

Multi-Agent Swarm Spreading Approach in Unknown

Environments

Shadi Alian
1
, Nazeeh Ghatasheh

2
 and Mua’ad Abu-Faraj

1

1
 Department of Computer Information Systems, The University of Jordan

Aqaba, 77110, Jordan

2
 Department of Business Information Technology, The University of Jordan

Aqaba, 77110, Jordan

Abstract
Swarm spreading has been gaining more focus since the more

reliance on artificial intelligence in solving complex problems.

Such importance comes from the various possible applications

of the swarm robotics physically and virtually. This work has

more focus on proposing an enhanced approach for spreading

virtual autonomous swarms over an unknown environment. The

main considerations included having less direct communication

among the agents, covering the whole environment with as few

steps as possible, keeping the agents on the move with less

waiting time and the possibility of applying the simulation

environment to various problems. The preliminary results are

promising as they show interesting outcomes over the setup

environment.

Keywords: Multi-Agent, Swarm Spreading, Pheromone-based

Communication, Simulation.

1. Introduction

Swarm Intelligence has attracted recently much

attention of researchers around the world. Swarm

Intelligence which is considered as a branch of Artificial

Intelligence has applications to solve different kind of

problems. Swarm behavior characterizes many species in

nature, as an example flocks of birds, social insects (bees,

wasps, ants, and termites), fish schools, and herds of land

animals. These species tend to adopt swarm behavior due

to its biological needs to stay together [1].

A swarm can be defined as a group of agents

cooperating with each other in a certain behavioral

pattern, the goal of agents cooperation is to achieve some

goal that is beyond the capabilities of a single agent [1].

There are different models of swarm intelligence that

have been studied, these models include ant colony

optimization [2], particle swarm optimization [3],[4],

honey bee swarming [5], and bacterial foraging [6].

Swarm intelligence models from computational point

of view, are considered as computing algorithms that are

useful for undertaking special cases of distributed

optimization problems. Swarm based algorithms is

inspired from nature, and considered as population-based

algorithms. These algorithms are capable of producing

low cost, fast, and robust solutions to several complex

problems [1],[3]-[6]. Swarm intelligence is motivated by

its potential future applications. One of its applications is

the inspection autonomously of complex engineered

structures by swarm agents, such as inspecting turbines

from the inside [2]. Another application is using robots in

searching/exploration behavior, it also can be used in

aggregation for dispersal, gathering, and clustering

[3],[7]. Swarm systems have a high degree of robustness,

that is the system’s effectiveness is ensured, even if a high

percentage of the swarm is lost. This robustness results in

a distribution of risk which is an appropriate approach to

safety critical scenarios [8].

This research aims to provide an enhanced approach

for spreading virtual autonomous swarm agents over an

unknown environment. In this paper, we present a

modified version of the model presented in [9]. The

agents used in this model has no direct communication

between them. The simulation environment can be

controlled using different variables. Three different

approaches were proposed to enable agents to decide the

movement direction.

The remainder of this paper is organized as follows; The

next section presents some of swarm spreading algorithms

related work. It further provides the research methodology.

Then comes a description of the model with its simulation

environment and implementation. Followed by the results.

While the last section summarizes the advantages and

limitations of the presented model, it also provides some

concluding remarks and open questions of the field.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 160

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

2. Related Work

Since ages the natural swarms have been studied and

analyzed in order to understand the way they behave.

Since few decades they have been replicated in virtual

environments [10]. Such replications were for the sake of

many reasons serving different fields as military,

medicine, transportation, and education. Related to that,

various researchers have been developing, deploying,

evaluating, enhancing and proposing various approaches

for spreading over unknown environments efficiently and

effectively; either by physical or virtual robots [7],[10]-

[13].

The authors in [11] validated spreading algorithms

targeting real physical robots using a simulation

environment. In which the idea was to spread teams of

small autonomous robots having no major communication

channels and few sensors. Where the main objective was

to cover a large span of the unknown environment, keep a

minimal cross-team communication range, deal with

various obstacles and have a certain level of intelligence.

