

Using Evolutionary Algorithms for Higher-Order Mutation

Testing

Ahmed S. Ghiduk1, 2

 1 College of Computers and Information Technology, Taif University

Saudi Arabia

asaghiduk@tu.edu.sa

2 Department of Mathematics and Computer Science, Faculty of Science

Beni-Suef University, Egypt

asaghiduk@yahoo.com

Abstract
Most software faults are complex higher-order mutants and their

fixing needs more changes than first-order mutants. First-order

mutants are created by inserting a single fault in the tested

program. Higher-order mutants are created by injecting two or

more faults in the tested program. Mutation testing has been

developed to generate test inputs to kill the mutants of the tested

program. Evolutionary algorithms have been effectively used in

many software testing activities especially producing the required

test inputs. In this paper, we introduce a genetic algorithm based

technique to aid the automatic generation of test inputs for killing

higher-order mutants. The proposed technique includes two

policies: the first policy aims at killing the first-order mutants,

and the second policy aims at killing the higher-order mutants. In

addition, we introduce two new algorithms to generate the

higher-order mutants. The paper also presents the results of the

experiments that have been carried out to evaluate the

effectiveness of our technique with its two policies. The results

of the conducted empirical study showed that our proposed

technique is more efficiency than random tests generation

techniques in killing higher-order mutants.

Keywords: Mutation Testing, First-Order Mutants, Higher-

Order Mutants, Test-Inputs Generation, Genetic Algorithms.

1. Introduction

Approximately 90% of faults in software are complex

faults of higher-order mutants and their fixing needs

several changes [1]. The space of higher-order mutants is

wider than the space of first-order mutants. Mutation

testing has been developed by DeMillo et al. [2] and

Hamlet [3]. It has been developed to find test inputs to kill

the seeded mutants in the program under test [4]. Mutation

testing motivation is that injected faults represent errors

that programmers often create. Many mutation testing

techniques have been developed to consider the first-order

mutants (FOMs) which are created by the injection of

unique fault in the tested program [5]. FOMs represent

simple faults which are easily killed. Higher-order mutants

(HOMs) are complex faults which are produced by

inserting two or more faults in the tested program [6].

Higher-order mutation testing techniques are proposed by

Jia and Harman [6] and used to study the interactions

between defects and their impact on software testing for

fault detecting [6].

Achieving high mutant-killing ratios is important in

mutation testing and requires generating high-quality test

inputs which is a crucial issue. Although manually written

test inputs are valuable, they are not sufficient to prevent

faults. Therefore, automatic generation of test inputs is

required to complement manually written test inputs.

Many automatic test-inputs generation techniques have

been presented, some of which [7, 8, 9, 10] generate test

inputs randomly; other techniques [11, 12, 13] use code

coverage as the test criterion and generate test inputs to

satisfy this test criterion; a third approach [5, 14, 15, 16, 17]

use mutation testing as the test criterion and generate test

inputs to kill mutants. Jia and Harman [18] provided a

comprehensive analysis of trends and results of mutation

testing techniques. Guiding the automatic generation of

test inputs using mutant killing is intractable process [14].

Therefore, many of the existing mutation testing

techniques use the concepts of weak mutation testing [5]

for generating test inputs and improving the probability of

mutant killing. Mutation testing techniques have been

utilized to evaluate the quality of test data [15]. In addition,

mutation testing requires fewer number of tests than many

white box testing criteria such as edge-pair, all-uses and

prime path coverage [19]. Mutation testing is more robust

than code coverage in evaluating the effectiveness of test

data [16]. In practice, there are many challenges that face

the existing mutation-testing techniques. The automatic

generation of test inputs for mutant killing is one of the

main challenges for mutation testing techniques. Although

there are techniques [5, 14] aiding test-inputs generation

for killing mutants, they have three main drawbacks. First,

these techniques construct a whole constraint system for

each weak mutant killing, making it costly to generate test

inputs for a large number of mutants. Second, these

techniques are based on solving statically constructed

constraint systems, not being able to handle programs with

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 93

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

complex data structures, non-linear arithmetic, or array

indexing with non-constant expressions. Third, these

techniques don't consider higher-order mutants killing.

These limitations cause the existing mutant killing based

test generation techniques to be inapplicable for real world

programs, and not to be widely used in practice.

In 2009, Jia and Harman [6] proposed the concepts of

higher-order mutation testing. Harman et al. [1, 20]

introduced the first policy to use search-based techniques

for higher-order mutation testing (HOMT). This strategy

uses the genetic programming algorithms to find test data

to kill higher-order mutants in C programs. The results of

the experiments showed the efficacy of search-based

techniques in killing higher-order mutants. Harman et al.

[21] introduced mutation-based test data generation

approach that combines dynamic symbolic execution and

hill climbing. This technique targets strong mutation

adequacy. Kapoor [22] studied the subsuming relation

between the first-order mutants and the higher-order

mutants. Kapoor's technique did not consider higher-order

mutants killing. Akinde [23] presented an empirical study

to show that higher-order mutation reduces the number of

equivalent mutants.

From the above discussion, it is clear that little attention

has been given in literature to search-based test data

generation for killing the higher-order mutants. In addition,

Langdon et al. [1] reported the problem of non-

determinism in mutation testing for the first time. The

problems associated with a mutant behaving differently

between different runs were discussed in the context of the

mutant causing a local variable not to be initialized and

hence to take essentially random values on different runs.

This in turn could cause the mutant to pass tests on some

runs and fail the same tests (i.e., be killed) on others. The

problems of non-determinism in mutation testing and the

equivalent higher-order mutants have not been handled yet.

Evolutionary Algorithms have been successively used in

many software testing activities showing significant

robustness in producing the required test inputs. Only

genetic programming and hill climbing [1] [21] have been

used in higher-order mutation testing. Jia and Harman [24]

reported their empirical study to identify subsuming

HOMs using three search based algorithms: greedy

algorithm, genetic algorithm and hill climbing algorithm.

Although genetic algorithms (GAs) are considered the

most powerful and the most widely employed evolutionary

algorithms in search-based software testing, they have not

been used in generating test inputs to kill higher-order

mutants.

The main contributions of this paper are: 1) introducing a

genetic algorithm based approach for generating test inputs

for killing the first-order mutants and higher-order mutants;

2) using the proposed approach to implement a testing tool

for automatic generation of test inputs to kill first-order

mutants and higher-order mutants; 3) using the

implemented tool to perform set of empirical studies to

answer the following research questions:

RQ1: How effective is our proposed genetic algorithm in

generating test inputs to kill non-equivalent mutants of

orders one, two, and three?

RQ2: How effective is our higher-order mutation testing

technique in generating test inputs compared to random

testing techniques?

