (AOIU)) 64 

Total # of 3OMs for the example program 3164 

 Random N Algorithm (RNA): This algorithm randomly 

selects n different operators. Then, it applies the first 

operator on the tested program using MuJava, the second 

is applied on the mutants files of the first operator, and the 

third is applied on the results of the second and so on. To 

generate fourth-order mutants, RNA algorithm randomly 

selects ROR, LOI, AOIS, and COI. Then, RNA algorithm 

applies the selected operators in random order (e.g., ROR, 

COI, LOI, AOIS). RNA algorithm generates 4032 mutants 

of fourth order for the selected operators. If the number of 

all available operators is less than the required order, the 

RNA algorithm can select any operators more than one 

time. In the case of selecting an operator more than one 

time, the algorithm removes the repeated mutants. 

4.3 Test Inputs Generation Phase. 

This phase utilizes the proposed GA algorithm which is 

described in Section 3 to generate set of test inputs for 

killing the mutants of the program under test. 

Inputs of this phase: are the program under test and its 

mutated versions, number of the required test inputs (input 

variables of the tested program), the input domains of 

these variables and their data types, population size ps,  

maximum number of generations maxgen, probability of 

crossover xp, and probability of mutation mp. 
 

Outputs of this phase: include a set of test inputs that 

kills first-order mutants and higher-order mutants, a list of 

the generated test inputs, the list of killed mutants, and the 

list of survived mutants, if any. 

Tasks of this phase: are computing the chromosome 

length according to the input domains of the input 

variables or based on its data types if the input domains are 

not available, and applying the proposed genetic algorithm 

to generate set of test inputs for mutation testing. 

Test-Inputs Generation Procedure: We will use the 

example program which is shown in Figure 1.(a) to 

illustrate the test inputs generation phase. The example 

program needs three integers as inputs. Suppose that the 

three input variables are x1, x2, and x3 with input domains 

[1, 10], [2, 15], and [3, 20], respectively. In the following 

we show the steps of the proposed genetic algorithm to 

generate test inputs to kill the third-order mutant which is 

shown in Figure 3.(b). 

1. The proposed GA finds the length of the chromosome 

(as in Section 3.1) which will be 13 bits whereas x1 needs 

4 bits, x2 needs 4 bits, and x3 needs 5 bits. 

2. The proposed GA generates ps of bit vectors to 

represent the initial population, where ps is the population 

size. If ps = 3 the initial population will be as follows. 

c1 = 0101110001000, c2 = 0100011101101, c3 = 1000001100110 

3. The proposed GA uses the fitness function which is 

proposed in Section 3.3 to evaluate the initial population 

as follows. The algorithm converts c1, c2, and c3 from 

binary form to integer values using formula (3). Table 6 

shows values of the variables.  
Table 6: Phenotype of the Initial Population and Its Evaluation. 

↓Chromosome \ 

input variable→ 
x1 x2 x3 Fitness Value 

c1 5 12 8 0.5 

c2 4 7 13 0.6 

c3 8 3 6 0.5 

Relative Fitness 
Cumulative 

Fitness 
R Parents 

0.3125 0.3125 0.5123 c2 = 0100011101101 
0.375 0.6875 0.7432 c3 = 1000001100110 

0.3125 1 0.6123 c2 = 0100011101101 

The proposed system (GAMTS) calls the Test Execution 

Phase to execute the original program and all mutants 

using each set of test inputs and find the ratio of killed 

mutants. Assume this experiment aims at killing 100 

mutants of the third-order mutants which is shown in 

Table 5 (20 mutants from each row). Table 6 shows the 

fitness values of each set of inputs. It is clear that the 

second set of inputs is the best one in this population. 

4. The algorithm calculates the cumulative fitness for each 

chromosome as follows. 

a. Calculate the total fitness of the population: 

tFitness = 0.5 + 0.6 + 0.5 = 1.6 . 

b. Find the relative fitness for each individual: 

rFitness(c1) = fitness(c1)/tFitness= 0.3125,  
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rFitness(c2) = 0.375, and rFitness(c3) = 0.3125. 

c. Calculate the cumulative fitness: 

cFitness(c1) = rFitness(c1) = 0.3125, 

cFitness(c2)=cFitness(c1)+rFitness(c2)=0.3125+0.375=0.6875, 
cFitness(c3) =cFitness(c2) + rFitness(c3) =0.6875+ 0.3125 = 1. 

d. Find random number r for each individual (Table 6). 

e. According to the cumulative fitness method [26] the 

parents of the next population will be 

 c2 = 0100011101101, c3 = 1000001100110, c2 = 0100011101101.  

