

A Practical Approach to Infuse Security Patterns into

Undergraduate Software Engineering Course Projects

1Ingrid A. Buckley

1Computer Science Department, Tuskegee University

Tuskegee, Alabama 36830, USA

Abstract

This paper introduces the use of security patterns as a

teaching aid to help software engineering students

better understand and solve security problems. With

the wide spread use of various applications in different

domains and industries security is a growing problem

that requires swift address. The lack of knowledge

about security and vulnerabilities is a primary problem

facing society today. It is important to educate future

software engineers from early on, by introducing them

to practical methods to solve security problems.

Introducing security patterns in the software

engineering projects offer students hands-on

experience and exposure in solving security problems.

The objective is to show the relationship between the

different levels of the the engineering process to

develop applications showing how various design and

security patterns can be integrated. A comprehensive

security focused software engineering outline is

provided that can be adapted for different software

engineering projects with a strong emphasis on

security.
Keywords: Software Engineering, Security Patterns. Design

Pattern, Security, Secure System Design.

1. Introduction

Software systems are continuously becoming more

advanced and integrated in society to perform personal,

business, educational, and scientific needs. Our heavy

reliance on these systems requires that we find

effective ways to build and evaluate their performance

to avoid issues and problems. Several security

breaches [2, 3] have already been experienced that

have affected millions of customers. These breaches

have led to identity theft and millions of dollars to

correct the vulnerabilities. Software developers are

charged with developing sound and secure systems for

everyday use. One common problem with this

important responsibility is having the knowledge and

experience in developing secure systems, since most

developers are experts in the core principles of

programming but are not security experts.

This aim of this approach is to aid, train and educate

software developers from early on, on how to build

secure systems. Software engineering is concerned

with the principles and theories which embody the

creation, maintenance and evolution of different

systems. Security awareness and exposure can

contribute greatly to how current and future software

engineers and developers approach, solve and build the

systems we have come to depend on day to day.

Security and design patterns provide the knowledge;

approach and guidelines that will help software

developers learn best practices and solutions to build

secure systems.

Section 2 provides motivation and challenges faced by

software developers and by extension software

engineering students who will develop applications.

Section 3 presents background information on security

breaches, and security patterns. Section 4 presents the

structure of most software programs, the primary

software development steps, and design and security

patterns that can be applied at each stage. Section 5

provides a security-focused outline that can be adapted

for different software engineering projects in a

software engineering course and section 7 concludes.

2. Motivation

Computer Science majors are required to take the

Software Engineering course which introduces students

to the process of designing and implementing

programs. This course is very heavy in the sense that it

has a lot of information about various software

engineering methods, as well as a semester long project

that has to be implemented. The goal is to infuse

security and design patterns in the software

engineering projects to help student implement

programs which have security built in throughout the

entire process of software development. Security

patterns are useful in teaching because they provide

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 60

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

proven solutions to security problems. It can be

cumbersome and frustrating for students to solve

security problems effectively in one semester where

they have to learn the various ins and outs of software

engineering in addition to completing the development

of a major project.

3. Background

Security has been of great concern for some time, and

efforts to address the various security issues have

increased, as technology evolves and as society

become increasingly more reliant on it. To set the tone

of this paper we will first learn about some security

breaches that have negatively impacted businesses and

customers worldwide. Additionally a brief summary is

provided highlighting the purpose and advantages of

using security patterns.

3.1 Security Breaches

 In November 2013 the Target store databases were

attacked, the personal and credit card information of 40

million customers were compromised [2]. In April

2010, hackers gained access to approximately 77

million PlayStation Network accounts. In this attack

unencrypted credit card numbers, personal information

and purchase history were compromised [3]. RSA

servers were compromised by hackers which is also the

security division of EMC which is a huge storage

company used by many financial institutions. EMC

stores close to 40 million authentication tokens used by

employees to access corporate and government

networks, the hackers were able to gain access to these

tokens. Since this incident, EMC spent over 60 million

to monitor the information of concerned clients.