The rest of this paper is organized as follows. Section 2

gives some basic concepts and definitions. Section 3

describes the proposed genetic algorithm for automatic

generation of test inputs for mutation testing. Section 4

describes the phases of our proposed genetic algorithm

based mutation testing system. Section 5 presents the

results of the experiments that are conducted to evaluate

the effectiveness of the proposed GA-based technique

compared to the random-based test inputs generation

techniques. Section 6 discusses the related work. Section 7

gives the conclusion and future work.

2. Background

We introduce here some basic concepts that will be used

throughout this work.

2.1 Mutation testing:

In mutation testing, a set of faulty programs p', called

mutants, is generated by seeding faults into the original

program p. A mutant is generated by making a single small

change to the original program. For example, Table 1

shows a first-order mutant in the mutated program p'

generated by changing the and (&&) operator in the

original program p into the or (||) operator in the mutated

p'. In addition, Table 1 gives a second-order mutant by

changing two operators (&&) and (>) in p into (||) and (<)

in p'. A transformation rule that generates a mutant from

the original program is known as a mutation operator [6].

Table 1: An Example of Mutation Operation

Original Program

p

Mutated Program p'

First Order

Mutant

Second Order

Mutant

if (a >0&& b> 0) if (a>0 || b > 0) if (a > 0 || b < 0)

Each mutated program p' will be executed using a test set

T. If the result of running p' is different from the result of

running the original program p for any test case in T (i.e.,

p'(t) ≠ p(t) for any t of T), then the mutated program p' is

said to be “killed”, otherwise it is said to have “survived”.

The adequacy level of the test set T can be measured by a

mutation score [25] that is computed in terms of the

number of mutants killed by T as follows.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 94

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

𝑀𝑆 𝑃, 𝑇 =
𝑜𝑓 𝑘𝑖𝑙𝑙𝑒𝑑 𝑀𝑢𝑡𝑎𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜 . 𝑜𝑓 𝑀𝑢𝑡𝑎𝑛𝑡𝑠 − 𝑛𝑜 .𝑜𝑓 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑀𝑢𝑡𝑎𝑛𝑡𝑠
(1)

The aim of mutation testing is finding the test set T [2, 3].

2.2 Higher-Order Mutation Testing:

Higher-order mutation (HOM) testing is a generalization

of traditional mutation testing. Higher-order mutants are

constructed by inserting one or more of a given set of first

order mutants into the tested program [20].

2.3 Classification of Higher-Order Mutants:

Higher-order mutants can be classified into six categories

based on the way that they are „Coupled‟ and „Subsuming‟,

as shown in Figure 1. Coupled means: complex errors are

coupled to simple errors, and coupling effect hypothesis

states that test input sets that detect simple types of faults

are sensitive enough to detect more complex types of

faults [2]. A subsuming HOMs is one in which the first-

order constituent mutants partly mask one another.

Therefore, a subsuming HOM is harder to kill than the

first-order mutants from which it is constructed.

The area in the big circle at the centre of Figure 1

represents the domain of all HOMs. The sub-diagrams

surrounding the central region illustrate each category for

case of second-order mutant. In this case, there are two

FOMs f1 and f2, and h denotes the HOM constructed from

the FOMs f1 and f2. The two regions depicted by each sub-

diagram represent the test sets containing all the test cases

that kill FOMs f1 and f2. The shaded area represents the

test set that contains all test cases that kill HOM h.

According to the coupling effect hypothesis, if a test set

that kills the FOMs also includes tests that kill the HOM,

then the HOM is called a „coupled HOM‟, otherwise it is

called a „de-coupled HOM‟. In Figure 1, a sub-diagram is

a „coupled HOM‟ if it contains an area where the shaded

region overlaps with the un-shaded regions. For example

the sub-diagrams (a), (b) and (f) are ’coupled HOMs‟,

while diagrams (c) and (d) are „de-coupled HOMs‟,

because the shaded region in (c) and (d) don't overlap with

the un-shaded regions. Diagram (e) is a special case of a

’de-coupled HOM‟, because there is no test case that can

kill the HOM. The HOM in (e) is an equivalent mutant.

According to subsuming definition, the subsuming HOMs

can be represented as in diagrams (a), (b) and (c) where

the shaded area is smaller than the area of the union of the

two un-shaded regions. By contrast, (d), (e) and (f) are

non-subsuming. The subsuming HOMs can be classified

into strongly subsuming HOMs and weakly subsuming

HOMs. By definition, if a test case kills a strongly

subsuming HOM, it guarantees that its constituent FOMs

are killed as well. Therefore, if the shaded region lies only

inside the intersection of the two un-shaded regions, it is a

strongly subsuming HOM, as depicted in (a), otherwise, it

is a weakly subsuming HOM, as depicted in (b) and (c).

The formal definitions of the six HOMs are defined below.

Let h be a HOM, constructed from FOMs f1, ..., fn.

Assume the existence of a test set T. T is the set of all test

cases under consideration. Th is the subset of T that kills

the HOM h, while T1, ..., Tn are the subsets of T that kill

the constituent FOMs f1, ..., fn respectively.

a. Strongly Subsuming and Coupled 𝑇 ⊂ 𝑇𝑖𝑖 𝑎𝑛𝑑 𝑇 ≠ ∅.

b. Weakly Subsuming and Coupled 𝑇 < 𝑇𝑖𝑖 , 𝑇 ≠ ∅
𝑎𝑛𝑑 𝑇 ∩ 𝑇𝑖 ≠ ∅𝑖

c. Weakly Subsuming and De-Coupled

 𝑇 < 𝑇𝑖𝑖 , 𝑇 ≠ ∅ 𝑎𝑛𝑑 𝑇 ∩ 𝑇𝑖 = ∅𝑖 .

d. Non-Subsuming and De-coupled

 𝑇 ≥ 𝑇𝑖𝑖 , 𝑇 ≠ ∅ 𝑎𝑛𝑑 𝑇 ∩ 𝑇𝑖 = ∅𝑖 .

e. Non-Subsuming and De-coupled (Equivalent) Th = ϕ.

f. Non-Subsuming and Coupled (Useless)

 𝑇 ≥ 𝑇𝑖𝑖 , 𝑎𝑛𝑑 𝑇 ∩ 𝑇𝑖 ≠ ∅𝑖 .

2.4 The Method of Mutation Testing:

The input parameters to the mutation testing are the tested

program, a set of mutation operators, and a set of test

inputs, T. Initially, the program under test must be

executed with the test set T to show that it is correct and

produces the desired outputs. If not, then program under

test contains faults, which should be corrected before

resuming the process.

The next stage generates set of mutants of the tested

program by seeding faults in it. The seeded faults are

generated by applying the mutation operators.