5. The algorithm applies the crossover and mutation 

genetic operators to find the new population as follows. 

a. Find random number r1 for each individual (Table  7 ). 

b. According to the genetic crossover method [26], if the 

crossover probability is 0.85, the first and the third 

parents will be used in the crossover process. 

c. According the genetic mutation method [26], find 

random number r2 for each individual (Table  7 ). Let 

genetic mutation probability (mp) is 0.15. If r2 < mp, 

the algorithm changes a random bit. 

6. GAMTS repeats the above procedure till one of the stop 

conditions is satisfied. 

Table  7 : Crossover and Mutation of the Selected Parents. 

Parents r1 
New 

chromosomes 
r2 

New 

chromosomes 
x1 x2 x3 

Fitness 

Value 

p1= 
0100011101101 

0.6734 0100011100110 0.0134 0110011100110 6 7 6 0.6 

p2= 

1000001100110 
0.3456 1000001101101 0.5456 1000001101101 8 3 13 0.4 

p3= 

0100011101101 
0.7343 0100011101101 0.0343 0100011101111 4 7 15 0.4 

4.4 Test Execution Phase. 

Inputs of this phase: are the original tested program, the 

mutated versions of it, and the generated test inputs.  

Tasks of this phase: include executing the tested program 

and its mutants using the generated test inputs, recording 

the killed mutants, and checking the coverage of all 

mutants. 

Outputs of this phase: are the number of killed mutants, 

total number of mutants, and passing the outputs to the 

fitness calculating module. 

5. EMPIRICAL STUDY 

This section describes the empirical setup and the study we 

performed to evaluate our system. 

5.1 Empirical Setup 

Prototype: Figure  4  gives the architecture of the 

prototype of GAMTS, which consists of four modules: 

analysis module, mutants generation module (MuJava), 

test inputs generation module, and test execution module. 

All modules are written in Java language. This prototype is 

based on the proposed genetic algorithm which is shown in 

Section 3 and the mutation testing system which is 

presented in Section 4. 

 

 

 

 

 

 

 

 

Subject Programs: We used two sets of Java programs 

for our empirical studies. The first set of subject programs 

contains some common programs which are often used as 

subject programs in many software testing studies. This set 

of programs are Triangle, DateRange, CalDay, Select, 

Mid, BubSort, Power, and Remainder. The second set of 

subject programs are selected from the Software-artifact 

Infrastructure Repository (SIR) [31]. 

Table 8 shows details of the subject programs: The first 

column, Subject Program, gives a designated title of the 

program under test; the second column, Reference, shows 

some of the previous studies which used this set of subject 

programs; the third column, Scale, shows the number of 

lines of code, classes, and methods in the subject program; 

the fourth column, No. of FOMs, provides the number of 

first-order mutants in each subject program, the fifth 

column, Mutation Operators,  gives the details of the first-

order mutants. Table 9 shows the first, second, and third 

order mutants for each subject program.  

Procedure: the empirical study is conducted as follows. 

1. We run the analysis module of our prototype to find the 

set of input variables of the program and their data types. 

2. We run Mujava tool to generate FOMs of the program 

under test. Then, we apply the CIA algorithm to generate 

the mutants of orders two and three.  

3. The GA is adapted such that maxgen = 100, ps =10, xp 

= 0.80 and mp =0.15. For fairness the random generation 

technique is adapted to find 10 set of test inputs 100 times.  

4. The test-inputs generation module is executed, which 

executes GAMTS, to find the test inputs. 

5. We use the test execution phase to execute the original 

tested program and its mutants using the generated test 

inputs and count the number of killed mutants. 

5.2 Study Objectives:  

We applied the study procedure to measure the efficiency 

of our proposed technique in killing the non-equivalent  

Figure  4: The Architecture of the Prototype of GAMTS. 
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first, second, and third order mutants. This study addresses 

the following research questions: 

RQ1: How effective is our proposed genetic algorithm in 

generating test inputs to kill non-equivalent mutants of 

orders one, two, and three? 

RQ2: How effective is our higher order mutation testing 

technique in generating test inputs and reducing size of test 

suite, compared to random generation technique (RGT)? 

5.3 Results and Discussion 

Figure 5 shows the ratio of killed mutants of the first-order 

mutants, second-order mutants, and third-order mutants. 

