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Abstract 
Swarm spreading has been gaining more focus since the more 

reliance on artificial intelligence in solving complex problems. 

Such importance comes from the various possible applications 

of the swarm robotics physically and virtually. This work has 

more focus on proposing an enhanced approach for spreading 

virtual autonomous swarms over an unknown environment. The 

main considerations included having less direct communication 

among the agents, covering the whole environment with as few 

steps as possible, keeping the agents on the move with less 

waiting time and the possibility of applying the simulation 

environment to various problems. The preliminary results are 

promising as they show interesting outcomes over the setup 

environment. 

Keywords: Multi-Agent, Swarm Spreading, Pheromone-based 

Communication, Simulation. 

1. Introduction 

Swarm Intelligence has attracted recently much 

attention of researchers around the world. Swarm 

Intelligence which  is considered as a branch of Artificial 

Intelligence has applications to solve different kind of 

problems. Swarm behavior characterizes many species in 

nature,  as an example flocks of birds, social insects  (bees, 

wasps, ants, and termites), fish schools, and herds of land 

animals.  These species tend to adopt swarm behavior due 

to its biological needs to stay together [1].  

 

A swarm can be defined as a group of agents 

cooperating with each other in a certain behavioral 

pattern, the goal of agents cooperation is to achieve some 

goal that is beyond the capabilities of a single agent [1]. 

There are different models of swarm intelligence that 

have been studied, these models include ant colony 

optimization [2], particle swarm optimization [3],[4], 

honey bee swarming [5], and bacterial foraging [6]. 

 

Swarm intelligence models from computational point 

of view, are considered as computing algorithms that are 

useful for undertaking special cases of distributed 

optimization problems. Swarm based algorithms is 

inspired from nature, and considered as  population-based 

algorithms. These algorithms  are capable of producing 

low cost, fast, and robust solutions to several complex 

problems [1],[3]-[6]. Swarm intelligence is motivated by 

its potential future applications. One of its applications is 

the inspection autonomously of complex engineered 

structures by swarm agents, such as inspecting  turbines 

from the inside [2]. Another application is using robots in 

searching/exploration behavior, it also can be used in  

aggregation for dispersal, gathering,  and clustering 

[3],[7]. Swarm systems have a high degree of robustness, 

that is the system’s effectiveness is ensured, even if a high 

percentage of the swarm is lost. This robustness results in 

a distribution of risk which is an appropriate approach to 

safety critical scenarios [8].  

 

This research aims to provide an enhanced approach 

for spreading virtual autonomous swarm agents over an 

unknown environment.  In this paper, we present a 

modified version of the model presented in [9]. The 

agents used in this model has no direct communication  

between them. The simulation environment can be 

controlled using different variables. Three different 

approaches were proposed to enable agents to decide the 

movement direction.   

 

The remainder of this paper is organized as follows; The 

next section presents some of swarm spreading algorithms 

related work. It further provides the research methodology. 

Then comes a description of the model with its simulation 

environment and implementation. Followed by the  results. 

While the last section summarizes the advantages and 

limitations of the presented model, it also provides some 

concluding remarks and open questions of the field. 

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 160

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.



 

 

2. Related Work 

Since ages the natural swarms have been studied and 

analyzed in order to understand the way they behave. 

Since few decades they have been replicated in virtual 

environments [10]. Such replications were for the sake of 

many reasons serving different fields as military, 

medicine, transportation, and education. Related to that, 

various researchers have been developing, deploying, 

evaluating, enhancing and proposing various approaches 

for spreading over unknown environments efficiently and 

effectively; either by physical or virtual robots [7],[10]-

[13].  

 

The authors in [11] validated spreading algorithms 

targeting real physical robots using a simulation 

environment. In which the idea was to spread teams of 

small autonomous robots having no major communication 

channels and few sensors. Where the main objective was 

to cover a large span of the unknown environment, keep a 

minimal cross-team communication range, deal with 

various obstacles and have a certain level of  intelligence. 

Their approach proposed different robot behaviors that are 

the “Random Walk, Find Opening, Avoid Robots, 

Random Range, and Backtrack Range”. The behaviors 

define how the robots interact with the environment and 

with each other as how the robots behave when they are 

outside the communication range. The authors supposed 

that their developed algorithms and approach make it 

efficient to deploy a relatively large number of robots 

while having a decent economic feasibility. Though the 

robots relying on their approach seem to be useful, they 

are unaware of their exact location, the locations of other 

robots, and may face technical communication issues. 