Their approach proposed different robot behaviors that are

the “Random Walk, Find Opening, Avoid Robots,

Random Range, and Backtrack Range”. The behaviors

define how the robots interact with the environment and

with each other as how the robots behave when they are

outside the communication range. The authors supposed

that their developed algorithms and approach make it

efficient to deploy a relatively large number of robots

while having a decent economic feasibility. Though the

robots relying on their approach seem to be useful, they

are unaware of their exact location, the locations of other

robots, and may face technical communication issues.

In order to assess the spreading algorithms over

unknown environments, several movement techniques

were closely analyzed in [12]. The main aim was to

virtually evaluate the physical robots spanning percentage

in different environments as two-dimensional plane, a

building or a terrain. Coverage percentage was the

primary evaluation parameter for autonomous non-

communicating robots, that are characterized by limited

observation sensors, low computation power and assumed

to have a limited energy resources. As the authors based

their work on a real physical robot that has limited

awareness and resources. However the robots were unable

to directly communicate with each other, the authors

implemented an indirect communication scheme that let

the robots seeks traces of other robots. The robots can

travel in the environment by moving forward, in reverse

and change direction according to local independent

decisions. These basic movement options enabled four

basic spreading techniques that are random steps,

following an edge, moving towards an open space or

move away from close robots. The main findings show

that the best results were achieved when the robots spot

the locations of other robots, namely the “Fiducial”

algorithm. While reaching small areas was an issue,

hence the robots consider it as an obstacle in the

environment and tend to move away.

Brick & Mortar [13] is a proposed spreading algorithm in

unknown environments for which the authors claim

achieving better performance than similar algorithms. Its

basic idea is to quickly spread a group of autonomous

robots over an unknown environment in emergency and

critical situations. Despite the difficulty of direct cross-

team communication, the robots are able to work in

coordination by leaving messages that other robots can

sense and interpret. Brick & Mortar model divides the

environment into cells that can have one of four labels

that are unexplored, explored, visited and walls. As

illustrated, their approach has many features as robots

adaptation to sudden moves to new locations, monitoring

the progress, ability to optimize resources and avoiding

repetitive tasks. However Brick & Mortar was proven

theoretically efficient, it lacks actual testing results of real

physical robots in practice and needs to consider signaling

urgent messages needed in emergency situations.

3. Methodology

This research adopts an experimental approach to reach

and validate the outcomes of a multi-agent simulation

model. In which the main components are the simulation

environment (an unknown space), the autonomous multi-

agent teams (the swarms) and the spreading algorithm

(the logic). Where the basic setup of the components is

inspired from the literature, taking the most suitable

configurations and characteristics. Further adaptations

and additions are tested to reach a relatively improved

performance and overcome major issues. The actual

implementation of the component was sought to be

modular, interoperable, flexible and scalable, in order to

establish a multi-purpose customizable solution. Figure 1

illustrates the conceptual block diagram of the desired

implementation. Swarms are supposed to consist of

autonomous configurable agents independently from the

environment. Similarly the environment configurations

are upon demand and interoperable with various external

components. In other words, the whole setup is not case

specific and can be used for further experiments or

applications.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 161

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Figure 1: Block diagram of the components

A number of simulation software platforms exist for

multi-agent modeling as Mason, NetLogo, Java Swarm,

Objective-C Swarm and Repast. The evaluation of these

free platforms in [14],[15] indicated that selecting the

most suitable platform is a trade-off between different

characteristics. Table 1 compares the main characteristics

of each simulation platform. However Mason platform has

some drawbacks, it has been found to be the most suitable

platform to the multi-agent simulation of this work.

