
XWADF: Architectural Pattern for Improving
Performance of Web Applications

Md. Umar Khan1, Dr. T.V. Rao2

1Assoc. Professor, Prakasam Engineering College,
Kandukur, AP, India

2Professor& HOD in CSED, PVP Siddartha Institute of Technology,

Kanuru, Vijayawada, AP, India

Abstract
Ever since the advent of World Wide Web (WWW) web sites
and their usage has become part of day-to-day life. Enterprises
reach global audience through web applications. People of all
walks of life need to use web applications in one way or other.
Performance of web applications plays a key role in attracting
new users and retaining existing ones. In this paper, we
investigate the design patterns that can improve performance of
web applications. We propose a new architectural pattern
comprising design patterns for highly scalable and interactive
web application development. Our architecture is known as
extensible Web Application Development Framework
(XWADF). Our design does not reinvent the wheel, but
explores possibilities to leverage the performance of web
applications through the appropriate use of various design
patterns within confines of MVC (Model View Controller).
Particularly we throw light into the performance of web
applications by improving response time and throughput. We
use corresponding metrics to evaluate the efficiency of the
proposed architectural pattern. The empirical results revealed
that our approach to design web applications outperforms
existing approaches.
Keywords: Web applications, design patterns, architectural
pattern, response time, and throughput

1. Introduction

User experience that a web application provides is an
integral part of the application’s performance. If
customers of a commercial web site experience, slow
responsiveness, it is unlikely that they prefer the web site
irrespective of other excellent services it offers.
Therefore in the best interest of the provider of web
application, consistent and rich user experience always is
an inevitable requirement. There might be many reasons
for inconsistent responsiveness of a web site such as
high load, component failure, and so on. However, from
user perspective, these are not important as he looks for
good service.

This needs some sort of consistent and proven solution.
Design patterns are such blueprints or proven solutions
or industry best practices which can be used to improve
the performance of web applications in terms of
responsiveness or access time and throughput. Access
time [41] is the delay or latency between the time when
request is made and the time at which response is
rendered. Throughput is used to measure the workload of
a web application. In fact, it is best referred to as
quantification of requests or responses in relation to

time. In other words, it is the number of transactions per
second.

Technological innovations over WWW such as Web 2.0
[35] facilitate designing web applications with rich user
experience. For instance, asynchronous communication
through AJAX (Asynchronous JavaScript and XML)
will let the servers push content to web browsers without
full page refreshes. Thus with AJAX [30] rich internet
applications can be built. Nevertheless, we believe that
consistent performance of the web application can be
leveraged by the appropriate use of design patterns.
However, there is a fact to be kept in mind that resources
associated with web server can influence the
performance of a web application. Assuming optimal
resource availability of web server, design patterns can
improve performance of web applications in terms of
access time and throughput.

This is the motivation behind this paper which focuses
on proposing an architectural pattern [42] for improving
performance of web applications. Our future research
continues with other parameters such as scalability [36],
fault tolerance [37], availability [38] and maintainability
[39]. Our work in this paper also assumes the usage of
three-tier architecture, Java enterprise technologies like
Servlets and JSP [33] (Java Server Pages) as web tier
under optimal resources availability of web server. The
proposed architectural pattern is based on Model View
Controller (MVC) [19] architecture which is widely used
in the industry for enterprise web application
development.

The proposed architectural pattern focuses on the
appropriate usage of design patterns [40] in different
layers of MVC (Model View Controller). We identified
various services and design patterns that can improve the
performance of web application in terms of latency and
throughput. However, architecture is extensible to
consider other performance and quality attributes such as
scalability, fault tolerance, availability and
maintainability in future. Before presenting our
architectural pattern, we felt the description of basic
MVC architecture is appropriate here. Figure 1 presents
the MVC pattern which has plethora of advantages
including maintainability, availability, scalability and so
on.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 105

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

CONTROLLER

*Request
processing
*Data
validations

VIEW

*Response
generation

MODEL

*Business
 Logic
*Data
 Manipulation

Web Container

DB Server
Browser

req

res

1

5 4

2

3 DB

Fig. 1 –Illustrates MVC pattern

As can be seen in fig. 1, every request goes to a
controller which is always Servlet that can handle
request. However, servlet does contain business logic
(BL) and presentation logic (PL). The BL is moved to
the model while the presentation logic is moved to view
components in order to make the architecture
maintainable. Controller invokes BL methods on the
model. The Model layer interacts with the database and
gives response back to controller. Then the controller
invokes suitable view to render response. Due to the
clear separation of layers, this architecture realizes many
advantages such as maintainability, availability,
reduction of development time and cost. However, the
MVC gives freedom to use any design patterns in View,
Model and Controller layers in order to improve the
performance of web applications. This fact has
motivated us to propose a new architectural pattern
based on MVC. The proposed architectural pattern is
elaborated in section 3.