Similarly in August 2007, hackers attacked

Monster.com and stole resume information of 1.3

million job seekers [3]. These incidents are common

and hackers continue to strengthen their efforts in

attacking corporate, e-commerce and government

systems. The problem associated with security

breaches are far reaching and affect other aspects such

as privacy and reliability. Security patterns can be used

in software engineering/development solutions to solve

security problems [8].

3.2 Security Patterns

Patterns [4] embody the experience and knowledge of

many designers and when properly catalogued, they

provide a repository of solutions for useful problems.

Initially used for improving code, patterns are

becoming a staple tool to build secure systems [6, 7].

The POSA [11] template defines a systematic way to

describe patterns. It consist of approximately eleven

units, each describes one aspect of a pattern. This

template is designed to capture the experience and

knowledge of professionals that have solved common

problems. Patterns support best practices. Each unit of

the POSA Template is described below:

1. Name - the name of the pattern should correspond

to the generic name given to the specific type of

attack in standard attack repositories such as

CERT [12].

2. Intent or thumbnail description - A short

summary of the intended purpose of the pattern,

including which problem it solves.

3. Example of a specific problem.

4. Context -this section describes where the pattern

applies, including prerequisites and the general

environment.

5. Problem - describe the forces which affect the

solution, attacks.

6. Solution - describes the general idea of solving the

problem, it includes UML models (static and

dynamic), formalization.

7. Implementation – provides recommendations and

hints for implementers

8. Example resolved - describes how the pattern

solved the specific problem

9. Known uses - provides at least three examples of

use in real systems

10. Consequences – provides advantages and

disadvantages of the pattern’s solution.

11. Related patterns - presents complementary or

alternative patterns.

Security patterns describe mechanisms that control

threats. Security patterns join the extensive knowledge

accumulated about security with the structure provided

by patterns to provide guidelines for secure system

construction and evaluation. Security has had a long

trajectory, resulting in a variety of approaches to

analyze security problems and to design security

mechanisms. It is helpful to capture this expertise in

the form of patterns [11]. There are several books [4]

on security patterns and academic institutions that

write and share security patterns. An attacker can

attack a system from all levels. If a hacker does not

find vulnerability in level n, then level n+1 or n-1 may

have vulnerabilities that can be exploited. It is

important to identify attacks at every level or stage in

software development. Security patterns provide the

following advantages:

 Security patterns embody experience and

good design practices.

 They help to prevent errors, and save time.

 Can be reused.

 Provide guidelines to solve security problems.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 61

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

 Provide best case solutions to common

problems.

4. Infusing Patterns in Software

Engineering

It is important to at some core security and design

patterns that can be applied to different security

problems at different stages in the software

development process.

4.1 Software Engineering Process

There are several approaches to software development;

the most common are plan-driven, agile and

incremental development. Each present their strengths

and weakness and is usually selected based on the type

of system being developed. Though they are different,

they all involve some fundamental software

engineering principles which are done at different

times depending on the software approach being used.

This approach focuses on the core units which cannot

be avoided in software development and map those to

come useful patterns.

4.1.1 Requirements

Eliciting Requirements/Specifications begins the initial

phase of software development thus it is important for

students to capture and precisely define accurate

software requirements. Accurate software requirements

can be achieved by insisting that students define,

discuss and present these requirements to the instructor

and other stakeholders who may be involved with the

project. This will help students refine and include

requirements that are overlooked initially. This process

is cyclic and is generally updated throughout the entire

software development life cycle.

4.1.2 Design

System Design can present a challenge for software

engineering students. The use of design patterns can

help students find solutions that they may not have the

experience and skills to address. Design patterns can

speed up the development process, as effective

software design requires considering issues that may

not become visible until later in implementation.

Reusing design patterns helps to prevent subtle issues

that can cause major problems later in development.