Table 1: Concise comparison of simulation software platforms (Adapted

from [14]-[16])

 Mason NetLogo
Java

Swarm

Obj. C

Swarm
Repast

Maturity P F G G F
Programming

Experience P G F F P
Properties

Modification P F P P G

User Interface P G P P G
Simulation Speed G F F F G
Documentation G G F F F
Modularity G F P P F
Intensive/Complex

Computations G P P P P

Control/Debug G P P P F
Suitability G F P P G

Criteria: Good, Fair, Poor

MASON [16] is a multi-agent Java-based toolkit for a

variety of simulation tasks as swarm robotics, machine

learning [17] and social complexity. Among the different

alternatives, Mason is characterized by its higher speed,

modularity, extensibility and high ability to serve

intensive simulation tasks. Other interesting objectives of

Mason are the separation between the visualization area

and the simulation model, platform independence, two

and three dimensional visualization, execution

checkpoints and portability. Such features make it easier

to switch between different simulation models and an

increased separability. Above all, Mason is an open source

environment freely available as a result of the

collaboration between the Computer Science Department

and the Center for Social Complexity at George Mason

University. Mason’s was built over three architectural

levels that are the utility level, the model level and the

visualization level. In which the general operations reside

in the utility classes, the basic simulation classes are in

the “SimState” and the basic visualization classes are in

the “GUIState”. Two of the levels (layers), SimState and

GUIState, are shown in Figure 2 which illustrates how

the simulation model could be detached easily.

Figure 2: Architecture of Mason simulation environment [16]

4. The Model

The idea behind the model presented in this work

relies heavily on [9] with many enhancements and

additions. While Mason [16] is used as the simulation

environment to run the model. The model agents have no

direct communications and the rules of the agents are

adapted from “The Game of Life” [18]. Furthermore,

different variables to control the simulation environment

were added that include the diagonal movement of the

agents. In terms of steering the agents to span the

environment, there are three different approaches that

enable the agents to advance to a new movement direction.

The model consists of four main components as shown in

Figure 3. First, schedualable objects which are the Agents

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 162

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

and pheromones that extends the Steppable entity from

Mason [15]. A collection of Agents form swarms in the

model, while the Pheromones represent the indirect

communication mean between agents within the

simulation environment. Second, model elements that

contain DispersSimState entity that implements SimState

entity from Mason [15]. DespersSimState represents the

module that steps the simulation in time and space. Third,

GUI which contains DispersSimStateWithUI entity that

implements GUIState entity from Mason[15].

DispersSimStateWithUI represents the interface of the

model that wraps DispereSimState model. Fourth, utility

entities which contain Directions, AgentStatus,

LocationInfo and LocationStatus.

Figure 3: Main components of the model

Figure 4 shows the general processes the simulation will

go throw. The initialization process sets up the

environment variables including the width, height, door

size, door position and other control variables that the

agents use, as they are briefly explained after . At each

time step many things happen. First filling the door with

agents if empty. Second, stepping each live agent in the

environment in sequence starting with the first-in and

ending with the ones on the door, or alternatively

randomly stepping the agents. The simulation stops when

all the agents are dead.

Figure 4: General processes of the simulation

The main model is concentrated in the logic of the agent.

The main principles used to design the logic of the agent

are zero direct communication among them, depending

only on local information collected from the environment,

and making a greedy decision depending on collected

information. To get the agent inside the environment, it

gets positioned at one of the door gates then it starts its

journey. There is alot of information the agent will look at

before making the decision of moving, waiting or dying.

Such information include Directions, Pheromones,

Neighbors and Teams.

Figure 5: Directions cover all eight positions one step around the agent in

the environment

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 163

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Teams is a way to group a swarm of agents together in

which they follow each other and use the same

pheromones. Teams are determined by the door gate from

which the agent is entering the environment, for instance

three gates will result in having three teams. Having a

team will help in guiding a swarm to follow a leader for

the sake of exploring the environment in all possible

directions as shown in Figure 5. Having multiple teams

will help exploring the environment more efficiently. On

the other hand Pheromones formulate an indirect way of

communication between the agents. Each team has its

own pheromone that will be used to keep the agents of the

same team as close as possible to each other, consequently

leading to more efficient coverage of the environment.