Our contributions in this paper help in designing web
applications that exhibit improved performance in terms
of access time and throughput. The proposed the
architectural pattern also supports extension in the future
to focus on other performance or reliability parameters
like scalability, fault tolerance, availability and
maintainability. Our significant contributions are as
given below.

1. We proposed an architectural pattern based on
MVC with provision for the appropriate design
patterns in all the layers for improving access
time and throughput. The proposed architectural
pattern is extensible and thus we intend to add
more design patterns to architecture in future.

2. We evaluated our architectural pattern through
case study web application that exhibits the
subtle difference in performance between a web
application that uses our architecture and the
web application that does not use it.

3. Throughput [31] based metric is used to
compute average number of responses rendered
for given unit time [26]. Latency (response
time) is a measure that tell how long user waits
to get response to a query. The latency is further

divided into two elements known as fetch
latency and render time. Fetch latency is the
time to load web page into browser while the
render time is the time required to receive
elements references by the loaded web page
[10].

4. We also provide a roadmap algorithm known as
“Refactoring Algorithm” which helps
developers to upgrade their enterprise web
applications in conformity with the proposed
architectural pattern for performance gains in
terms of throughput and response time.

The remainder of this paper is organized as follows.
Section 2 reviews literature pertaining to architectural
patterns and design patterns that improve access time
and throughput of web applications. Section 3 presents
the proposed architectural pattern. Section 4describes the
case study considers for proof of the concept. The
section 5 evaluates the proposed architectural pattern
with respect to web application performance
improvement while section 6 concludes the paper.

2. Related Works

Many researchers attempted to propose frameworks or
patterns for web application design that improves
performance. LIU YONG-JUN and LI KE-XI [1]
proposed a new web application framework by name
JEMSF. This framework is based on the MVC pattern
which is widely used in web application development in
all platforms. Its main focus was on the usage of the data
transfer object, and database access object patterns
besides using a linked pool for avoiding scarcity of
database connections. They also proposed the usage of a
configuration file that is used by the controller at
runtime. For database access also they proposed another
configuration file for making the web application to have
flexibility to switch between RDBMS. The JEMSF has
three layers. The first layer makes certain events and gets
responses. The second layer is the controller that
performs XML [20] interpretation, request processing
and exception handling. The third layer is responsible to
interact with the relational database. It has provision for
pooling objects to reuse and SQL processor component
that will interact with database through database objects
obtained from the pool.

Schwabe et al. [3] proposed a model based approach
named Object - Oriented Hypermedia Design Method
(OOHDM) for building large scale hypermedia
applications. This model comprises of four kinds of
things namely conceptual design, navigational design,
interface design at abstract level and implementation.
They used object oriented modeling principles in
designing their architecture. The conceptual model
encapsulated classes. The navigational classes take care
of dynamic navigations in web application. Interface
objects are focused on abstract interface design activity

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 106

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

while implementation integrates all these into a working
solution.