They also improve code readability for programmers

who are familiar with the patterns. Some common

design patterns [5] include: Observer, Watchdog,

Mediator, Façade, Composite, Strategy and Singleton.

4.1.3 Implementation

System Implementation and development with a focus

on security presents an even greater challenge for

students. The use of security and design patterns serve

as a useful guide for them. For example some patterns

[9, 10] may also provide examples and known uses in

multiple programming languages, including C++, C,

and Java. Some common security patterns [10] include:

Acknowledgement, Role Base Access Control, Secure

Strategy Factory, Secure Builder Factory, Secure

Chain of Responsibility, Secure Logger, Clear

Sensitive Information and Guarded suspension.

4.1.4 Testing

System Validation and Testing may seem simple for

some students and often this exercise is neglected until

the last minute. As a result, students may not test their

program as rigorously as required because they want to

avoid missing their deadline. It is necessary to

encourage students to create test cases that test every

requirement and its associated tasks as outlined in

section 5.0. The test cases must be tested at the unit,

component and system level. At the bare minimum,

students are instructed to test all possible successful

and unsuccessful outcomes at each level.

5. Security-focused Project Guideline

Software Engineering/Development courses can be

challenging for undergraduate computer science

students due to the heavy theoretical and practical

components that must be covered in such courses. In

this course, students are introduced to the theoretical

side of software engineering by learning the software

life cycle concepts, software requirements and

specifications, object-oriented design, detailed modular

design, validation and verification, proving program

correctness, software testing, software quality

assurance, and project management. All of these topics

are vast and can be taught separately as individual

courses, as a result this course involves a lot reading

material for students to cover.

Once students have the theoretical background

discussed above, they are required to utilize this

knowledge in a semester long group project. This

group project is comprised of two major units:

comprehensive documentation and an implementation

of the documentation in the form of a program. It is not

practical to cover all of the mentioned topics early

enough in the semester for students to develop a

project documenting the various steps in software

engineering design and then providing an

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 62

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

implementation that reflects that documentation. This

feat is even more difficult when security has to be

incorporated in every aspect of the group project.

To handle this challenge, a phased weekly approach is

used; where students develop their group project as

they learn the topics. A weekly project deliverable

system is adopted for this particular course, where

students have to develop different units of their group

project and present them during class to the instructor.

This method helps to ensure that students are working

on the project and getting helpful feedback instead of

waiting until the last minute to hurry through all the

necessary software stages.

5.1 Weekly Project Deliverables Outline:

Students are instructed to write the documentation for

the group software engineering/development project

and adhere to the weekly deliverable outline in detail.

Week 1: Group Project Deliverable-1:

Project Proposal: Part A

 Project Description:

o Provide a clear and succinct description

about the product you want to develop

 Vision:

o Describe the group’s vision for the

project and product

 Motivation and Justification:

o Justify why you want to create the

product and its purpose

o Describe your target group – the users

that will use your system

Week 2: Group Project Deliverable-2:

Project Proposal: Part B

 Project Goals and Objective :

o Describe your general and security goals

and objectives

 Project Approach:

o Describe how you intend to carry out the

project

 Estimate how much time it will

take to complete the project

o Research and describe in detail the

resources needed

o Discuss the technology and languages

that will be used

 Team Members:

o Describe roles and responsibility of each

group member

o Describe the effort and contribution of

each group member once the project is

complete

o Specify clearly what each group member

was responsible for doing in the project

and if the tasks were completed.

o Specify what percentage (max is 100%)

of the overall project was completed by

each group member, you must justify

how you came up with this percentage

Week 3: Group Project Deliverable-3:

Project Specifications/Requirements: Part A

 Each requirement should be well defined and

unambiguous. There are different types of

requirements try to categorize them as

follows:

o User requirements, business

requirements and system

requirements etc.

o Label each requirement, e.g. R1,

R2….RN.