The generated mutants are then executed with all tests in T

and their outputs compared against the outputs of the

original program. If a mutant produces a different result

from the tested program for any test, then the mutant is

said to be “killed”, otherwise it is said to have “survived”.

3. A SEARCH-BASED ALGORITHM FOR

HOM TESTING

This section describes the proposed search-based

algorithm for automatic test inputs generation for higher-

Figure 1: Higher Order Mutants Categories.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 95

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

order mutation testing. This algorithm uses the concepts of

genetic algorithms to search for test inputs that kill the

first-order mutants and higher-order mutants.

3.1 Chromosome Representation

The proposed genetic algorithm uses a binary vector as a

chromosome to represent the inputs values of the tested

program. The length, m, of this binary vector depends on

the required precision and the domain length for each input

variable.

Suppose we desire to generate test inputs for a program of

k input variables x1,…, xk and each variable xi can take

values from a domain Di = [ai, bi]. Suppose further that di

decimal places are desirable for the values of each variable

xi. To achieve such precision, each domain Di should be

cut into 𝑏𝑖 − 𝑎𝑖 × 10𝑑𝑖 equal size ranges. Let us denote

by mi the smallest integer such that 𝑏𝑖 − 𝑎𝑖 × 10𝑑𝑖 ≤
2𝑚 𝑖 − 1. Then, a representation having each variable xi

coded as a binary vector of length mi clearly satisfies the

precision requirement. The mapping from the binary

vector into a real number xi from the range [ai, bi] is

performed by the following formula:

𝑥𝑖 = 𝑎𝑖 + 𝑥𝑖
′ ×

𝑏𝑖−𝑎𝑖

2𝑚𝑖−1
 (2)

where ix is the decimal value of the binary vector (26).

The above method can be applied for representing values

of integer input variables by setting di to 0, and using the

following formula instead of formula (2):

𝑥𝑖 = 𝑎𝑖 + 𝑖𝑛𝑡(𝑥𝑖
′ ×

𝑏𝑖−𝑎𝑖

2𝑚𝑖−1
) (3)

Now, each chromosome is represented by a binary string

of length 𝑚 = 𝑚𝑖
𝑘
𝑖=1 ; the first m1 bits map into a value

from the range [a1, b1] of variable x1, the next group of m2

bits map into a value from the range [a2, b2] of variable x2,

and so on; the last group of mk bits map into a value from

the range [ak, bk] of variable xk.

For example, let a program have 2 input variables x and y,

where –3.0 x 12.1 and 4.1 y 5.8, and the required

precision is 4 decimal places for each variable. The

domain of variable x has length 15.1; the precision

requirement implies that the range [-3.0, 12.1] should be

divided into at least 15.110000 equal size ranges. This

means that 18 bits are required as the first part of the

chromosome: 2
17

 < 151000 2
18

. The domain of variable y

has length 1.7; the precision requirement implies that the

range [4.1, 5.8] should be divided into at least 1.710000

equal size ranges. This means that 15 bits are required as

the second part of the chromosome: 2
14

 < 17000 2
15

.

The total length of a chromosome is then m = 18+15=33

bits; the first 18 bits code x and remaining 15 bits code y.

Let us consider an example chromosome:

010001001011010000111110010100010.

Using formula (2), first 18 bits, 010001001011010000,

represents x =1.0524, and next 15 bits, 111110010100010,

represents y = 5.7553. So the given chromosome

corresponds to the data values 1.0524 and 5.7553 for the

variables x and y, respectively.

3.2 Initial population

As mentioned above, each chromosome is represented by a

binary vector of length m. We randomly generate ps of m-

bit vectors to represent the initial population, where ps is

the population size which is experimentally determined.

Each chromosome is converted to k decimal numbers

representing values of k input variables x1,…, xk by using

formula (2) or (3).

3.3 Evaluation Function

To measure the robustness of the test inputs to kill the

FOMs or HOMs, the algorithm uses a fitness function to

evaluate these test inputs. We define the killing ability of a

set of test inputs Ti (i = 1, …, population size) as follows:

Killing Ability (Ti) =
number of killed mutants by Ti

total number of mutants
 (4)

The fitness value of a set of test inputs Ti is its killing

ability. The target of the proposed genetic algorithm is

maximizing this fitness function.

3.4 Selection

After computing the fitness of each test input in the current

population, the algorithm uses the cumulative fitness

method [26] to select test inputs from the members of the

current population to be parents of the new population.

3.5 Recombination

The algorithm uses two genetic operators, crossover and

mutation [26], which are the key to the power of GAs.

These operators create new individuals from the selected

parents to form a new population.

Crossover: It operates at the individual level with a pre-

determined probability xp. During crossover, two parents

(chromosomes) exchange some information at a random

position in the chromosome to produce two new offspring.

Any offspring that does not lie inside the domain of the

required variables will be discarded.

Mutation: It is performed on a gene-by-gene basis.

Mutation always operates after the crossover operator, and

changes each gene with the pre-determined probability mp.

Every gene (in all chromosomes in the whole population)

has an equal chance to undergo mutation. A gene is

mutated by changing its value from 0 to 1 and vice versa.

If the mutated chromosome does not lie inside the domain

of the required variables, it will be discarded.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 96

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

3.6 Stop Condition

The algorithm will stop if the maximum number of

generations is reached or if there isn't any enhancement in

the evaluation of the generated population. In our

empirical study, the algorithm stops if 97% of mutants (or

more) are killed.

4.The Proposed GA-Based Higher-order

Mutation Testing System (GAMTS)

This section describes the phases that form the proposed

GA-based mutation testing system (GAMTS). The system

is written in Java and consists of the following phases:

1. Program Analysis Phase.

2. Mutants Generation Phase.

3. Test Inputs Generation Phase.

4. Test Execution Phase.

These phases are described in more details below.

4.1 Program Analysis Phase:

This phase consists of one Module that performs the

following tasks: 1) reading the Java source code of the

program under test (PUT.java), 2) identifying the number

of input variables and their data types.

Inputs of this phase: The input of this phase is the source

code of the program under test in Java (PUT.java).

Output of this phase: is list of the input variables, and

their data types. The outputs of this phase are passed to the

Test Inputs Generation Phase. In addition, this module

passes the source code of the program under test to the

Mutants Generation Module.

 Figure 2.(a) shows a Java example program which reads

three integers and finds the maximum value. This phase

finds for this example program (Maximum.java) the

number of required inputs which is 3 and their data types

which are int.

4.2 Mutants Generation Phase:

This phase applies the MuJava tool to achieve its tasks.

MuJava automatically generates FOMs for both traditional

mutation testing and class-level mutation testing for Java

programs [27]. Table 2 shows the first set of mutation

operators: the 22 “mothra” Fortran mutation operators

[28]. MuJava [29] uses a subset of the 22 “mothra” Fortran

mutation operators to generate the first-order mutants.