 

In order to assess the spreading algorithms over 

unknown environments, several movement techniques 

were closely analyzed in [12]. The main aim was to 

virtually evaluate the physical robots spanning percentage 

in different environments as two-dimensional plane, a 

building or a terrain. Coverage percentage was the 

primary evaluation parameter for autonomous non-

communicating robots, that are characterized by limited 

observation sensors, low computation power and assumed 

to have a limited energy resources. As the authors based 

their work on a real physical robot that has limited 

awareness and resources. However the robots were unable 

to directly communicate with each other, the authors 

implemented an indirect communication scheme that let 

the robots seeks traces of other robots. The robots can 

travel in the environment by moving forward, in reverse 

and change direction according to local independent 

decisions. These basic movement options enabled  four 

basic spreading techniques that are random steps, 

following an edge, moving towards an open space or 

move away from close robots. The main findings show 

that the best results were achieved when the robots spot 

the locations of other robots, namely the “Fiducial” 

algorithm. While reaching small areas was an issue, 

hence the robots consider it as an obstacle in the 

environment and tend to move away. 

 

Brick & Mortar [13] is a proposed spreading algorithm in 

unknown environments for which the authors claim 

achieving better performance than similar algorithms. Its 

basic idea is to quickly spread a group of autonomous 

robots over an unknown environment in emergency and 

critical situations. Despite the difficulty of direct cross-

team communication, the robots are able to work in 

coordination by leaving messages that other robots can 

sense and interpret. Brick & Mortar model divides the 

environment into cells that can have one of four labels 

that are unexplored, explored,  visited and walls. As 

illustrated, their approach has many features as robots 

adaptation to sudden moves to new locations, monitoring 

the progress, ability to optimize resources and avoiding 

repetitive tasks. However Brick & Mortar was proven 

theoretically efficient, it lacks actual testing results of real 

physical robots in practice and needs to consider signaling 

urgent messages needed in emergency situations. 

3. Methodology 

This research adopts an experimental approach to reach 

and validate the outcomes of a multi-agent simulation 

model. In which the main components are the simulation 

environment (an unknown space),  the autonomous multi-

agent teams (the swarms)  and the spreading algorithm 

(the logic). Where the basic setup of the components is 

inspired from the literature, taking the most suitable 

configurations and characteristics. Further adaptations 

and additions are tested to reach a relatively improved 

performance and overcome major issues. The actual 

implementation of the component was sought to be 

modular, interoperable, flexible and scalable, in order to 

establish a multi-purpose customizable solution. Figure 1 

illustrates the conceptual block diagram of the desired 

implementation. Swarms are supposed to consist of 

autonomous configurable agents independently from the 

environment. Similarly the environment configurations 

are upon demand and interoperable with various external 

components. In other words, the whole setup is not case 

specific and can be used for further experiments or 

applications. 
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Figure 1: Block diagram of the components 

A number of simulation software platforms exist for 

multi-agent modeling as Mason, NetLogo, Java Swarm, 

Objective-C Swarm and Repast. The evaluation of these 

free  platforms in [14],[15] indicated that selecting the 

most suitable platform is a trade-off between different 

characteristics. Table 1 compares  the main characteristics 

of each simulation platform. However Mason platform has 

some drawbacks, it has been found to be the most suitable 

platform to the multi-agent simulation of this work. 

Table 1: Concise comparison of simulation software platforms (Adapted 

from [14]-[16]) 

 Mason NetLogo 
Java 

Swarm 

Obj. C 

Swarm 
Repast 

Maturity P F G G F 
Programming 

Experience P G F F P 
Properties 

Modification P F P P G 

User Interface P G P P G 
Simulation Speed G F F F G 
Documentation G G F F F 
Modularity G F P P F 
Intensive/Complex 

Computations G P P P P 

Control/Debug G P P P F 
Suitability G F P P G 

Criteria: Good, Fair, Poor 

 

MASON [16]  is a  multi-agent Java-based toolkit for a 

variety of simulation tasks as swarm robotics, machine 

learning [17] and social complexity. Among the different 

alternatives, Mason is characterized by its higher speed, 

modularity, extensibility and high ability to serve 

intensive simulation tasks. Other interesting objectives of 

Mason are the separation between the visualization area 

and the simulation model, platform independence, two 

and three dimensional visualization, execution 

checkpoints and portability. Such features make it easier 

to switch between different simulation models and an 

increased separability. Above all, Mason is an open source 

environment freely available as a result of the 

collaboration between the Computer Science Department 

and the Center for Social Complexity at George Mason 

University. Mason’s was built over three architectural 

levels that are the utility level, the model level and the 

visualization level. In which the general operations reside 

in the utility classes, the  basic simulation classes are in 

the “SimState” and the basic visualization classes are in 

the “GUIState”. Two of the levels (layers), SimState and 

GUIState, are shown in  Figure 2 which illustrates how 

the simulation model could be detached easily. 

