
Monte Carlo simulation in the case of a single risk factor

and evaluation of a European option

Naima SOUKHER 1, Boubker DAAFI 2, Jamal BOUYAGHROUMNI 1, Abdelwahed NAMIR1

1Department of Mathematics, Ben M’Sik Faculty of Science
Hassan II Mohammadia-Casablanca University,P 7955 Casablanca, Morocco

2Department of Mathematics,Faculty of Science and Technique
Cadi Ayyad University,Marrakech, Morocco

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 178

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.



Abstract
This article presents the Monte Carlo method

in the context of stochastic simulation models. It
is used to calculate a numerical value using ran-
dom processes. Indeed, it is to isolate a number of
variables and their effect a probability distribution.
Our research aims to make practical use of the main
operative techniques[1] of Monte Carlo simulation
applied to finance. In this article, we describe how
to develop Monte Carlo simulations in the presence
of a single risk factor Y.

Keywords: Monte Carlo, Finance, Risk Factor,
Simulation, Stochastic.

1 Introduction

This article aims to introduce probabilistic tech-
niques to understand the most current financial mod-
els. Indeed, in recent years, financial experts de-
scribe various phenomena and develop computa-
tional methods through mathematical tools that are
becoming increasingly sophisticated. In fact, the in-
tervention of probability in financial modeling dates
back to the early 20th century when Bachelier[2]

introduced the use of finance ” Brownian motion”
to achieve his ” theory of speculation”İn addition,
Black-Scholes[3] and Merton[4] have used the so-
called theory in terms of pricing and hedging op-
tions. Therefore, the options markets are experi-
encing a development using the methods of Black
and Merton who have advanced in terms of general-
ity, clarity and mathematical rigor. Thus, our work
focuses on the problem of options considered as the
most salient example of the methods of stochastic
calculus in finance for relevance. Black and Scholes
were the first to propose a model leading to an ex-
plicit formula for the price of a European call on
an action that does not provide dividends and to a
management strategy in the context of the model
which allows the seller of the option to hedge per-
fectly. The price of the call is, in the Black-Scholes
model, the amount of money that must initially
have to be able to follow the hedging strategy and
produce exactly wealth to maturity. In addition,
the resulting formula depends only on one param-
eter which is not directly observable in the mar-
ket and it’s called ” volatility” by particiens. In
the context of stochastic simulation models, our
work focuses on the Monte Carlo method[5]. In-
deed, it is known that the simulation ensures that
a system is studied and experimented. This sys-
tem contains complex interactions that may un-
dergo changes whose effects on the system in ques-
tion are measured using the so-called simulation.
Moreover, in a simulation, it is possible that ele-

ment intervenes at random: it is a random simula-
tion. That said, the faithful representation of the
phenomena is fraught with difficulties whose cause
is not explicit calculations. Thus, simulation tech-
niques permit approaching numerically these calcu-
lations. In this sense, the Monte Carlo methods[6]

are intended for the use of repeated experiments to
assess the quantity and solve a deterministic sys-
tem. These methods[7] are used to calculate the in-
tegral to solve partial differential equations, linear
systems and optimization problems .

2 Problematic

we consider a wallet or security whose value as t

is denoted by V (t,
−→
Y (t)) because it depends on the

time and m factors
−→
Y (t) = (Y1(t), Y2(t), ...., Ym(t)).

It may be, for example, an option whose value de-
pends on two random factors, the price of the un-
derlying S(t), and the interest rate r(t) (in this case
m = 2, Y1(t) = S(t) and Y2(t) = r(t) ). We seek
to understand, at least empirically, the probabil-

ity distribution of V (t,
−→
Y (t)) and some moments of

this distribution. Depending on the situation, it

is important to know V (t,
−→
Y (t)) in the whole time

interval (0, T ) (we are interested therefore in the

trajectories of V ) or simply the value V (t,
−→
Y (t))

in T only horizon. Monte Carlo simulation is a
probabilistic method when, unable to analytically
determine the law (or the first moments) of the dis-

tribution of V (t,
−→
Y (t)), we simulate an empirical

distribution. At first, we generate a large sample

from the law of
−→
Y t and each element of the sample

is associated to the corresponding value V (t,
−→
Y (t))

to construct an empirical distribution. According
to the problem addressed, the Monte Carlo simu-
lation will involve the generation of a large num-

ber M of possible trajectories
−→
Y t]t=t1,.....,tN from

which we calculate the corresponding trajectories

V (t,
−→
Y (t))]t=t1,....,tN or we will simply calculate M

value of (
−→
Y t, V (t,

−→
Y (t))) in a single date T . We

note that
−→
Y denotes a particle realization of the

random variable
−→
Y (t). Indeed, this difference in

notation allows to distinguish a toss
−→
Y t of a ran-

dom variable of the variable
−→
Y (t) itself.