Inputs of this phase: are two files; the first is the Java

source code of the program under test (PUT.java) and the

second is the class file (PUT.class).

Output of this phase: is set of mutated versions of the

Java source code of the program under test. Each mutated

program is seeded by single fault which can be selected

from an available list of Java mutation operators

(transformations) [29].

Tasks of this phase are: 1) creating set of FOMs by

seeding the original program with single fault. Figure

2.(b). gives an example for first-order mutant for the

example program. Table 3 shows the generated FOMs by

MuJava for the example program, Maximum.java, 2)

creating set of HOMs mutants of the original program each

mutated program contains higher-order mutants of order n

where 𝑛 ≥ 2 . Figure 3.(a) gives an example for the

second-order mutant and Figure 3.(b) gives an example for

third-order mutant for the example program. In fact,

MuJava tool generates only first-order mutants. Therefore,

an algorithm to generate higher-order mutants is required

for our technique. Our higher-order mutants generation

procedures are described below, 3) passing the mutated

versions of the program under test to the test inputs

generation phase.

Figure 2: a) Java Example Program; b) Its FOM Mutated Example.

1. import java.lang.*;

2. import java.util.Scanner;

3. public class Maximum{

4. public static void main(String[] args){

5. int x, y, z;

6. Scanner in = new Scanner(System.in);

7. x = in.nextInt();

8. y = in.nextInt();

9. z = in.nextInt();

10. z = max(x,y,z);

11. System.out.println("max = "+z);

12. }

13. public static int max(int a, int b, int c){

14. int m = a;

15. if(b < m){

16. m = b;

17. }

18. if (c > m){

19. m = c;

20. }

21. return m;

22. }

23. }

(b)

1. import java.lang.*;

2. import java.util.Scanner;

3. public class Maximum{

4. public static void main(String[] args){

5. int x, y, z;

6. Scanner in = new Scanner(System.in);

7. x = in.nextInt();

8. y = in.nextInt();

9. z = in.nextInt();

10. z = max(x,y,z);

11. System.out.println("max = "+z);

12. }

13. public static int max(int a, int b, int c){

14. int m = a;

15. if(b > m){

16. m = b;

17. }

18. if (c > m){

19. m = c;

20. }

21. return m;

22. }

23. }

(a)

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 97

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Higher-order mutants generation algorithm: There are

many procedures that can be implemented to generate

higher-order mutants for Java programs using MuJava.

Polo et al. [30] proposed some procedures to generate

second-order mutants. In the following, we introduce two

algorithms to generate higher-order mutants of order

greater than or equal two. To illustrate our algorithms, we

use the results in Table 3 which lists the names of the 56

mutants that the MuJava tool generates for the example

program, Maximum.java. The application of the operators

AOIU, AOIS, ROR, COI, and LOI generated 4, 28, 14, 2,

and 8 mutants, respectively. In the following, we show our

mutants generation algorithms.

Circular Incremental Algorithm (CIA): finds the list of

mutation operators which we can apply on the program

under test by checking the list of operators in MuJava and

puts these operators in circular order. CIA algorithm finds

the operators AOIU, AOIS, ROR, COI, and LOI for the

example program and puts them in the previous order. CIA

applies MuJava tool to find the list of first-order mutants

for the tested program. First-order mutants of the example

program are shown in Table 3 . Then, the CIA Algorithm

generates 2-order mutants in incremental manner by

applying the first operator (AOIS) on the mutants files of

the second operator (AOIU) and the second operator

(AOIU) on the mutants files of the third operator (ROR),

and so on till the last operator (LOI) is applied on the

mutants files of the first operator (AOIS). Table 4 gives

the second-order mutants that is generated for the example

program by the algorithm CIA. AOIU (AOIS) means that

applying AOIU such that AOIS was already applied.

Table 2: Set of Mutation Operators.

Mutation

Operator
Description

AAR array reference for array reference replacement

ABS absolute value insertion

ACR array reference for constant replacement

AOR arithmetic operator replacement

ASR array reference for scalar variable replacement

CAR constant for array reference replacement

CNR comparable array name replacement

CRP constant replacement

CSR constant for scalar variable replacement

DER DO statement alterations

DSA DATA statement alterations

GLR GOTO label replacement

LCR logical connector replacement

ROR relational operator replacement

RSR RETURN statement replacement

SAN statement analysis

SAR scalar variable for array reference replacement

SCR scalar for constant replacement

SDL statement deletion

SRC source constant replacement

SVR scalar variable replacement

UOI unary operator insertion

Table 3 : The Generated FOMs by Mujava for the example program.

Mutation Operator

(Transformation)

of Mutants

(Frequency)

AOIU: Arithmetic Operator Replacement (Replace
basic unary arithmetic operators with other

unary arithmetic operators).

4

AOIS: Arithmetic Operator Insertion (Insert short-
cut arithmetic operators).

28

ROR: Relational Operator Replacement (Replace

relational operators with other relational

operators, and replace the entire predicate
with true and false).

14

COI: Conditional Operator Insertion (Insert unary

conditional operators).
2

LOI: : Logical Operator Insertion. (Insert unary
logical operator).

8

Total # of FOMs for the example program 56

To find the third-order mutants, CIA applies the mutation

operators in the same circle such that the first operator

AOIU in row #1 in Table 4 is applied on the mutated files

of operators AOIS(ROR) in row #2 (i.e., the first operator

Figure 3: a) Second-Order Mutation and b) Third-Order Mutation for

the Example Program.

1. import java.lang.*;

2. import java.util.Scanner;

3. public class Maximum{

4. public static void main(String[] args){

5. int x, y, z;

6. Scanner in = new Scanner(System.in);

7. x = in.nextInt();

8. y = in.nextInt();

9. z = in.nextInt();

10. z = max(x,y,z);

11. System.out.println("max = "+z);

12. }

13. public static int max(int a, int b, int c){

14. int m = ++a;

15. if(b < m){

16. m = b;

17. }

18. if (c >= m){

19. m = c;

20. }

21. return m;

22. }

23. }

(b)

1. import java.lang.*;

2. import java.util.Scanner;

3. public class Maximum{

4. public static void main(String[] args){

5. int x, y, z;

6. Scanner in = new Scanner(System.in);

7. x = in.nextInt();

8. y = in.nextInt();

9. z = in.nextInt();

10. z = max(x,y,z);

11. System.out.println("max = "+z);

12. }

13. public static int max(int a, int b, int c){

14. int m = a;

15. if(b < m){

16. m = b;

17. }

18. if (c > m){

19. m = ++c;

20. }

21. return m;

22. }

23. }

(a)

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 98

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

in a row in Table 4 is applied on the mutated files of the

operators in the next row). Table 5 gives the third-order

mutants generated for the example program by applying

the algorithm CIA.