Tune et al. [4] proposed a simultaneous multithreading
(SMT) processor for increasing throughput of
applications. Thus, the SMT can make use of maximum
utilization of resources. Broadwell [5] did experiments
on response time [32] as performance metric to evaluate
the performance of internet services. David Parsons [6]
presented evolution of architectural patterns for
developing enterprise web applications. They include
client side buffering, delta-management architecture, and
auto-completion architecture. Patil et al. [7] opined that
modern web application developers should consider
achieving high latency of web applications to maximize
user experience. They proposed the proxy cache concept
for enterprise application development. As explored in
[8] caching is best used when the same payload is carried
by multiple queries. Event the commercial user agents
like Firefox, Chrome, etc. also have cache-friendly
features [9]. Feng and Yang [10] presented an improved
connection pool model that can be used in modern web
applications for improving latency and throughput. They
proved that improving connection pool performance can
lead to web application performance. A web application
design method was proposed by Kwon and Bang [11] for
performance improvement. In their design BL is
implemented in JSP search operations are implemented
in Servlet. A forward servlet was also used to avoid
maintenance problems. Mamawala [12] studied on
performance of web applications and concluded that as
the time changes performance is deteriorated while the
number of users and features are constantly increased.
He further stated that balancing performance objectives
with the usability, functional and quality of service
aspects have to be done from time to time. Thung et al.
[13] explored the usage of design patterns for
performance and quality improvement of web
applications. Both navigational and architectural patterns
were studied by them. They include MVC, PAC
(Presentation Abstraction Control),pagination, set– based
navigation, news, the navigation observer and so on.

According to Li and Lu [14] performance of a web
database has its influence in the performance of a web
application. They considered response time to measure
the performance of web applications. In [15] Dong et al.
identified design patterns based on the modeling such as
UML notations. They achieved it using a tool which
results in improving the performance of web
applications. Maciaszek and Liong [16] proposed an
architectural pattern for web application development.
They followed a layered architecture and named it as
“PCMEF”. It has four layers, namely presentation,
control, domain and foundation. The presentation layer
is to provide user interface. The control layer is
responsible for request processing. The domain layer has
two packages such as an entity and mediator for
encapsulating business objects and to mediate between
control, the entry package and foundation layer
respectively. The foundation layer provides
communication with data sources. Madeyski and
Stochmiałek [17] proposed a new architectural known as
the extensible Web Architecture (XWA) framework for
web application development. This framework is based
on both MVC and PCMEF. It also has four layers
namely presentation, control, domain and foundation.
However, these layers are organized into MVC so as to
mix the MVC and PCMEF architectures.

3. Proposed Architectural Pattern

This section throws light into the proposed architectural
pattern for web application development for improving
response time and throughput. The pattern is based on
MVC described in section I. Our architectural pattern
incorporates various design patterns into M, V, and C
layers. We identified the need for a simple solution for
the model layer which can reduce the communication
cost and improve throughput and response time. We also
explored connection pooling configuration, caching, the
decorator design pattern [18], Data Transfer Object
(DTO), Database Access Objects (DAO) and other
patterns. Figure 2 shows our architectural pattern.

Controller

View

Model

Web Container
DB Server

Browser

Request

Response

1

5

4

2

3 DB

Delegate

DTO

Decorator

Value Object

DAO

SQL Mapping

Caching

Connection
Pooling

Fig. 2 –Proposed architectural pattern XWADF

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 107

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

In all layers of XWADF design patterns are proposed to
improve throughput and response time of web
applications. These patterns have the plethora of
advantages. However, in this paper we focus on their
ability to improve response time and throughput. In the
Model layer design patterns are used for returning
values, database interaction, SQL mapping, caching and
connection pooling.

3.1 Value Object or Active Record or DTO

This pattern is best used when the underlying data
storage is a relational database. The properties of this
object correspond to columns in the relational table.
Thus it is suitable to hold a return value from the
database. When multiple records are to be returned
multiple instances of this object can be added to a
collection and returned to the controller. The SQL
Mapper program can map the results of queries to Value
Object or collection automatically. This will help in
avoiding extra boiler plate coding in the application
development [21].

3.2 Database Access Objects (DAO)

This design pattern separates low level data access
operations from high level business services. Thus it can
Be reused in applications as it is separated from other
layers. It is dedicated for database interaction only. It is
made up of three participants namely DAO interface,
DAO implementation and VO or DTO or POJO [43].
The POJO is meant for either data transfer from other
layers to DAO or to return values back to higher layers
[24].

3.3 SQL Mapping

We introduce a special design pattern that maps results
of SELECT queries to required data objects like POJOs,
collections of various kinds or simple primitive type. A
design pattern that ensures this kind of mapping can help
developers to reduce development effort and time by
avoiding reinventing the wheel every time. By reducing
the lot of boilerplate code in web applications, this
design pattern can improve the speed of web applications
[27].