Agent Algorithm

update current location information

update neighbors location info

if agent is leader

 direction = getNewDirection()

 if direction exists

 move to direction

 else // agent is a follower

 if agent can follow current pheromone

 move to location current pheromone is pointing to

if agent didn’t move

 if agent can wait

 put agent in waiting mode

 else

 put agent in dead mode

Agent stepping algorithm is straight forward. First it

will collect information about current and surrounding

locations. Relying on the collected information the agent

will be identified as leader or follower. The leader will try

to find the next location to move to based on the steering

method, on the other hand the follower will only try

follow its team using the pheromones left in the

environment. If the agent could not move in either

situations the stepping will enter in the wait-die algorithm

which uses the collected information to decide if the agent

should wait, die or switch teams. The wait-die algorithm

uses the rules of “The Game of Life”[18]. The agent

would switch teams only if killing the agent at that

location will block another team, if so switch that agent to

the blocked team.

The proposed spreading algorithm in this work has many

variables that control it accordingly, as shown in Table 2.

Variables max wait time, dead count, and wait count are

used by the wait-die algorithm, they are used as limits to

make decisions on the status of the agent if moving is not

possible. Pheromone fading variable is used to fade the

pheromone in decreasing manner if no agent from the

same team passes throw the location where that

pheromone is located at, which releases that location for

other teams to move to that location and place their own

pheromone, because it is not allowed more than four

pheromones at each location. The rest of the variables are

self explanatory.

Table 2: Control variables, descriptions and default values

Variable Description Value

of teams
The number of teams will enter the

environment
3

max wait

time

The maximum number of steps the

agent will stay in waiting status

without moving

100

dead count

The maximum number of dead

agents around an agent at a

specified step

4

wait count

The maximum number of waiting

agents around an agent at a

specified step

4

pheromone

fading

The percentage a pheromone fades

at each step if no agent passes throw

that location

0.1

door position
The position of the door according

to the environment

right

bottom

environment

size

The width and height of the

environment in pixels
50 x 50

obstacles

Objects that occupy locations in the

environment with different shapes

and sizes

none

agent size
The size of the agent in pixels 1, 4,

9, 16 ...
1

agent step
Number of pixels the agent will

move at each step
1

5. Results and Discussion

This section shows major preliminary results of the

proposed algorithm using the default values of the control

variables mentioned in Table 2. Three runs of the

simulation were performed each with a different steering

algorithm. Figures 6, 7 and 8 show the results of the Hug-

the-wall steering algorithm which has the main focus in

this work. While Figure 9 and 10 represent the results of

using random and smart steering algorithms respectively.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 164

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

The results highlight five main readings that are visited,

covered, number of agents, average waiting time and

number of branches. Visited indicates the percentage of

visited locations in the environment by any agent at some

step. Covered indicates the percentage of locations that

have a dead agent. Number of agents indicates the

number of the agents used to fill the environment.

Average waiting time indicates the average waiting time

of all agents at each step. Number of branches indicates

the number of branches made by all teams in all the steps

executed for each run.

Figure 6: Hug-the-wall steering algorithm results with the relevance number of agents in dotted black, coverage in blue and visited locations in red all in an

empty environment of (50 x 50) locations.

Figure 7: Hug-the-wall steering algorithm results with the number of branches related to the number of steps in an empty environment of (50 x 50) locations.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 165

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Figure 8: Hug-the-wall steering algorithm results with the Average waiting time of all agents at each step related to the number of steps in an empty

environment of (50 x 50) locations.

Figure 9: Random steering algorithm results with the relevance number of agents in blue, coverage in orange, Average waiting time of all agents at each step

in green, number of branches in blue and visited locations in purple all in an empty environment of (50 x 50) locations.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 166

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Figure 10: Smart steering algorithm results with the relevance number of agents in blue, coverage in gray, Average waiting time of all agents at each step in

green, number of branches in red and visited locations in pink all in an empty environment of (50 x 50) locations.