In this manner, the Circular Incremental algorithm can

generate any other order of mutants. For example, to find

fourth-order mutants CIA uses Table 5 and applies the

operators in the same approach (e.g., LOI is applied of the

mutated files of AOIU(AOIS(ROR)) and so on).

Table 4: The Generated 2OMs by CIA for the example program.

Mutation Operator

(Transformation)

#of Mutants

(Frequency)

1 AOIU(AOIS) 98

2 AOIS (ROR) 392

3 ROR (COI) 28

4 COI (LOI) 16

5 LOI (AOIU) 32

Total # of 2OMs 566

Table 5: The Generated 3OMs by CIA for the example program.

Mutation Operator

(Transformation)

of Mutants

(Frequency)

1 LOI (AOIU(AOIS)) 784

2 AOIU (AOIS (ROR)) 1372

3 AOIS (ROR (COI)) 784

4 ROR (COI (LOI)) 224

5 COI(LOI (AOIU)) 64

Total # of 3OMs for the example program 3164

 Random N Algorithm (RNA): This algorithm randomly

selects n different operators. Then, it applies the first

operator on the tested program using MuJava, the second

is applied on the mutants files of the first operator, and the

third is applied on the results of the second and so on. To

generate fourth-order mutants, RNA algorithm randomly

selects ROR, LOI, AOIS, and COI. Then, RNA algorithm

applies the selected operators in random order (e.g., ROR,

COI, LOI, AOIS). RNA algorithm generates 4032 mutants

of fourth order for the selected operators. If the number of

all available operators is less than the required order, the

RNA algorithm can select any operators more than one

time. In the case of selecting an operator more than one

time, the algorithm removes the repeated mutants.

4.3 Test Inputs Generation Phase.

This phase utilizes the proposed GA algorithm which is

described in Section 3 to generate set of test inputs for

killing the mutants of the program under test.

Inputs of this phase: are the program under test and its

mutated versions, number of the required test inputs (input

variables of the tested program), the input domains of

these variables and their data types, population size ps,

maximum number of generations maxgen, probability of

crossover xp, and probability of mutation mp.

Outputs of this phase: include a set of test inputs that

kills first-order mutants and higher-order mutants, a list of

the generated test inputs, the list of killed mutants, and the

list of survived mutants, if any.

Tasks of this phase: are computing the chromosome

length according to the input domains of the input

variables or based on its data types if the input domains are

not available, and applying the proposed genetic algorithm

to generate set of test inputs for mutation testing.

Test-Inputs Generation Procedure: We will use the

example program which is shown in Figure 1.(a) to

illustrate the test inputs generation phase. The example

program needs three integers as inputs. Suppose that the

three input variables are x1, x2, and x3 with input domains

[1, 10], [2, 15], and [3, 20], respectively. In the following

we show the steps of the proposed genetic algorithm to

generate test inputs to kill the third-order mutant which is

shown in Figure 3.(b).

1. The proposed GA finds the length of the chromosome

(as in Section 3.1) which will be 13 bits whereas x1 needs

4 bits, x2 needs 4 bits, and x3 needs 5 bits.

2. The proposed GA generates ps of bit vectors to

represent the initial population, where ps is the population

size. If ps = 3 the initial population will be as follows.

c1 = 0101110001000, c2 = 0100011101101, c3 = 1000001100110

3. The proposed GA uses the fitness function which is

proposed in Section 3.3 to evaluate the initial population

as follows. The algorithm converts c1, c2, and c3 from

binary form to integer values using formula (3). Table 6

shows values of the variables.
Table 6: Phenotype of the Initial Population and Its Evaluation.

↓Chromosome \

input variable→
x1 x2 x3 Fitness Value

c1 5 12 8 0.5

c2 4 7 13 0.6

c3 8 3 6 0.5

Relative Fitness
Cumulative

Fitness
R Parents

0.3125 0.3125 0.5123 c2 = 0100011101101
0.375 0.6875 0.7432 c3 = 1000001100110

0.3125 1 0.6123 c2 = 0100011101101

The proposed system (GAMTS) calls the Test Execution

Phase to execute the original program and all mutants

using each set of test inputs and find the ratio of killed

mutants. Assume this experiment aims at killing 100

mutants of the third-order mutants which is shown in

Table 5 (20 mutants from each row). Table 6 shows the

fitness values of each set of inputs. It is clear that the

second set of inputs is the best one in this population.

4. The algorithm calculates the cumulative fitness for each

chromosome as follows.

a. Calculate the total fitness of the population:

tFitness = 0.5 + 0.6 + 0.5 = 1.6 .

b. Find the relative fitness for each individual:

rFitness(c1) = fitness(c1)/tFitness= 0.3125,

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 99

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

rFitness(c2) = 0.375, and rFitness(c3) = 0.3125.

c. Calculate the cumulative fitness:

cFitness(c1) = rFitness(c1) = 0.3125,

cFitness(c2)=cFitness(c1)+rFitness(c2)=0.3125+0.375=0.6875,
cFitness(c3) =cFitness(c2) + rFitness(c3) =0.6875+ 0.3125 = 1.

d. Find random number r for each individual (Table 6).

e. According to the cumulative fitness method [26] the

parents of the next population will be

 c2 = 0100011101101, c3 = 1000001100110, c2 = 0100011101101.

5. The algorithm applies the crossover and mutation

genetic operators to find the new population as follows.

a. Find random number r1 for each individual (Table 7).

b. According to the genetic crossover method [26], if the

crossover probability is 0.85, the first and the third

parents will be used in the crossover process.

c. According the genetic mutation method [26], find

random number r2 for each individual (Table 7). Let

genetic mutation probability (mp) is 0.15. If r2 < mp,

the algorithm changes a random bit.

6. GAMTS repeats the above procedure till one of the stop

conditions is satisfied.

Table 7 : Crossover and Mutation of the Selected Parents.

Parents r1
New

chromosomes
r2

New

chromosomes
x1 x2 x3

Fitness

Value

p1=
0100011101101

0.6734 0100011100110 0.0134 0110011100110 6 7 6 0.6

p2=

1000001100110
0.3456 1000001101101 0.5456 1000001101101 8 3 13 0.4

p3=

0100011101101
0.7343 0100011101101 0.0343 0100011101111 4 7 15 0.4

4.4 Test Execution Phase.

Inputs of this phase: are the original tested program, the

mutated versions of it, and the generated test inputs.

Tasks of this phase: include executing the tested program

and its mutants using the generated test inputs, recording

the killed mutants, and checking the coverage of all

mutants.

Outputs of this phase: are the number of killed mutants,

total number of mutants, and passing the outputs to the

fitness calculating module.