 Once the requirements and specifications

have been identified for your project, break

each of those requirements into smaller units

called tasks

o Label each task, e.g. T1, T2…TN.

o Provide a full description of each

task.

Week 4: Group Project Deliverable-4:

Project Specifications/Requirements: Part B

 Continue with the tasks created for each

requirement in Part A

 Analyze each task carefully and determine

and identify potential threats and

vulnerabilities that it may introduce

o Provide a full description of each

threat and vulnerability under each

respective task

o c. Label each threat, e.g. TH1,

TH2….THN
o d. Label each vulnerability, e.g. V1,

V2….VN

Week 5: Group Project Deliverable-5:

Project Specifications/Requirements: Part C

 Continue with the threats and vulnerabilities

identified in Part B

 Select the countermeasures/defenses to handle

the identified threats and vulnerabilities

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 63

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

 Label each defense, e.g. D1, D2….DN

 Justify your reason for choosing a particular

countermeasure/defense

o Include the strengths of the security

countermeasure/defense, the

challenges they introduce

(functionality, speed etc.)

o Discuss why the security

countermeasure/defense was selected

and how effective it will be

 Discuss any standards/regulations that may

apply to each threat and vulnerability

 If you identify threats that you will not be able

to address, justify why,

Week 6: Group Project Deliverable-6:

Project Specifications/Requirements: Part D

 Continue with the countermeasure/defense

selected for each threat and vulnerability

 Select security patterns that provide those

countermeasure/defense

o Justify your reason for choosing a

particular security pattern

o Provide the advantages,

disadvantages and consequence for

each of the security patterns selected

 Select design patterns to implement the

requirements/ tasks

o Justify your reason for choosing a

particular design pattern

o Provide the advantages,

disadvantages and consequence for

each of the security patterns selected

Week 7: Group Project Deliverable-7:

Project Specifications/Requirements: Part E

 Project Risks, Milestones and Contingencies:

o Identify any risks associated with the

requirements

o Label each milestone, e.g. RK1,

RK2…RKN.

o Provide a full description of each

risk.

 Every requirement should be associated with

a milestone

o Label each milestone, e.g. M1,

M2…MN.

o Provide a full description of each

milestone.

 Determine strategies/contingencies to handle

any potential risks and the overall cost of the

strategy/contingency.

o Label each contingency, e.g. C1,

C2…CN

o Provide a full description of each

contingency.

o Include a justification for choosing a

particular contingency

Project Schedule:

 All group members are expected to participate

 Divide requirements and the tasks among

group members

 Provide a project schedule [1]

o Show each task, the effort needed to

complete it in days, the actual

duration in days and the

dependencies associated with each

task

 Create an activity bar chart [1] showing asks

over the set time line for the project Create

group member allocation chart [1] showing all

the tasks, timeline associated with the group

member it was assigned to .

Week 8: Group Project Deliverable-8:

Design – UML Diagrams: Part A

 Use the tasks associated with each requirement

from previous work to create the project’s UML

diagrams

 Provide a description for each UML diagram.

This description should be comprehensive to

help the reader understand each diagram readily.

 All UML diagrams must use the correct UML

notation

 Create Use Case diagrams for your program

o Show all actors, subsystems,

functions and scenarios

 Create Activity diagrams

o Show all activities for each

operation/function provided by your

system

o Security Process

 Examine each activity and

determine if there are threats or

vulnerabilities that you looked

over

 Repeat week 5 and week 6 to

address the new threat or

vulnerability.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 64

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Week 9: Group Project Deliverable-9:

Design – UML Diagrams: Part B

 Use the tasks associated with each

requirement from previous work to create the

project’s UML diagrams

 Provide a description for each UML diagram.