The result shows that our proposed technique killed 81.8% 

of the first-order mutants, 90% of the second-order mutant, 

and 93% of the third-order mutants of the total number of 

mutants in all subject programs. While the random 

technique killed 68.1% of the first-order mutants, 77.4% of 

the second-order mutant, and 80.6% of the third-order 

mutants of the total number of mutants in all subject 

programs. The results of the study show the effectiveness 

of our proposed technique in generating test inputs to kill 

non-equivalent mutants of orders one, two, and three. In 

addition, Figure 5 shows the ratio of killed higher order 

mutants (2OMs, and 3OMs) by our proposed technique 

and the random technique. The results show that our 

technique outperforms the random techniques in killing the 

mutants of the first, second, and third order. 

Figure 6 shows the ratio of killing FOMs using GAMTS 

and RGT. The results of the study show that our proposed 

system GAMTS killed higher number of FOMs than 

random generation technique for all subject programs. 

5.4 Threats to Validity 

There are two main external threats to validity, which are 

conditions that limit the ability to generalize the results of 

our empirical study to a larger population of subjects 

Table 8: Subject Programs. 

 

# 

Subject  

Program 
Reference 

Scale 

(LOC, 

Classes, 

Methods 

No. of 

FOMs 

Mutation Operators 

A 

O 

R 

B 

A 

O 

R 

S 

A 

O 

I 

U 

A 

O 

I 

S 

A

O

D

U 

A

O

D 

S 

R

O

R 

C 

O 

R 

C

O

D 

C

O 

I 

S 

O

R 

L

O

R 

L

O 

I 

L

O

D 

A 

S 

R 

S 

1 Select (32), (33) 
147 LOC 
1C, 3 M 

60 4 8 215 0 0 270 40 0 30 0 0 50 0 0 60 

2 Triangle 
(1), (32), (30), 

(34) 

50 LOC 

1 C, 2 M 
359 36 0 3 128 0 0 119 14 0 24 0 0 35 0 0 

3 Remainder 
(34), (35), 

(36) 
43 LOC 
1 C, 2 M 

183 20 0 10 90 0 0 31 2 0 7 0 0 23 0 0 

4 CalDay (32), (33) 
30 LOC 

1 C, 2 M 
219 88 0 13 82 0 0 14 0 0 3 0 0 19 0 0 

5 Mid 
(30), (34), 

(36) 

42 LOC 

1 C, 2 M 
103 0 0 6 62 0 0 14 0 0 5 0 0 16 0 0 

6 Power 
(34), (35), 

(36) 

32 LOC 

1 C, 2 M 
79 16 0 8 40 1 0 5 0 0 3 0 0 6 0 0 

7 Maximum 
(34), (35), 

(36) 

23 LOC 

1 C, 2 M 
56 0 0 4 28 0 0 14 0 0 2 0 0 8 0 0 

8 Sort 
(34), (35), 

(36) 

33 LOC 

1 C, 2 M 
178 40 4 6 78 0 0 20 0 0 6 0 0 24 0 0 

9  Array-Partition SIR (31) 
13 LOC 

1 C, 2 M 
222 28 0 11 116 0 0 14 8 0 13 0 0 32 0 0 

10 Disjoint-Set SIR (31) 
35 LOC 
1 C, 4 M 

78 0 2 5 42 1 0 7 0 0 4 0 0 17 0 0 

11 Binary-Heap SIR (31) 
72 LOC 

2 C, 2 M 
54 0 26 150 0 0 43 23 0 34 0 0 78 0 0 54 

12 
Binary- 

Search-Tree 
SIR (31) 

130 LOC 

4 C, 4 M 
76 0 31 250 0 0 51 30 0 28 0 0 83 0 0 76 

13 
Doubly- 

Linked-List 
SIR (31) 

277 LOC 
1 C, 9 M 

105 0 59 287 0 0 65 45 0 47 0 0 97 0 0 105 

Table 9: First, Second, and Third Order Mutants. 

# 
Subject 

Program 
FOMS 2OMs 3OMs 

1 Select 677 76750 3387600 

2 Triangle 359 19826 358532 

3 Remainder 183 4587 55456 

4 CalDay 219 5129 117990 

5 Mid 103 1486 11148 

6 Power 79 622 6033 

7 Maximum 56 566 3164 

8 Sort 178 3436 24432 

9  Array-Partition 222 4736 83016 

10 Disjoint-Set 78 399 1564 

11 Binary-Heap 408 8014 114036 

12 Binary-Search-Tree 549 11502 118524 

13 Doubly-Linked-List 705 24547 296335 

 Total 3816 161600 4577830 
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programs. First, although the set of the subject programs 

contains some programs which have been used in many 

previous studies but we cannot claim that these subjects 

represent a random selection over the population of 

programs as a whole. Second, MuJava tool cannot 

generate the higher-order mutants, therefore we proposed 

two algorithms (CIA and RAN) based on MuJava to find 

the higher-order mutants. Therefore, the generated mutants 

sometimes have redundant mutants.  