5. EMPIRICAL STUDY

This section describes the empirical setup and the study we

performed to evaluate our system.

5.1 Empirical Setup

Prototype: Figure 4 gives the architecture of the

prototype of GAMTS, which consists of four modules:

analysis module, mutants generation module (MuJava),

test inputs generation module, and test execution module.

All modules are written in Java language. This prototype is

based on the proposed genetic algorithm which is shown in

Section 3 and the mutation testing system which is

presented in Section 4.

Subject Programs: We used two sets of Java programs

for our empirical studies. The first set of subject programs

contains some common programs which are often used as

subject programs in many software testing studies. This set

of programs are Triangle, DateRange, CalDay, Select,

Mid, BubSort, Power, and Remainder. The second set of

subject programs are selected from the Software-artifact

Infrastructure Repository (SIR) [31].

Table 8 shows details of the subject programs: The first

column, Subject Program, gives a designated title of the

program under test; the second column, Reference, shows

some of the previous studies which used this set of subject

programs; the third column, Scale, shows the number of

lines of code, classes, and methods in the subject program;

the fourth column, No. of FOMs, provides the number of

first-order mutants in each subject program, the fifth

column, Mutation Operators, gives the details of the first-

order mutants. Table 9 shows the first, second, and third

order mutants for each subject program.

Procedure: the empirical study is conducted as follows.

1. We run the analysis module of our prototype to find the

set of input variables of the program and their data types.

2. We run Mujava tool to generate FOMs of the program

under test. Then, we apply the CIA algorithm to generate

the mutants of orders two and three.

3. The GA is adapted such that maxgen = 100, ps =10, xp

= 0.80 and mp =0.15. For fairness the random generation

technique is adapted to find 10 set of test inputs 100 times.

4. The test-inputs generation module is executed, which

executes GAMTS, to find the test inputs.

5. We use the test execution phase to execute the original

tested program and its mutants using the generated test

inputs and count the number of killed mutants.

5.2 Study Objectives:

We applied the study procedure to measure the efficiency

of our proposed technique in killing the non-equivalent

Figure 4: The Architecture of the Prototype of GAMTS.

Quit

True

Stop
Condition

False

Program Under

Test PUT.Java

Mutant Gen. Phase

MuJava

(create n mutants

of order k)

no. of inputs

variables and

their data types

Test

Execution

Phase

Test

Generation

Phase

Population

(Set of test inputs)

no. killed

 mutants, total

no. of mutants

PUT.java

Analysis Phase

(Find no. of input

variable and their

data types)

PUT.java

PUT.java

MuPUT.java

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 100

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

first, second, and third order mutants. This study addresses

the following research questions:

RQ1: How effective is our proposed genetic algorithm in

generating test inputs to kill non-equivalent mutants of

orders one, two, and three?

RQ2: How effective is our higher order mutation testing

technique in generating test inputs and reducing size of test

suite, compared to random generation technique (RGT)?

5.3 Results and Discussion

Figure 5 shows the ratio of killed mutants of the first-order

mutants, second-order mutants, and third-order mutants.

The result shows that our proposed technique killed 81.8%

of the first-order mutants, 90% of the second-order mutant,

and 93% of the third-order mutants of the total number of

mutants in all subject programs. While the random

technique killed 68.1% of the first-order mutants, 77.4% of

the second-order mutant, and 80.6% of the third-order

mutants of the total number of mutants in all subject

programs. The results of the study show the effectiveness

of our proposed technique in generating test inputs to kill

non-equivalent mutants of orders one, two, and three. In

addition, Figure 5 shows the ratio of killed higher order

mutants (2OMs, and 3OMs) by our proposed technique

and the random technique. The results show that our

technique outperforms the random techniques in killing the

mutants of the first, second, and third order.

Figure 6 shows the ratio of killing FOMs using GAMTS

and RGT. The results of the study show that our proposed

system GAMTS killed higher number of FOMs than

random generation technique for all subject programs.

5.4 Threats to Validity

There are two main external threats to validity, which are

conditions that limit the ability to generalize the results of

our empirical study to a larger population of subjects

Table 8: Subject Programs.

Subject

Program
Reference

Scale

(LOC,

Classes,

Methods

No. of

FOMs

Mutation Operators

A

O

R

B

A

O

R

S

A

O

I

U

A

O

I

S

A

O

D

U

A

O

D

S

R

O

R

C

O

R

C

O

D

C

O

I

S

O

R

L

O

R

L

O

I

L

O

D

A

S

R

S

1 Select (32), (33)
147 LOC
1C, 3 M

60 4 8 215 0 0 270 40 0 30 0 0 50 0 0 60

2 Triangle
(1), (32), (30),

(34)

50 LOC

1 C, 2 M
359 36 0 3 128 0 0 119 14 0 24 0 0 35 0 0

3 Remainder
(34), (35),

(36)
43 LOC
1 C, 2 M

183 20 0 10 90 0 0 31 2 0 7 0 0 23 0 0

4 CalDay (32), (33)
30 LOC

1 C, 2 M
219 88 0 13 82 0 0 14 0 0 3 0 0 19 0 0

5 Mid
(30), (34),

(36)

42 LOC

1 C, 2 M
103 0 0 6 62 0 0 14 0 0 5 0 0 16 0 0

6 Power
(34), (35),

(36)

32 LOC

1 C, 2 M
79 16 0 8 40 1 0 5 0 0 3 0 0 6 0 0

7 Maximum
(34), (35),

(36)

23 LOC

1 C, 2 M
56 0 0 4 28 0 0 14 0 0 2 0 0 8 0 0

8 Sort
(34), (35),

(36)

33 LOC

1 C, 2 M
178 40 4 6 78 0 0 20 0 0 6 0 0 24 0 0

9 Array-Partition SIR (31)
13 LOC

1 C, 2 M
222 28 0 11 116 0 0 14 8 0 13 0 0 32 0 0

10 Disjoint-Set SIR (31)
35 LOC
1 C, 4 M

78 0 2 5 42 1 0 7 0 0 4 0 0 17 0 0

11 Binary-Heap SIR (31)
72 LOC

2 C, 2 M
54 0 26 150 0 0 43 23 0 34 0 0 78 0 0 54

12
Binary-

Search-Tree
SIR (31)

130 LOC

4 C, 4 M
76 0 31 250 0 0 51 30 0 28 0 0 83 0 0 76

13
Doubly-

Linked-List
SIR (31)

277 LOC
1 C, 9 M

105 0 59 287 0 0 65 45 0 47 0 0 97 0 0 105

Table 9: First, Second, and Third Order Mutants.