This description should be comprehensive

to help the reader understand each diagram

readily.

o Create Class diagrams

 Show all classes, class

associations, generalizations,

compositions, aggregations,

methods, attributes, multiplicity,

and visibility of attributes and

methods

o Create Sequence diagrams

 Show all the dynamics and

interactions between classes and

users within your system

Implementation: Part A

 The following units are optional depending on

the nature of the project:

o Design the User Interface (Optional)

 Create the relevant user

interfaces

 Include an illustration of the

user Interface, user Interface

drawing

 Describe each user interface and

the function of each component

on the UI

 Discuss the tools, languages

used to create the user interface

 Describe and justify why you

selected the design and layout of

the user interface

o Create Database (Optional)

 Include an Entity Relationship

Diagram (ERD) for the database

 Discuss how your database

enforces referential Integrity

 Discuss the overall database

Schema design

Week 10 -12: Group Project Deliverable-10, 11, 12:

Implementation: Part B

 Demo working application of at least two (2)

core function for the program weekly until all

requirements are implemented

 The core functions must implemented using

the design patterns selected previously

 Implementation must include the security

patterns selected previously to mitigate the

identified threats or vulnerabilities

 Report any challenges or set-backs being

experienced

 All code must be fully documented

Validation and Testing: Part A

 For every new function developed describe

the techniques used to test the function –

Include unit, component and system testing

etc.

Week 13: Group Project Deliverable-13:

Implementation: Part C

 Demo working application showing each core

functions that is implemented

 Code must be fully documented

Validation and Testing: Part B

 Describe the techniques used during

implementation in terms of - unit testing,

component, and system testing

 Describe outcome/result of testing, and

updates made

 Discuss Recommendations and Improvement

for the project

Week 14: Group Project Deliverable-14:

Other Documentation:

 Maintenance and Evolution:

o Suggest ways to maintain, enhance

and expand your project

 User Manual – provide clear instructions to

the user explaining how to use your product.

Week 15: Group Project Deliverable-15:

Conclusion:

 Deliverables

o Were the specifications, goals,

objectives met?

o Targets and deadlines met?

o Challenges?

 Such as unforeseen incidents that

impacted the project

 Discuss anything that could not

be completed

 Describe the end product

 References – remember to include all

references

Week 16: Group Project Deliverable-16:

Assessment Committee:

 The group will present their final project to a

committee for evaluation

 The final project documentation must be sent

to the evaluation committee at least two (2)

days before the final group presentation

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 65

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

o The evaluation committee will interview

the group as a whole

o Each group member will be interviewed

separately by the evaluation committee

5.2 Evaluation

Instructors can choose to ask students to select a

project of their choosing or provide a list of instructor

selected projects. If the instructor chooses a project,

some of the group project deliverables in week1 can be

adjusted.

5.3.1 Advantages:

Assessing group effort can present a challenge for an

instructor in terms of evaluating the individual effort of

each group member. The weekly project deliverable

approach allows the instructor to assess the

performance of each group member because each

deliverable leading up to the final project is presented

in class and graded. As the course progresses, the

interaction between group members and the instructor

during presentations will allow the instructor to

properly assess individual student effort and

contribution. Additionally, an evaluation committee

can also provide feedback to the instructor after the

final debut of the completed project.

5.3.2 Challenges:

Time is a major challenge in teaching software

engineering courses. Often students complain that they

will not have time to complete their project or may

propose to implement a fraction of the intended

functionalities, or to not complete the implementation

portion of the project at all. In such instances, students

can receive partial credit if they can develop a working

prototype of the software project. Prototypes are useful

to show stakeholders that some effort was invested in

the project. Prototypes can be a useful alternative for

students who are unable to complete the full scope of a

project on time. Another challenge that may be

experienced is some students may complain that they

do not have the programming skills to implement the

design and security patterns and or the basic functions

of the system. It is important to test the programming

knowledge and skill level of students from early on. It

is useful to assign a programming assignment using the

relevant languages, tools and concepts that are required

for the software engineering course project in order to

properly assess the skill level of the students before the

group project implementation begins. This will allow

the instructor the opportunity to make changes or craft

a project that is commensurate with the skill level of

the students if necessary.