 

 

Figure 2: Architecture of Mason simulation environment [16] 

4. The Model 

The idea behind the  model presented in this work 

relies heavily on [9] with many enhancements and 

additions. While Mason [16] is used as the simulation 

environment to run the model. The model agents have no 

direct communications and the rules of the agents are 

adapted from “The Game of Life” [18]. Furthermore, 

different variables to control the simulation environment 

were added that include the diagonal movement of the 

agents. In terms of steering the agents to span the 

environment, there are three different approaches that 

enable the agents to advance to a new movement direction. 

 

The model consists of four main components as shown in 

Figure 3. First, schedualable objects which are the Agents 
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and pheromones that extends the Steppable entity from 

Mason [15]. A collection of Agents form swarms in the 

model, while the Pheromones represent the indirect 

communication mean between agents within the 

simulation environment. Second, model elements that 

contain DispersSimState entity that implements SimState 

entity from Mason [15]. DespersSimState represents the 

module that steps the simulation in time and space. Third, 

GUI which contains DispersSimStateWithUI entity that 

implements GUIState entity from Mason[15]. 

DispersSimStateWithUI represents the interface of the 

model that wraps DispereSimState model. Fourth, utility 

entities which contain Directions, AgentStatus, 

LocationInfo and LocationStatus. 

 

 

Figure 3: Main components of the model 

Figure 4 shows the general processes the simulation will 

go throw. The initialization process sets up the 

environment variables including the width, height, door 

size, door position and other  control variables that the 

agents use, as they are briefly explained after . At each 

time step many things happen. First filling the door with 

agents if empty. Second, stepping each live agent in the 

environment in sequence starting with the first-in and 

ending with the ones on the door, or alternatively  

randomly stepping the agents. The simulation stops when 

all the agents are dead. 

 

Figure 4: General processes of the simulation 

The main model is concentrated in the logic of the agent. 

The main principles used to design the logic of the agent 

are zero direct communication among them, depending 

only on local information collected from the environment, 

and making a greedy decision depending on collected 

information. To get the agent inside the environment, it 

gets positioned at one of the door gates then it starts its 

journey. There is alot of information the agent will look at 

before making the decision of moving, waiting or dying. 

Such information include Directions, Pheromones, 

Neighbors and Teams. 

 

 

Figure 5: Directions cover all eight positions one step around the agent in 

the environment 
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Teams is a way to group a swarm of agents together in 

which they follow each other and use the same 

pheromones. Teams are determined by the door gate from 

which the agent is entering the environment, for instance 

three gates will result in having three teams. Having a 

team will help in guiding a swarm to follow a leader for 

the sake of exploring the environment in all possible 

directions as shown in Figure 5. Having multiple teams 

will help exploring the environment more efficiently. On 

the other hand Pheromones formulate an indirect way of 

communication between the agents. Each team has its 

own pheromone that will be used to keep the agents of the 

same team as close as possible to each other, consequently  

leading to more efficient coverage of  the environment. 

 

Agent Algorithm 

update current location information 

update neighbors location info 

if agent is leader 

    direction = getNewDirection() 

    if direction exists 

        move to direction 

    else // agent is a follower 

        if agent can follow current pheromone 

           move to location current pheromone is pointing to 

if agent didn’t move 

    if agent can wait 

        put agent in waiting mode 

    else 

        put agent in dead mode 

 

Agent stepping algorithm is straight forward. First it 

will collect information about current and surrounding 

locations. Relying on the collected information the agent 

will be identified as leader or follower. The leader will try 

to find the next location to move to based on the steering 

method, on the other hand the follower will only try 

follow its team using the pheromones left  in the 

environment. If the agent could not move in either 

situations the stepping will enter in the wait-die algorithm 

which uses the collected information to decide if the agent 

should wait, die or switch teams. The wait-die algorithm 

uses the rules of “The Game of Life”[18]. The agent 

would switch teams only if killing the agent at that 

location will block another team, if so switch that agent to 

the blocked team. 

 

The proposed spreading algorithm in this work has many 

variables that control it accordingly, as shown in Table 2. 