Subject

Program
FOMS 2OMs 3OMs

1 Select 677 76750 3387600

2 Triangle 359 19826 358532

3 Remainder 183 4587 55456

4 CalDay 219 5129 117990

5 Mid 103 1486 11148

6 Power 79 622 6033

7 Maximum 56 566 3164

8 Sort 178 3436 24432

9 Array-Partition 222 4736 83016

10 Disjoint-Set 78 399 1564

11 Binary-Heap 408 8014 114036

12 Binary-Search-Tree 549 11502 118524

13 Doubly-Linked-List 705 24547 296335

 Total 3816 161600 4577830

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 101

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

programs. First, although the set of the subject programs

contains some programs which have been used in many

previous studies but we cannot claim that these subjects

represent a random selection over the population of

programs as a whole. Second, MuJava tool cannot

generate the higher-order mutants, therefore we proposed

two algorithms (CIA and RAN) based on MuJava to find

the higher-order mutants. Therefore, the generated mutants

sometimes have redundant mutants.

There are three main internal threats to validity, which are

influences that can affect the dependent variables. First,

we compare our technique with the random test-inputs

generation technique, which may not be sufficient to

evaluate the reliability of our technique. Second, the

generated number of higher-order mutants is very big

(161k 2OMs, 4k
2
 3OMs). Therefore, we selected subset of

this number of higher-order mutants to carry out our

empirical study. Although this set of mutants is selected in

a significant way, another empirical studies are required to

cover all the generated higher-order mutants. Third, we

consider a higher-order mutant a killed mutant if any one

of its first-order mutants is killed. Although this method

gives a significant ratio of discovering the higher-order

mutants, it cannot discover all its first-order mutants which

compose these higher-order of mutants.

Figure 6: Ratio of Killing FOMs Using GAMTS and RGT.

6. RELATED WORK

Search-based techniques [32] have been used to generate

test inputs for killing the first-order mutants. These

techniques used the mutation score formula (1) as fitness

function to evaluate the generated test inputs. These

techniques didn't handle the problem of higher-order

mutation testing.

Recently, a very few number of work have been done in

the field of using search-based techniques for higher-order

mutation testing. Langdon et al. [1] used genetic

programming to find test inputs for killing the higher-order

mutants in the program under test. They used two fitness

functions: semantic difference and syntactic difference to

evolve mutant programs. The syntactic distance sums the

number of changes weighted by the actual difference.

Syntactic distance places the six C comparison operations

<, <=, ==, !=, >=, > in order. The distance of one

comparison from another is their distance in this order plus

six if they differ at all. The total distance of a mutant is the

sum of the individual distances for each comparison it

contains. This fitness can't find the distance for the change

in descending order. Semantic distance is measured as the

number of test cases for which a mutant and original

program behave differently. This fitness can't find the

fitness value of a single test case which is required by the

search-based techniques.

Harman et al. [20, 6] defined a fitness function to capture a

HOM's reduced Fragility. Let T be a set of test cases, {M1,

..., Mn} be a set of mutants, and the kill({M1, ..., Mn})

function returns the set of test cases which kill mutants M1,

..., Mn. The fragility of a mutant is defined as follows:

𝐹𝑟𝑎𝑔𝑖𝑙𝑖𝑡𝑦 𝑀1, … , 𝑀𝑛 =
 𝑘𝑖𝑙𝑙 (𝑀𝑖)𝑛

𝑖=1

 𝑇
. The value of

fragility lies between 0 and 1. When it equals 0 this means

that there is no test case that can kill this mutant, which

indicates that this mutant is potentially an equivalent

mutant. The fitness of a HOM is defined as the ratio of the

fragility of its HOM to the fragility of the constituent

FOMs.

Jia and Harman [24] measured the fitness of the HOM

using the killability of both FOMs and HOMs.

Killability =
of test cases that kill the mutant

total # of test cases
 . The fitness of

a HOM describes the ratio of the killability of the HOM to

the union of the killability of each constituent FOM. The

fitness function evaluates the HOM mutants rather than

evaluating the test cases which is required in generating

test inputs by search-based techniques. It is clear that the

fitness functions of the related work are not appropriate to

evaluate the test inputs generated by genetic algorithm.

0.0

20.0

40.0

60.0

80.0

100.0

FOMs 2OM 3OMs

Ratio of Killed Mutants in FOMs, 2OM, and 3OMs

Ratio of
Killed
Mutants
by GA

Ratio of
Killed
Mutants
by RGT

Figure 5: Ratio of Killed Mutants in FOMs, 2OM, and 3OMs.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ratio of Killing FOMs Using GAMTS and RGT

Ratio of
Killing
FOMs
Using
GAMTS

Ratio of
Killing
FOMs
Using
RGT

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 102

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

7. Conclusion and Future work

In this paper, we introduced a genetic algorithm based

technique to aid the automatic generation of test inputs for

killing higher-order mutants. The proposed technique

allows the user to choose one of two policies: the first

policy aims at killing the first-order mutants, and the

second policy aims at killing the higher-order mutants. In

addition, we introduced two algorithms to generate the

higher-order mutants. The paper presented the results of

the experiments that have been carried out to evaluate the

effectiveness of the system with its two policies. The

results of the experiments showed that our proposed

technique is effective in generating test-inputs to kill the

higher-order mutants. Also, the results showed that our

proposed technique is more effective than the test inputs

random generation techniques. In future work we plan to

perform these studies with real and large subject programs.

Also, we will compare our technique with another test-

inputs generation techniques rather than random technique.

In addition, our future work will concern on solving the

problem of explosion of higher order mutants.

References

[1] W. B. Langdon, M. Harman, Y. Jia. Efficient multi-objective

higher order mutation testing with genetic programming.

Journal of Systems and Software. 2010, Vol. 83, pp. 2416–

2430.

[2] R. A. DeMillo, R. J. Lipton, F. G. Sayward. Hints on test data

selection:Help for the practicing programmer. IEEE

Computer. 1978, Vol. 11, 4, pp. 34–41.

[3] R. G. Hamlet. Testing programs with the aid of a compiler.

IEEE Transactions on Software Engineering SE-3. 1977,

Vol. 4, pp. 279–290.

[4] K. Ayari, S. Bouktif, G. Antoniol. Automatic mutation test

input data generation via ant colony. Proceedings of the 9th

annual conference on Genetic and evolutionary computation,

GECCO ‟07, ACM. 2007, pp. 1074–1081.

[5] W. Howden. Weak mutation testing and completeness of test

sets. IEEE Transactions on Software Engineering. 1982, Vol.

8, 4, pp. 371–379.

[6] Y. Jia, M. Harman. Higher Order Mutation Testing. Journal

of Information and Software Technology. 2009, Vol. 51, 10,

pp. 1379–1393.

[7] T. Chen, R. Merkel, P. Wong, and G. Eddy. Adaptive random

testing through dynamic partitioning. Proceedings of Fourth

International Conference on Quality Software (QSIC '04).