6. Conclusion

This paper presents a comprehensive outline that can

be adopted in Software Engineering and Software

Development courses with a concentration in Security.

These two courses are often principal courses in most

Computer Science programs worldwide. The objective

is to introduce security concepts and expose future

software developers to security solutions to build

secure systems. This approach utilizes security and

design patterns, integrated with the standard software

engineering approaches that begin system development

with requirements.

References
[1] I. Sommerville. (2011). Software Engineering -

9
th

Edition. Boston, MA: Addison Wesley.

[2] CNN Money. (2013, December).Target: 40

million credit cards compromised. Retrieved

from: http://money.cnn.com/2013/12/18/news/

companies/target-credit-card/. Last Accessed:

1/30/2014.

[3] CNN Money. (2011, April). 9 of the worst

security breaches ever. Retrieved from:

http://money.cnn.com/galleries/2012/technology/

1206/gallery.9-worst-security-

breaches.fortune/2.html. Last Accessed:

1/30/2014.

[4] M. Schumacher, E. B. Fernandez, D. Hybertson,

F. Buschmann, and P. Sommerlad.(2006).

Security Patterns: Integrating security and

systems engineering. West Sussex, England:

Wiley Series on Software Design Patterns.

[5] E. Gamma, R. Helm, R. Johnson, and J.

Vlissides.(1994). Design patterns: elements of

reusable object-oriented software. Boston, Ma

:Addison-Wesley.

[6] E. B. Fernandez, S. Mujica, and F.

Valenzuela.(2011). Two security patterns: Least

Privilege and Secure Logger/Auditor.

Proceedings of Asian PLoP.

[7] I. A. Buckley and E.B. Fernandez.(2011).

Enumerating Software Failures to Build

Dependable Distributed Applications. High-

Assurance Systems Engineering (HASE), 2011

IEEE 13th International Symposium. 120 - 123.

doi:10.1109/HASE.2011.35.

[8] I. A. Buckley and E. B Fernandez. (2009).Three

patterns for fault Tolerance. Proceedings of the

OOPSLA MiniPLoP.

[9] H. Schmidt and J. Jürjens. (2011). Connecting

Security Requirements Analysis and Secure

Design Using Patterns and UMLsec. 23rd

International Conference, CAiSE 2011. 367-382.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 66

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

London, UK:Springer Berlin Heidelberg.

doi:10.1007/978-3-64

[10] D. Schmidt, M. Stal, H. Rohnert, F.Buschmann

(2000). Pattern-Oriented Software Architecture

Volume 2: Patterns for Concurrent and

Networked Objects. Irvine , CA:John Wiley &

Sons.

[11] F. Buschmann, R. Meunier, H. Rohnert, P.

Sommerlad, M. Stal. (1996). Pattern-Oriented

Software Architecture: A System of Patterns, vol.

1, Wiley.

[12] CERT.(1988). Cybersecurity Engineering.

Retrieved from: https://www.cert.org/about.Last

Accessed: 3/2/2014.

Dr. Ingrid Buckley earned a B.S. (2004) degree in

Computing and Information Technology from the

University of Technology, Jamaica. She holds a M.S.

(2008) and a Ph.D. (2012) from Florida Atlantic

University. In 2013 she joined the faculty of Tuskegee

University in her current rank of Assistant Professor of

Computer Science. Previously, she held a visiting

Assistant Professor of Computer Science position at

Illinois Wesleyan University. Dr. Buckley’s areas of

specialization are security, secure software

engineering, and database management systems. She

has authored six peer reviewed publications, one book

chapter and one journal paper. Her current work in

software engineering focuses on training and educating

undergraduate computer science majors on designing

and implementing secure applications. She also trains

and educates business and information technology

majors on developing relational database models for

business operations. Dr. Buckley is a member of the

National Society of Black Engineers (NSBE), Upsilon

Pi Epsilon and Golden Key International honorary

societies.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 67

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