3.4 Caching

Cache is a portion of local memory which holds data
objects which are frequently accessed from database.
Web application performance and scalability can be
improved through caching. Caching API helps increase
performance in orders of magnitude in terms of response
time and throughput. Caching reduces round trips to
database by reusing the data present in local memory.
Figure 3 shows communication diagram to illustrate the
caching mechanism [22].

Application C ache D ataSource

get(key)

not found

get(key)

get(key)

objec t

objec t

put(key,objec t)

Fig. 3 Communication diagram illustrating caching

Application hits the database only when the object
required is not in the cache memory. Since round trip to
database is time consuming and costly, this solution can
improve the performance of web applications. The
performance of cache is measured using hit/miss ratio
which is computed as number of cache hits divided by
number of cache misses. A high hit/miss ratio reflects
high performance of cache.

3.5 Connection Pooling

Establishing connection to the database is costly and
time consuming as it involves in a series of steps
including protocol handshaking. Closing and opening
database connections are not desirable. Moreover,
database vendors provide less number of connections per
schema by default. These connections are exhausted as
web applications are used by the number of users
concurrently.

To overcome this problem connection pooling is
required. Connection Pooling is a phenomenon that
maintains a set of pre-established connections to a
database in a pool. These connections are never closed.
They are available round the clock. When the application
needs a connection, the connection pool manager gives a
connection.

Once the request processing is completed, the connection
goes back to the pool and ready to serve the next request.
This way the performance of web applications in terms
of response time and throughput is increased in large
numbers of magnitude. Connection pooling usage can be
compared with normal database connectivity as
illustrated in figure 4 [25].

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 108

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Reg
Servlet

OP
ServletBrowser

Web Server

DB Server

req

res

con
con
con
con

CP

Browser

Web Server

DB Server

req

res

Reg
Servlet

OP
Servlet

Fig. 4 Illustrates DB connectivity with and without pooling

In case of direct connectivity, user wait time is
increased, connections scarcity arises and overall
application performance goes down. With connection
pooling these drawbacks are overcome as it makes the
application more responsive and scale well for
concurrent request processing. Connection pooling is
recommended for high performance of enterprise web
applications [44].

3.6 Delegation Design Pattern

Delegation design pattern helps an object to delegate its
tasks to other objects instead of doing itself. This will
help in achieving inversion of responsibility or to pass
the buck for making the design efficient. It reduces the
complexity of the application as it follows the division of
labor approach to divide the work into various helper
classes [23].

3.7 Decorator Design Pattern

This design pattern [28] helps in improving the abilities
of the runtime object without making any changes in
source code or modifying other instances. Decorators are
very useful to add new responsibilities and features to
runtime objects. When only some of the objects need
new features this design pattern is preferred. Thus it can
avoid having large number of sub classes in order to add
new features to the object. Decorator provides a lot of
flexibility in adding features to existing objects [18].

4. Converting Existing WEB Applications to
XWADF: A RoadMap

Existing web applications that do not perform well can
be refactored to be XWADF compliant in order to
leverage their performance. We designed a refactoring
algorithm that can help convert existing web applications
into XWADF compliant applications. The algorithm
guides developers to refactor successfully. This
algorithm can be a basis for developing an automatic

conversion tool in the future. Figure 5 shows the
proposed refactoring algorithm [29].

A lgor ithm :
Inpu ts :
O u tpu ts :
A s s um ptions :

P roc es s
1 . S T A R T
2 . If W eb A pp is in M V C P attern T hen

R efac tor ing A lgor ithm
E xis ting W eb A pp lic ation

X W A D F W eb A pp lic ation
J ava W eb A pp lic ation w ith S erv lets and
J S P s as W eb R es ourc es

a. C on figu re c onnec tion pool in
w eb s erver/app lic ation s erver
b . Im p lem en t, a des ign pattern that
gets c onnec tion from pool
c . D efine P O J O for every relational tab le
d . M ove the D B in terac tion log ic to D A O s
e. Im p lem en t S Q L M apper des ign pattern
and us e it in D A O s
f. Im p lem en t D es ign P attern for C ac h ing
g . A pp ly c ac h ing in the M odel layer
h . U s e D elegation P attern and D T O in c on troller
i. Iden tify res pons es to the dec orator in the v iew
j . U s e dec orator pattern to dec orate res pons es

3 . If W eb A pp is not in M V C P attern T hen
a. M ove the p res en tation log ic to v iew layer
b . M ove bus ines s log ic layer to m odel layer
c . G o bac k to s tep 1 to refac tor as s pec if ied .