2004, pp. 79-86.

[8] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. ARTOO:

adaptive random testing for object-oriented software.

Proceedings of the 30th international conference on

Software engineering (ICSE '08). 2008, pp. 71-80.

[9] C. Pacheco, S. K. Lahiri, M. D. Ernst, T. Ball. Feedback-

directed random test generation. Proceedings of the 29th

international conference on Software Engineering (ICSE

'07). 2007, pp. 75-84.

[10] P. Godefroid, N. Klarlund, K. Sen. DART: Directed

automated random testing. Proceedings of the 2005 ACM

SIGPLAN conference on Programming language design and

implementation (PLDI '05). 2005, pp. 213-223.

[11] A. S. Ghiduk, M. R. Girgis. Using Genetic Algorithms and

Dominance Concepts for Generating Reduced Test Data.

Informatica Journal. 2010, Vol. 34, 3, pp. 377-385.

[12] A. S. Ghiduk. Automatic Generation of Object-Oriented

Tests with a Multistage-Based Genetic Algorithm. Journal

of Computers. 2010, Vol. 5, 10, pp. 1560-1569.

[13] R. DeMillo, A. Offutt. Constraint-based automatic test data

generation. IEEE Transactions on Software Engineering.

1991, Vol. 17, 9, pp. 900–910.

[14] M. Liu, Y. Gao, J. Shan, J. Liu, L. Zhang, J. Sunin. An

approach to test data generation for killing multiple mutants.

22nd IEEE International Conference on Software

Maintenance (ICSM '06). 2006, pp. 113–122.

[15] J. Andrews, L. Briand, Y. Labiche. Is mutation an

appropriate tool for testing experiments? Proceedings of

27th International Conference on Software Engineering

(ICSE '05). 2005, pp. 402–411.

[16] P. Frankl, S. Weiss, C. Hu. All-uses vs mutation testing: an

experimental comparison of effectiveness,” The Journal of

Systems & Software. 1997, Vol. 38, no. 3, pp. 235–253.

[17] M. Papadakis, N. Malevris, M. Kallia. Towards automating

the generation of mutation tests. Proceedings of the 5th

Workshop on Automation of Software Test (AST '10). 2010,

pp. 111–118.

[18] Y. Jia, M. Harman. An Analysis and Survey of the

Development of Mutation Testing. IEEE Transactions on

Software Engineering. 2011, Vol. 37, no. 5, pp. 649-678.

[19] N. Li, U. Praphamontripong, J. Offutt. An Experimental

Comparison of Four Unit Test Criteria: Mutation, Edge-

Pair,All-uses and Prime Path Coverage. IEEE International

Conference on Software Testing Verification and Validation

Workshops. 2009, pp. 220-229.

[20] M. Harman, Y. Jia, W. B. Langdon. A Manifesto for Higher

Order Mutation Testing. Third International Conference on

Software Testing, Verification, and Validation Workshops

(ICSTW). 2010, pp. 80–89.

[21] M. Harman, Y. Jia , W. B. Langdon. Strong higher order

mutation-based test data generation. Proceedings of the 19th

ACM SIGSOFT symposium and the 13th European

conference on Foundations of software engineering

(ESEC/FSE '11). 2011, pp. 212-222.

[22] S. Kapoor. Test case effectiveness of higher order mutation

testing. International Journal of Computer Technology and

Applications. 2011, Vol. 2, no.5, pp. 1206-1211.

[23] A. O. Akinde. Using higher order mutation for reducing

equivalent mutants in mutation testing. Asian Journal of

Computer Science and Information Technology. 2012, Vol.

2, no. 3, pp. 13–18.

[24] Y. Jia, M. Harman. Constructing Subtle Faults Using Higher

Order Mutation Testing. Technical Report TR-08-03,

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 103

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

http://www.dcs.kcl.ac.uk/technical-reports/papers/TR-08-

03.pdf. Last visit 2/2014.

[25] I. Burnstein. Practical Software Testing: A Process-Oriented

Approach. Springer. 2003. ISBN-13: 978-0387951317.

[26] Z. Michalewicz. Genetic Algorithms + Data Structures =

Evolution Programs, 3rd. Springer. 1998.

[27] Y. Ma, Jeff Offutt, Y. Kwon. MuJava : An Automated Class

Mutation System. 2005, Vol. 15, no. 2, pp. 97-133.

[28] K. N. King, A. J. Offutt. A Fortran Language System for

Mutation-Based Software Testing. Software: Practice and

Experience. 1991, Vol. 21, no. 7, pp. 685–718.

[29] Y. Ma, J. Offutt. Description of Method-level Mutation

Operators for Java.

[30] M. Polo, M. Piattini, I. Rodriguez. Decreasing the cost of

mutation testing with second-order mutants. Software

Testing, Verification and Reliabilty. 2009, Vol. 19, pp. 111–

131.

[31] H. Do, S. G. Elbaum, G. Rothermel. Supporting controlled

experimentation with testing techniques: An infrastructure

and its potential impact. An International Journal Empirical

Software Engineering. 2005, Vol. 10, no. 4, pp. 405–435.

http://sir.unl.edu/portal/index.php.

[32] P. May, J. Timmis, and K. Mander. Immune and

Evolutionary Approaches to Software Mutation Testing.

LNCS 4628. 2007, pp. 336–347.

[33] P. May. Test Data Generation: Two Evolutionary

Approaches to Mutation Testing. PhD thesis, The University

of Kent at Canterbury. 2007.

[34] A. S. Ghiduk, M. J. Harrold, M. R. Girgis. Using Genetic

Algorithms to Aid Test-Data Generation for Data-Flow

Coverage. 14th Asia-Pacific Software Engineering

Conference. 2007.

[35] R. P. Pargas, M. J. Harrold, R. R. Peck. Test data generation

using genetic algorithms. Journal of Software Testing,

Verifications, and Reliability. 1999, Vol. 9, pp. 263-282.

[36] C. C. Michael, G. E. McGraw, M. A. Schatz. Generating

software test data by evolution. IEEE Transactions on

Software. 2001, Vol. 27, no.12, pp. 1085-1110.

Ahmed S. Ghiduk is an assistant professor at Beni-Suef
University, Egypt. He received the BSc degree from Cairo
University, Egypt, in 1994, the MSc degree from Minia University,
Egypt, in 2001, and a Ph.D. from Beni-Suef University, Egypt in
joint with College of Computing, Georgia Institute of Technology,
USA, in 2007. His research interests include software engineering
especially search-based software testing, genetic algorithms, and
ant colony and web application testing. Currently, Ahmed S.
Ghiduk is an assistant professor at College of Computers and
Information Technology, Taif University, Saudi Arabia.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 104

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