3 Monte Carlo simulation in the
case of a single risk factor

Let us deal with the case of a single risk factor Y .
We distinguish two situations. In the first, the na-
ture of the problem requires the simulation of dif-

ferent trajectories of V (t,
−→
Y (t)) between 0 and T
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(dynamic simulation). In the second, the simula-

tion of different values V (t,
−→
Y (t)) for one date T is

sufficient to treat the problem (static simulation).

1. Dynamic simulations of trajectories

of
−→
Y (t) and V (t,

−→
Y (t)) in the interval

[0, T ]

a. Theory

It starts with the simulation of
−→
Y (t). This simu-

lation is based on the stochastic equation that is

supposed to govern the evolution of
−→
Y (t) in time.

This evolution is written in discrete time or contin-
uous time. In the case of continuous time, it is such
a diffusion process:

dY = µ(t, Y (t))dt+ σ(t, Y (t))dw (1)

Where dw is the increment of a standard Brownian
motion and µ() and σ() are two known functions
representing the drift and the coefficient of the pro-
cess respectively. For the discretization of (1) we
decompose the interval [0, T ] in N periods of the
same duration equal to ∆t = T/N ( N is large).
We define ti ≡ i∆t. So the discretization of (1) will
be written as following:

Y (tj)− Y (tj−1) = µ(tj−1, Y (tj−1))∆t

+ σ(tj−1, Y (tj−1, Y (tj−1))
√

∆tUj (2)
Where uj a particular embodiment of U(j) (for
j = 1, ....N). The U(j) are normal variables, cen-
tered, reduced and independently distributed. A
trajectory Y (tj) is calculated from series of N in-
dependent tosses Uj ]j=1,....,N from a standardized
Gaussian law and the equation (2).

b. Example 1

Consider an action s with price S and with a po-
sition composed of the action as well as derivative
products on s such as options. We will be in the
universe of Black-Scholes (BS) in which the value
V (t, S(t)) of this position is affected by time and
one random factor Y (t) ≡ S(t), the function V (t, S)
is presumed known (option prices are for example
given by the formula BS). In accordance with BS
we suppose that S(t) follows the geometric Brown-
ian motion: (3.a)dSS = µdt+ σdw ⇐⇒
(3.b)S(t) = S(0) exp((µ− 0, 5σ2)t+ σw(t))

Where w(t) is a standard Brownian µ and σ are
known constants annualized, and time is measured
in years. We will develop simulations with:
- Step time is weekly.
- The parameters of rate of return and weekly volatil-
ity are: µ

52 and σ√
52

- S(0) = 100
- Rate of return and volatility are annualized µ =

12% and σ = 36%
- Rate of return and weekly volatility are: µ

52 =
0.0023 and σ√

52
= 0.0505

S (n) = 100 exp(0.00105n+0.05(U1+U2+....+Un))
(4)

U1 +U2 + ....+Un follows the normal centered law
and variance equal to n. A trajectory Sn]n=1,....,N is
obtained by using (4) by a sequence of N toss poster
Un]n=1,....,N . The Table (figure 1) below contains
the first 15 trajectories obtained during a simulation
of 2000 trajectories of 10 weeks.

Figure 1: Sin]n=1,....,N for i = 1 to 2000 (2000 tra-
jectories of 10 weeks)

2. Static simulation trajectories of
−→
Y (t)

and of V (t,
−→
Y (t)) at the time T

In the above we showed how we simulate i trajecto-
ries (Ytj , V (t, Ytj ))j=1,...,N In many cases, especially

when it comes to evaluating European options[8]

maturity T or enjoying a VaR to horizon T , only the
knowledge of the empirical distribution of V (T, Y (T ))
is useful.
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a. Example 2

Use the previous example in which the only risk fac-
tor Y (t) is the current S(t) which follows the geo-
metric Brownian parameters (annualized) µ = 12%
and sigma = 36%. Unlike the case of this exam-
ple, we are interested here solely in terminal values
S(T ) and V (T, S(T )) S(T ) = 100 exp((µ−0.5σ2)t+
σ
√
TU)

U: Standard Gaussian variable
Generate variables Ui and these antitheticals −Ui

Figure 2: Ui  N(0, 1) and −Ui

Table (figure 3) below shows the first 15 tosses ob-
tained from 2000 tosses of U , Ui]i=1,....,2000 to which
are coupled antitheticals 4000 to obtain simulations
of S(T ).