4 . S T O P

Fig. 5 Refactoring algorithm (Roadmap to XWADF)

The refactoring algorithm guides developers to refactor
their existing web applications to be compliant with our
architectural framework XWADF. We have taken two
case studies to demonstrate the effectiveness of the
proposed architectural framework with suggested design
patterns.

5. Case Study and Experiments

5.1 Experimental Setup

Experiments are carried out in a PC with 4 GB RAM,
Core 2 dual processor running Windows 7 operating
system. Tomcat 7.0 is used for the deploying web
application. Servlets and JSP are the technologies used
in the application.

The performance is tested manually and also with
LoadUIWeb 2 which is one of the testing tools available.
This tool provides access time and throughput in the
presence of the number of users concurrently accessing
the web application.

5.2 Case Study Web Applications

We considered the existing web applications, namely
“Library Management System” and “Hospital
Management System” for our study.

These two applications are refactored to implement
proposed architectural pattern. CRUD [45] operations
are tested with both case studied with and without design
patterns. The dataset of HMS has 100000 entries while

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 109

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

that of LMS has 50000 entries. The LoadUIWeb 2
testing tool is used to measure response time and
throughput of applications. The experimental results are
presented in the next sub section.

5.3 Experimental Results

Experiments are performed with Software tool
LoadUIWeb 2 to find latency and throughput of both
web applications with and without XWADF. The results
are recorded for the single user, 2 users 3 users and so on
up to 50 users and tabulated them as shown in table 1, 2,
3, and 4.

Table 1 : Experimental results for Latency of
HMS (Hospital Management System)

No. of users

Response Time in seconds

Without
XWADF

With
XWADF

1 74.8 50.33
2 76.9 56.66
5 84.62 60.53
10 95.32 71.32
15 107.23 82.46
20 118.32 94.22
25 130.42 116.43
30 142.36 127.32
35 155.42 138.61
40 172.67 151.32
45 184.32 163.13
50 196.42 174.21

Latency Results for HMS (Hospital Management
System) are shown in the Table 1. Latency (response
time) is a measure that tells how long user waits to get
response to a query.

The response time in seconds for without XWADF and
with XWADF is tabulated. The results reveal that there
is considerable improvement in response time when the
application with XWADF is used for experiments.

Table 2 : Experimental results for Latency of LMS
(Library Management System)

No. of users

Response Time

Without
XWADF

With
XWADF

1 20.33 15.45
5 24.2 18.06

10 32.92 27.33
15 44.92 37.78
20 54.11 48.26
25 65.21 59.11
30 78.22 70.12
35 90.15 81.25
40 112.35 92.15
45 125.11 105.41
50 134.51 115.31

Latency Results for LMS (Library Management System)
is shown in Table 2. Latency (response time) is a
measure that tells how long user waits to get response to
a query.

 The response time in seconds for without XWADF and
with XWADF is tabulated. The results reveal that there
is considerable improvement in response time when the
application with XWADF is used for experiments.

Table 3 : Experimental results for Throughput of
HMS (Hospital Management System)

Throughput results for HMS (Hospital Management
System) are shown in Table 3. Throughput is used to
compute the average number of responses rendered for
given unit time.

Throughput without XWADF and with XWADF is
tabulated. The results reveal that there is considerable
improvement in throughput when the application with
XWADF is used for experiments.

Time in
minutes

Throughput

Without
XWADF

With
XWADF

1 0.01337 0.01987
2 0.01300 0.01765
5 0.01182 0.01652
10 0.01049 0.01402
15 0.00933 0.01212
20 0.00845 0.01061
25 0.00767 0.00859
30 0.00702 0.00785
35 0.00643 0.00721
40 0.00579 0.00661
45 0.00543 0.00613
50 0.00509 0.00574

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 110

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Table 4 : Experimental results for Throughput of LMS (Library
Management System)

Time in
minutes

Throughput

Without
XWADF

With
XWADF

1 0.04919 0.06472
5 0.04132 0.05537
10 0.03038 0.03659
15 0.02226 0.02647
20 0.01848 0.02072
25 0.01534 0.01692
30 0.01278 0.01426
35 0.01109 0.01231

40 0.00890 0.01085

 45 0.00799 0.00949
50 0.00743 0.00867

Throughput results for LMS (Library Management
System) are shown in Table 4. Throughput is used to
compute average number of responses rendered for
given unit time.