Using the main model which is hug-the-wall steering

algorithm we achieved complete coverage of the

environment in time less than A (A is the area of the

environment in pixels) and it was completely visited in

time less than half of A, with a relatively very good

average waiting time of the agents at each step. We can

notice the constant increase in the number of agents

throughout the simulation which indicates no blocking of

the door until the environment is fully covered.

6. Conclusions and Future Work

Due to the importance of the autonomous virtual

swarm spreading in unknown environments and its

various applications, this work proposes a promising

approach that utilizes a multi-agent spreading algorithm.

With the preliminary results we achieved a full coverage

and visiting of the environment in a very competitive time

relative to the area of the environment. The proposed

model has many enhancements over others in terms of

directions, control variables and zero direct

communication among the agents. The proposed approach

emphasizes covering the whole environment efficiently,

reducing the waiting time and high level of applicability

to different simulation problems.

Starting from the results of testing the proposed approach,

possible future work aims to study the significance

ranking of the control variable, improving the way the

agents look ahead for possible directions, adding obstacles

to the simulation environment, and analyzing the

applicability of the approach over real problems as spatial

maps or computer networks. Furthermore, an interesting

application would be considering a distributed

environment as the various important issues related to big

data.

References
[1] C. Blum and D. Merkle, Eds., Swarm Intelligence:

Introduction and Applications, Natural Computing

Series. Springer, 2008.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 167

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

[2] A. Colorni, M. Dorigo, and V. Maniezzo, “Distributed

Optimization by Ant Colonies,” Varela, F. Bourgine,

P. (eds.), in Proceedings of the First European

Conference on Artificial Life, pp. 134–142. MIT

Press, Cambridge, 1992.

[3] J. Kennedy, and R. Eberhart, “Particle Swarm

Optimization,” in Proceedings of IEEE International

Conference on Neural Networks, vol. 4, pp. 1942–

1948, 1995.

[4] Y. Wang, A. Liang, and H. Guan, “Frontier-based

multi-robot map exploration using particle swarm

optimization,” in Swarm Intelligence (SIS), 2011

IEEE Symposium on, 2011, pp. 1-6.

[5] D. Teodorovic, and M. Dell’orco, “Bee Colony

Optimization-A Cooperative Learning Aproach to

Complex Transportation Problems,” Advanced OR

and AI Methods in Transportation, pp. 51–60, 2005.

[6] K. Passino, “Distributed Optimization and Control

Using Only a Germ of Intelligence,” in: Proceedings of

the 2000 IEEE International Symposium on Intelligent

Control, pp. 5–13, 2000.

[7] T. Hsiang, E. Arkin, M. Bender, S. Fekete, and J.

Mitchell, “Online dispersion algorithms for swarms of

robots,” in Proceedings of the nineteenth annual

symposium on Computational geometry. ACM, 2003,

pp. 382-383.

[8] E. Sahin, “Swarm robotics: From sources of

inspiration to domains of application," in Swarm

Robotics, ser. Lecture Notes in Computer Science, E.

Sahin and W. Spears, Eds. Springer Berlin

Heidelberg, 2005, vol. 3342, pp. 10-20. Available:

http://dx.doi.org/10.1007/978-3-540-30552-1_2

[9] T. Hsiang, and M. Sztainberg, “Pheromone-guided

dispersion for swarms of robots,” in Nineteenth

European Workshop in Computational Geometry,

2003.

[10] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm

Intelligence: From Natural to Artificial Systems. New

York, NY, USA: Oxford University Press, Inc., 1999.

[11] S. Damer, L. Ludwig, M. A. LaPoint, M. Gini, N.

Papanikolopoulos, and J. Budenske, “Dispersion and

exploration algorithms for robots in unknown

environments,” pp. 62300Q-62300Q-10, 2006.