Variables max wait time, dead count, and wait count are 

used by the wait-die algorithm, they are used as limits to 

make decisions on the status of the agent if moving is not 

possible. Pheromone fading variable is used to fade the 

pheromone in decreasing manner if no agent from the 

same team passes throw the location where that 

pheromone is located at, which releases that location for 

other teams to move to that location and place their own 

pheromone, because it is not allowed more than four 

pheromones at each location. The rest of the variables are 

self explanatory. 

Table 2:  Control variables, descriptions and default values 

Variable Description Value 

# of teams 
The number of teams will enter the 

environment 
3 

max wait 

time 

The maximum number of steps the 

agent will stay in waiting status 

without moving 

100 

dead count 

The maximum number of dead 

agents around an agent at a 

specified step 

4 

wait count 

The maximum number of waiting 

agents around an agent at a 

specified step 

4 

pheromone 

fading 

The percentage a pheromone fades 

at each step if no agent passes throw 

that location 

0.1 

door position 
The position of the door according 

to the environment 

right 

bottom 

environment 

size 

The width and height of the 

environment in pixels 
50 x 50 

obstacles 

Objects that occupy locations in the 

environment with different shapes 

and sizes 

none 

agent size 
The size of the agent in pixels 1, 4, 

9, 16 ... 
1 

agent step 
Number of pixels the agent will 

move at each step 
1 

5. Results and Discussion 

This section shows major preliminary results of the 

proposed algorithm using the default values of the control 

variables mentioned in Table 2. Three runs of the 

simulation were performed each with a different steering 

algorithm. Figures 6, 7 and 8 show the results of the Hug-

the-wall steering algorithm which has the main focus in 

this work. While Figure 9 and 10 represent the results of 

using random and smart steering algorithms respectively.  
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The results highlight five main readings that are visited, 

covered, number of agents, average waiting time and 

number of branches. Visited indicates the percentage of 

visited locations in the environment by any agent at some 

step. Covered indicates the percentage of locations that 

have a dead agent. Number of agents indicates the 

number of the agents used to fill the environment. 

Average waiting time indicates the average waiting time 

of all agents at each step. Number of branches indicates 

the number of branches made by all teams in all the steps 

executed for each run.  

 

 

Figure 6: Hug-the-wall steering algorithm results with the  relevance number of agents  in dotted black, coverage in blue and visited locations in red all in an 

empty environment of (50 x 50) locations. 

 

Figure 7: Hug-the-wall steering algorithm results with the number of branches related to the number of steps in an empty environment of (50 x 50) locations. 
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Figure 8: Hug-the-wall steering algorithm results with the Average waiting time of all agents at each step related to the number of steps in an empty 

environment of (50 x 50) locations. 

 

Figure 9: Random steering algorithm results with the  relevance number of agents  in blue, coverage in orange, Average waiting time of all agents at each step 

in green, number of branches in blue and visited locations in purple all in an empty environment of (50 x 50) locations. 
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Figure 10: Smart steering algorithm results with the relevance number of agents  in blue, coverage in gray, Average waiting time of all agents at each step in 

green, number of branches in red and visited locations in pink all in an empty environment of (50 x 50) locations. 

 

Using the main model which is hug-the-wall steering 

algorithm we achieved complete coverage of the 

environment in time less than A ( A is the area of the 

environment in pixels) and it was completely visited in 

time less than half of A, with a relatively very good 

average waiting time of the agents at each step. We can 

notice the constant increase in the number of agents 

throughout the simulation which indicates no blocking of 

the door until the environment is fully covered. 

6. Conclusions and Future Work 

Due to the importance of the autonomous virtual 

swarm spreading in unknown environments and its 

various applications, this work proposes a promising 

approach that utilizes a multi-agent spreading algorithm. 

With the preliminary results we achieved a full coverage 

and visiting of the environment in a very competitive time 

relative to the area of the environment. The proposed 

model has many enhancements over others in terms of 

directions, control variables and zero direct 

communication among the agents. The proposed approach 

emphasizes covering the whole environment efficiently, 

reducing the waiting time and high level of applicability 

to different simulation problems. 

 

Starting from the results of testing the proposed approach, 

possible future work aims to study the significance 

ranking of the control variable, improving the way the 

agents look ahead for possible directions, adding obstacles 

to the simulation environment, and analyzing the 

applicability of the approach over real problems as spatial 

maps or computer networks. Furthermore, an interesting 

application would be considering a distributed 

environment as the various important issues related to big 

data. 
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