The throughput without XWADF and with XWADF is
tabulated. The results reveal that there is considerable
improvement in throughput when the application with
the proposed architectural pattern is used for
experiments.

The experimental results are visualized through a series
of graphs as presented below.

Fig. 6 Latency Graph for HMS (without design patterns (dp) and with
design patterns (dp))

As can be seen in Fig. 6 it is evident that the latency is
more when experiments are made with HMS without the
proposed architectural pattern when compared with the
latency of HMS with the architectural pattern.

The rationale behind this is that the architectural pattern
includes various design patterns that leverage the
performance of the application.

Fig. 7 Latency Graph for LMS (Library Management System)

As can be seen in Fig. 7, it is evident that the latency is
more when experiments are made with LMS without the
proposed architectural pattern when compared with the
latency of LMS with the architectural pattern.

The rationale behind this is that the architectural pattern
includes various design patterns that leverage the
performance of the application

Fig. 8 Throughput Graph for HMS (without design patterns (dp) and
with design patterns (dp))

As can be seen in Fig. 8, it is evident that the throughput
is less when experiments are made with HMS without
the proposed architectural pattern when compared with
the latency of HMS with the architectural pattern.

The rationale behind this is that the architectural pattern
includes various design patterns that leverage the
performance of the application.

0

50

100

150

200

250

1 2 5 10 15 20 25 30 35 40 45 50

L
at

en
cy

No of Users

without dp
with dp

0

20

40

60

80

100

120

140

160

1 5 10 15 20 25 30 35 40 45 50

La
te
nc
y

No of Users

without dp

with dp

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0350

1 2 5 10 15 20 25 30 35 40 45 50

Th
ro
ug
hp

ut

Time in Minutes

with dp

without

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 111

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 9 Throughput Graph for HMS (without design patterns (dp) and
Fig. 9 Throughput Graph for LMS

As can be seen in Fig. 9 it is evident that the throughput
is less when experiments are made with LMS without
the proposed architectural pattern when compared with
the latency of LMS with the architectural pattern.

The rationale behind this is that the architectural pattern
includes various design patterns that leverage the
performance of the application

6. Conclusions and Future Work

In this paper, we presented a novel architectural pattern
for web application development. The architecture
includes many design patterns that help improve access
time and throughput of web applications. The design
patterns are pertaining to database access, connection
pooling, caching and so on. The whole architecture is
based on the MVC pattern which has become de facto
standard for enterprise web application development.
Besides bestowing many advantages MVC gives
freedom to improve layers such as Model, View and
Controller further without violating their assumed roles.
We were motivated by this fact and proposed a novel
architectural framework XWADF for improving
performance of web applications. We have tested the
architecture using state-of-the-art web application
development with and without the usage of our
architecture. We measured the performance of web
application, both manually and also with LoadUIWeb 2
testing tool that simulated the performance of application
in the presence of the increased number of sessions and
concurrent access. Latency and Throughput are the two
measures employed to know the performance of web
applications. The experimental results revealed that the
proposed architecture improves performance by order of
magnitude in terms of latency and throughput. The
future directions for further improvement of the
architecture includes the extension of the proposed
architecture gradually in order to include more design
patterns and services that can leverage web applications
in terms of quality and performance with additional
attributes such as scalability, fault tolerance, availability
and maintainability.