Available: http://dx.doi.org/10.1117/12.668915

[12] R. Morlok, and M. Gini, “Dispersing robots in an

unknown environment,” in Distributed Autonomous

Robotic Systems 6, R. Alami, R. Chatila, and H.

Asama, Eds. Springer Japan, 2007, pp. 253-262.

Available: http://dx.doi.org/10.1007/978-4-431-35873-

2_25

[13] E. Ferranti, N. Trigoni, and M. Levene, “Brick mortar:

an on-line multi-agent exploration algorithm,” in

Robotics and Automation, 2007 IEEE International

Conference on, 2007, pp. 761-767.

[14] S. F. Railsback, S. L. Lytinen, and S. K. Jackson,

“Agent-based simulation platforms: Review and

development recommendations,”SIMULATION, vol.

82, no. 9, pp. 609-623, 2006. Available:

http://sim.sagepub.com/content/82/9/609.abstract

[15] J. Barbosa, and P. Leitao, “Simulation of multi-agent

manufacturing systems using agent-based modelling

platforms,” in Industrial Informatics (INDIN), 2011

9th IEEE International Conference on, 2011, pp. 477-

482.

[16] S. Luke, C. Revilla, L. Panait, K. Sullivan, and G.

Balan, “Mason: A multiagent simulation

environment,” Simulation, vol. 81, no. 7, pp. 517-527,

Jul. 2005. Available:

http://dx.doi.org/10.1177/0037549705058073

[17] S. Luke, Essentials of Metaheuristics, 2nd ed.

Lulu, 2013.
[18] M. Gardner, “Mathematical Games: The Fantastic

Combinations of John Conway’s New Solitaire Game

Life,” Scientific American, vol. 223, pp. 120–123,

1970.

Shadi Alian received the B.Sc. degree in Computer Science from

Yarmouk University, Irbid, Jordan, in 2004, then he was awarded a

merit-based scholarship to continue his M.Sc. degree in Computer

Science from Northeastern Illinois University, Chicago, Illinois, USA,

in 2007. He is, at present, lecturer at The University of Jordan,

Aqaba, Jordan, since 2010. His research interests include Multi-

agent algorithms, Mutation testing, automatic test data generation and

natural language processing.

Nazeeh Ghatasheh received the B.Sc. degree in computer

information systems from The University of Jordan, Amman, Jordan,

in 2004, then he was awarded a merit-based full scholarship to

continue his M.sc. Degree in Electronic Business Management and

the Ph.D. Degree in Electronic Business from the University of

Salento, Lecce, Italy, in 2008 and 2011 respectively. He conducted

research activities in the aerospace field related applications,

information and communication technologies in the

telecommunication industry, and corporate knowledge management.

His research interests include image processing and its applications,

knowledge representation and management, corporate learning, and

e-Business. Dr. Ghatasheh, at present, is an assistant professor at

The University of Jordan, Aqaba, Jordan, since 2011.

Mua’ad Abu-Faraj received the B.Eng. degree in Computer

Engineering from Mu’tah University, Mu’tah, Jordan, in 2004, the

M.Sc. degree in Computer and Network Engineering from Sheffield

Hallam University, Sheffield, UK, in 2005, and the M.Sc. and Ph.D.

degrees in Computer Science and Engineering from the University of

Connecticut, Storrs, Connecticut, USA, in 2012. He is, at present,

assistant professor at The University of Jordan, Aqaba, Jordan. He is

currently serving as reviewer for the IEEE Micro, IEEE Transactions

on Computers, Journal of Supercomputing, and International Journal

of Computers and Their Applications (IJCA). His research interests

include computer architecture, reconfigurable hardware, image

processing, cryptography, and wireless networking. Dr. Abu-Faraj is

a member of the IEEE, ISCA (International Society of Computers and

their Applications), and JEA (Jordan Engineers Association).

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 168

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