There are three main internal threats to validity, which are 

influences that can affect the dependent variables. First, 

we compare our technique with the random test-inputs 

generation technique, which may not be sufficient to 

evaluate the reliability of our technique. Second, the 

generated number of higher-order mutants is very big 

(161k 2OMs, 4k
2
 3OMs). Therefore, we selected subset of 

this number of higher-order mutants to carry out our 

empirical study. Although this set of mutants is selected in 

a significant way, another empirical studies are required to 

cover all the generated higher-order mutants. Third, we 

consider a higher-order mutant a killed mutant if any one 

of its first-order mutants is killed. Although this method 

gives a significant ratio of discovering the higher-order 

mutants, it cannot discover all its first-order mutants which 

compose these higher-order of mutants.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6: Ratio of Killing FOMs Using GAMTS and RGT. 

6. RELATED WORK 

Search-based techniques [32] have been used to generate 

test inputs for killing the first-order mutants. These 

techniques used the mutation score formula (1) as fitness 

function to evaluate the generated test inputs. These 

techniques didn't handle the problem of higher-order 

mutation testing. 

Recently, a very few number of work have been done in 

the field of using search-based techniques for higher-order 

mutation testing. Langdon et al. [1] used genetic 

programming to find test inputs for killing the higher-order 

mutants in the program under test. They used two fitness 

functions: semantic difference and syntactic difference to 

evolve mutant programs. The syntactic distance sums the 

number of changes weighted by the actual difference. 

Syntactic distance places the six C comparison operations 

<, <=, ==, !=, >=, > in order. The distance of one 

comparison from another is their distance in this order plus 

six if they differ at all. The total distance of a mutant is the 

sum of the individual distances for each comparison it 

contains. This fitness can't find the distance for the change 

in descending order. Semantic distance is measured as the 

number of test cases for which a mutant and original 

program behave differently. This fitness can't find the 

fitness value of a single test case which is required by the 

search-based techniques.  

Harman et al. [20, 6] defined a fitness function to capture a 

HOM's reduced Fragility. Let T be a set of test cases, {M1, 

..., Mn} be a set of mutants, and the kill({M1, ..., Mn}) 

function returns the set of test cases which kill mutants M1, 

..., Mn. The fragility of a mutant is defined as follows: 

𝐹𝑟𝑎𝑔𝑖𝑙𝑖𝑡𝑦  𝑀1, … , 𝑀𝑛  =  
  𝑘𝑖𝑙𝑙 (𝑀𝑖)𝑛

𝑖=1  

 𝑇 
. The value of 

fragility lies between 0 and 1. When it equals 0 this means 

that there is no test case that can kill this mutant, which 

indicates that this mutant is potentially an equivalent 

mutant. The fitness of a HOM is defined as the ratio of the 

fragility of its HOM to the fragility of the constituent 

FOMs.   

Jia and Harman [24] measured the fitness of the HOM 

using the killability of both FOMs and HOMs. 

Killability =  
# of  test  cases  that  kill  the  mutant

total  # of  test  cases
 . The fitness of 

a HOM describes the ratio of the killability of the HOM to 

the union of the killability of each constituent FOM. The 

fitness function evaluates the HOM mutants rather than 

evaluating the test cases which is required in generating 

test inputs by search-based techniques. It is clear that the 

fitness functions of the related work are not appropriate to 

evaluate the test inputs generated by genetic algorithm. 
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7. Conclusion and Future work 

In this paper, we introduced a genetic algorithm based 

technique to aid the automatic generation of test inputs for 

killing higher-order mutants. The proposed technique 

allows the user to choose one of two policies: the first 

policy aims at killing the first-order mutants, and the 

second policy aims at killing the higher-order mutants. In 

addition, we introduced two algorithms to generate the 

higher-order mutants. The paper presented the results of 

the experiments that have been carried out to evaluate the 

effectiveness of the system with its two policies. The 

results of the experiments showed that our proposed 

technique is effective in generating test-inputs to kill the 

higher-order mutants. Also, the results showed that our 

proposed technique is more effective than the test inputs 

random generation techniques. In future work we plan to 

perform these studies with real and large subject programs. 

Also, we will compare our technique with another test-

inputs generation techniques rather than random technique. 

In addition, our future work will concern on solving the 

problem of explosion of higher order mutants. 
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