References
[1]. LIU YONG-JUN1, LI KE-XI, “ DESIGN AND
IMPLEMENTATION OF THE NEW WEB APPLICATION
FRAMEWORK—JEMSF”, IEEE, 2010.pp 190-193.
[2]. Vijay K Kerji, “Decorator Pattern with XML in Web
Application”, IEEE, 2011. Pp304-308.
[3] Daniel Schwabe, Rita de Almeida Pontes and Isabela
Moura. (n.d). OOHDM-Web: An Environment for
Implementation of Hypermedia Applications in the
WWW. MCT. 0 (0), p1-14.
[4]. Eric Tune Rakesh Kumar Dean M. Tullsen and Brad
Calder, “Balanced Multithreading: Increasing Throughput via a
Low Cost Multithreading Hierarchy”. IEEE, 2004.Pp 1-12.
[5]. Peter M. Broadwell, “Response Time as a Performability
Metric for Online Services”. Computer Science Division, 2004,
pp1-54.
[6]. David Parsons, “Evolving Architectural Patterns For Web
Applications”. Pp1-7.
[7]. Prof. S B Patil, Mr. SachinChavan, Prof. PreetiPatil and
Prof. Sunita R Patil,” HIGH QUALITY DESIGN TO
ENHANCE AND IMPROVE PERFORMANCE OF LARGE
SCALE WEB APPLICATIONS”.IJCET, 2012.Pp 198-205.”
[8] Ngamsuriyaroj, S. ;Rattidham, P. ; Rassameeroj, I. ;
Wongbuchasin, P. ; Aramkul,
N. ;Rungmano, S. “Performance Evaluation of Load Balanced
Web Proxies”
IEEE, 2011.
[9] S B Patil, SachinChavan, PreetiPatil; “High Quality Design
And Methodology
Aspects To Enhance Large Scale Web Services”, International
Journal of
Advances in Engineering & Technology, 2012, ISSN : 2231-
1963
[10]. Guo-liangFeng, and Lian-he Yang, “A New Method in
Improving Database Connection Pool Model”. World
Academy of Science, Engineering and Technology 29 2007,
pp246-249.
[11] OhSoo Kwon and HyeJa Bang. (2012). Design
Approaches of Web Application with Efficient Performance in
JAVA. IEEE.11 (7), p1-7.
 [12] Mustafa Mamawala. (n.d). Web Application Performance
Tuning -A systematic approach. Blue Star. 0 (0), p1-11.
[13] Phek Lan Thung, Chu Jian Ng, Swee Jing Thung, Shahida
Sulaiman. (2010). Improving a Web Application Using Design
Patterns: A Case Study. IEEE. 0 (0), p1-6.
[14] AKAMAI. (n.d). Web Application Accelerator. Akamai
Technologies. 0 (0), p1-2.
[15] Martin Fowler and David Rice. (2002). Patterns of
Enterprise Application Architecture. Addison Wesley. 0 (0), p1-
430.
[16] Maciaszek L.A., Liong B.L., Bills S., Practical Software
Engineering, A Case-Study Approach, Addison-Wesley, 2004.
[17] Lech MADEYSKI and Michał STOCHMIAŁEK,
ARCHITECTURAL DESIGN OF MODERN WEB
APPLICATIONS, p1-11
[18] Javapapers. (2012). Decorator Design Pattern. Available:
http://javapapers.com/design-patterns/decorator-pattern/. Last
accessed 20th Dec 2013.
[19] Berkeley. (2004). Model-View-Controller: A Design
Pattern for Software.Berkeley.edu. p1-48.
[20] MSDN. (2004). Improving XML Performance. Available:
http://msdn.microsoft.com/en-us/library/ff647804.aspx. Last
accessed 22 Dec 2013.
[21] Riehle. (2006). Value Object. Hillside. p1-9.
[22] Cacheonix. (n.d). Caching for Java
Applications. Available:

0.00000

0.02000

0.04000

0.06000

0.08000

0.10000

0.12000

1 5 10 15 20 25 30 35 40 45

Th
ro
ug
hp

ut

Time in Minutes

with

without

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 112

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

www./articles/Caching_for_Java_Applications.htm. Last
accessed 22 Dec 2013.
[23] Princeton. (n.d). Delegation pattern. Available:
http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Deleg
ation_pattern.html. Last accessed 22 Dec 2013.
[24] Javarevisited. (2013). Data Access Object (DAO) design
pattern in Java Read more:
http://javarevisited.blogspot.com/2013/01/data-access-object-
dao-design-pattern-java-tutorial-
example.html#ixzz2rx66gODo.javarevisited.blogspot. p1-3.
[25] OODesign. (n.d). Object Pool. Available:
http://www.oodesign.com/object-pool-pattern.html. Last
accessed 22 Dec 2013.
[26] K. Nagaraja, X. Li, B. Zhang, R. Bianchini, R. Martin, and
T. Nguyen.Using Fault Injection to Evaluate the Performability
of Cluster-Based Services. In 4th USENIX Symposium on
InternetTechnologies and Systems (USITS), Seattle, WA,
March 2003.
[27] Juan Sequeda, Freddy Priyatna and Boris Villaz. (2013).
Relational Database to RDF Mapping
Patterns. Ontologydesignpatterns. p1-12.
[28] Mira Mezini. (2012). Design Patterns Decorator. Software
Technology Froup. 0 (0), p1-20.
[29] JL OVERBEY. (2013). Immutable Source-Mapped
Abstract Syntax Tree: A Design Pattern for Refactoring Engine
APIs. Hillside. 0 (0), p1-8.
[30] Mrkpinedahau. (2013). Introduction to Javascript and
Ajax. Wikispaces. 0 (0), p1-31.
[31] Cseweb. (2012). CS423 Computer Communications: More
Error Recovery. Cseweb.ucsd.edu. 0 (0), p1-12.
[32] James Goodwill. (2012). Pure JSP. Portal. 0 (0), p245.
[33] Tutorialspoint. (2012). Servlets. Tutorialspoint. 0 (0), p1-
180.
[34] John Musser. (2012). Web 2.0 Principles and Best
Practices. Oreilly. 0 (0), p1-8.
[35] Kanwardeep Singh Ahluwalia. (2007). Scalability Design
Patterns.Hillside. 0 (o), p1-22.
[36] Luciane Lamour Ferreira and Cecília Mary Fischer
Rubira. (2012). Reflective Design Patterns to Implement Fault
Tolerance. Citeseerx. 0 (0), p1-5.
[37] Kanwardeep Singh Ahluwalia and Atul Jain. (2006). High
Availability Design Patterns. Hillside. 0 (0), p1-20.
[38] P´eter Heged˝us, D´enes B´an, Rudolf Ferenc and Tibor
Gyim´othy. (2012). Myth or Reality? Analyzing the Effect of
Design Patterns on Software Maintainability. Inf.u. 0 (0), p1-8.
[39] S. Ramachandran. (2001). Design Patterns for Optimizing
the Performance of J2EE Applications. Available:
http://www.oracle.com/technetwork/articles/javaee/j2eepattern
s-136748.html. Last accessed 22 Dec 2013.
[40] Bruce Powel Douglass. (2012). Real-Time Design
Patterns.Archive.oredev. 0 (0), p1-104.
[41] Paris Avgeriou and Uwe Zdun. (2012). Architectural
Patterns Revisited – A Pattern Language. Infosys.tuwien. 0 (0),
p1-39.
[42] Chris Richardson. (2012). Overview of POJO
programming. Richardson. 0 (0), p1-48.
[43] Cristian Duda, David A. Graf and Donald Kossmann.
(2007). Predicate-based Indexing of Enterprise Web
Applications. Cidrdb. 0 (0), p102-107.
[44] Cesare Pautasso. (2012). Some REST Design
Patterns. Jopera. 0 (0), p12-44.

Dr. T.Venkateswara Rao received his B.E. Degree in
Electronics and Communication Engineering from Andhra
University, Visakapatnam, India and his M.E degree in
Computer Science from University of Madras India. He

received his Ph.D., degree in computer engineering from
Wayne State University, Detroit, U.S.A. He is currently
working as Professor and HOD in Computer Science and
Engineering department at PVP Siddhartha Institute of
Technology, Vijayawada A.P. India. Dr. T.V. Rao has
published more than 25 papers in various national and
international journals/conferences. His main research
interests include multiprocessor systems.

Md.Umar Khan received his B.E degree in Civil
Engineering from Madras University, Tamil Nadu, and
India, his M.Tech degree in Computer Science from
Jawaharlal Nehru Technological University, Hyderabad,
and A.P. India. He is now pursuing his PhD degree at
JNTU Ananthapur University, Andhra Pradesh. His
research interests include Web Engineering, especially
the Design Patterns. He is currently working as Associate
Professor in the Department of Computer Science &
Engineering of Prakasam Engineering College,
Kandukur, Prakasam (district) A.P. India.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 2, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 113

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