Figure 3: The values of Si(T ) and V (t, Si(T ))

Example 2 is applied in the calculation of VaR
and the Expected Shortfall (ES). Indeed, the cal-
culation of the VaR of the portfolio whose value at
time T is V (T, S(T )) is made from simulated val-
ues of V (T, S(T )) and loss V (0, S(0))−.V (T, S(T )).
In this example, the VaR (10days, 5%) is assessed
using the 200e the worst result among the 4000 sim-
ulated values. In addition, the arithmetic average
of the 200 highest losses gives the ES (10days, 5%)

b. Example 3: Evaluation of a European op-
tion

Evaluate the price O(0) a European option of ma-
turity T whose payoff is V (T, S(T )). Monte Carlo
simulations are used to evaluate this option simply
by updating safely to rate the empirical average of
payoff resulting from simulations developed using
a risk-neutral dynamics. The procedure is as fol-
lows: We simulate M(M > 1000) values Si]i=1,...,M

of S(T ), deduced from a risk-neutral dynamics, and
from M Gaussian tosses ui for example using the
equation: Si = 100 exp((µ−0, 5σ2)t+σ

√
TU). Re-

member that in the risk-neutral universe the expec-
tation of growth rate of price S(t) is equal to the
interest rate r (different from µ)
*Algorithm
- We calculate M the value V (T ;Si)]i=1,...,M corre-
sponding to payoff
- We calculate the arithmetic average of these M
payoffs and we update the result over a period T of
rate r to obtain the value O(0) of the option in cur-

rent date 0 : O(0) = exp(−rT ) 1
M

∑M
i=1 V (T, Si))

*Statement
Retake the data of Examples 1 and 2 and sup-

pose the r continuous rate equal to 4% and con-
stant. This is to assess the premium O of a Euro-
pean option maturity T = 10 weeks, written an a
action price S(t) and volatility σ = 36% the payoff
of the option is V (T, S(T )). Simulations of S(T )
are operating here from the formula:

S(T)= 100 exp((µ− 0, 5σ2)T + σ
√
TU)

= 100exp(−0, 004769 + 0, 158U)

Table (figure 4) below shows the first 21 tosses
obtained from 2000 tosses of U , Ui]i=1,....,2000 to
which are coupled antitheticals to obtain 4000 sim-
ulations of S(T ).

Table (figure 5) below contains the premium Eu-
ropean option ”Call and Put” and Parity check.
The option value is estimated at

O(0)=exp(−0, 00769) 1
4000

∑400
i=1 V (T, Si)
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Figure 4: The values of Si(T ) et V (T, Si(T ))

Figure 5: The values of Call et Put

Example 3 is applicable in the study of the evo-
lution of variables GREEK of a European option.
Indeed, suppose that the payoff V (T, S(T )) is that
one of an option to evaluate. It is possible, once
estimated its value O1(0), to calculate the Greek
variables. To do this, a slightly different value is
used for the support if we want to get the delta,
or for a variable, such as volatility or interest rates,
if we want to estimate a different sensitivity (such
as Vega or rho). A second simulation is then per-
formed with this new value, by maintaining the
same number of periods N and of M trajectories
and by using the same sequences Ui (and antithet-
icals −Ui) than the first simulation. Therefore, a
second value O2(0) is obtained. Greek variable is
calculated by the formula:

O2(0)−O1(0)

∆S

Where Delta S is the variation retained of the price
of the underlying or of the concerned parameter
(equal to 1 in our encrypted example).

Table (figure 6) below contains the evolution of
GREEK variables of a European option.

Figure 6: Evolution of GREEK variables of a Eu-
ropean option

4 Conclusion

Our work aims to apply the Monte Carlo method
in the field of finance. In fact, Monte Carlo sim-
ulations are often very greedy in calculation time.
Indeed, in most applications, a compromise imposes
itself between two antinomian objectives: precision
and richness of empirical informations obtained (the
maximum desired), which increases with the num-
ber of simulations operated, the computation time
(the minimum desired). Effective procedure leads
to a sufficient precision obtained at the cost of a
limited computation time. Thus, we have devel-
oped so far Monte Carlo simulations in the presence
of a single risk factor, a study we will strengthen by
the development of Monte Carlo simulations in the
presence of several risk factors.
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