
GenericSOA: a Proposed Framework for Dynamic Service

Composition

Mohammed Said1, Maryam Hazman1, Hesham Hassan2, Osama Ismail2

1 Central Lab of Agriculture Expert Systems (CLAES)

Giza, Egypt
2 Faculty of Computers and Information, Cairo University

Giza, Egypt

Abstract
Many organizations’ developers use Service Oriented

Architecture (SOA) in building their systems. It provides them

by an easy way to re-use their already developed software

components. Now, researchers try to enhance the SOA

architecture to improve its performance and scalability. This

paper, proposes a new SOA architecture called "GenericSOA"

that allows dealing with legacy systems problem and enhancing

SOA elasticity. The proposed architecture aims to easily

integrating the newly developed software components. The main

idea behind GenericSOA is to support its users by a set of

predefine task templates. These templates can be used in building

the new developed services that can be easily integrated in a

loosely coupled way to compose the target system.

Keywords: Service Oriented Architecture (SOA), Web Service

Composition.

1. Introduction

Due to the great scientific and technological development

for working systems, usage of many varied operating

systems and different standards in working field, and

handling great amounts of data today, this results in an

important need for finding a mean to connect these

working systems together. Also, it is not easy to develop

huge legacy systems which are well tested and free of

bugs. It will be very hard and expensive to either rebuild

them from scratch or exclude them at all.

Recently, "Service Oriented Architecture (SOA) has

become the new architectural style [1][2][3][4]. SOA

depends on building applications using existing services.

Services are reusable units, which can be used by

applications or other services independent of their

implementation. So, the functionality of such services is

presented within a service description and the services are

loosely coupled. SOA gives the advance of offering new

functionalities by using various services which are

provided by different suppliers [5]. Moreover, the property

of loose coupling between services provides dynamic

addition and removal of any service at any time [5].

Using services technologies helps in facilitating the

development of more complex business cases, and

reducing its development time and cost. It provides

richness, flexibility and scalability to the enterprises using

them [6]. The great challenge for the developers is to

ensure the interoperability between the needed services

regardless of the programming languages, operating

systems and hardware platforms [7]. In general loosely

coupled and reusable software components are considered

the most important advantage of services technologies [8].

In any organization, there exist many modules that are

used by many of its systems and repeated in these systems.

The construction of these systems were required

rebuilding those small modules again and again in each

time the system built. This means wasting time, effort and

money, since any updating in a used module within one of

the legacy systems does not reflect in the other systems

which used this module. In this paper, a GenericSOA

framework is proposed to enhance the SOA to facilitate

easily modifying and efficiency of services usage. The

proposed framework supplies its users by a library of

services which they can build their systems by selecting

services from them. So, any modification will be done in

the selected services will affect in building new systems.

The remainder of the paper is organized as follows.

Section 2 introduces the problem that we are trying to

solve. Section 3 describes the GenericSOA framework as a

proposed solution, and then a brief overview of related

work is presented in section 4. Finally, the concluding

remarks are presented in section 5.

2. Problem Description

Usually, in any organization there are group of working

systems that are well tested. Each system is implemented

using its own standalone language. Moreover, the

individual system contains various small modules. These

modules are linked together to perform some certain task

for achieving the whole system goal.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 94

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Analyzing some of the existing systems, we observed that

those large legacy systems include modules, which are

being used by many other systems in the same or even

other organizations. These modules are repeated / reused

even in other legacy systems within the same organization.

This means that the construction of any new system

requires rebuilding those small modules again and again

each time which means wasting time, effort and money.

Also, any updating in a used module within one of the

legacy systems does not reflect in the other systems which

used this module.

Figure 1, illustrates this problem. As shown in this figure,

there are three systems already working in the same

organization. The first system contains four modules A, B,

C, and D. The second one includes four modules A, C, D,

and L. While, the third system consists of four modules A,

D, L, and M. One can notice that the three systems are

isolated, and there is no relationship between their

modules. This situation leads to the following problem. If

module A in system 1 needs bug fixing then the developer

should fix discovered bug in all systems that use module

A. The proposed system, which is presented in the

following section, tries to solve this problem for saving

effort, modification time and ensuring that any

modifications will be reflected to all systems using a

common component.

3. GenericSOA Framework

We believe that collecting reusable services to form a

common library will lead to prevent replication and

achieve services maintainability. To explain our idea;

suppose we have four services A, C, D, and L in a

common library (see figure 2). Suppose that there is a

system 4, which is needed to be built, and it consists of

three services A, D, and H. Common library can provide

its users by A and D services from its common services.

The H is the only module that will be built; the other A

and D will be used from the common library saving

efforts, time and ensuring the used of the modified

services.

Trying to enhancement SOA and easily modifying

services and increase the efficiency of service usage, a

proposed GenericSOA is defined. The suggested solution

relays on using a services library which contains common

used services. This library will be standalone from any

legacy systems and any new systems. As shown in figure

3, GenericSOA includes four components; services library,

Generic Services Task Model (GSTM) and Generic

Services Task Templates (GSTT), as well as ontology.

These components are discussed below:

 Services library: reusable services repository within

an organization. If there is a need for new service

which is not included, this service should be built and

added to the library.

 Generic Services Task Model (GSTM): connects to

services library. So, these services can be employed as

a service in any new system instead of reconstructing

it from scratch. Also, any modification in these

services will be done only in the services library.

 Generic Services Task Templates (GSTT): is built

using GSTM to achieve a specific task. The building

template will be used by developers to generate a

specific task in the new developed system.

 Ontology: Using the ontology facilitate the

communication and cooperation between the services.

Developers used different terminologies to describe

their input and output variables. Using the services

without caring by these terminologies may lead to

wrong results. So, the ontology cares by identified

these terminologies and its synonyms to provide the

users by the right meaning for the inputs, outputs, and

task of the services. Ontology can help in

understanding to mapping between the same variable

Fig. 2: Proposed system idea

System 1

System 2

System 3

A C

B

D

A D

C L

A L

D M

Fig. 1: Legacy System Architecture

C

A D

L

Common Services

New System Services

H

System 4

D
A

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 95

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

meanings. Researches proposed ontology web

language for services and services description [9], for

examples OWL-S [10][11].

Moving from the current situation to the new architecture

one need time. In this stage, to facilitate converting the old

system to new architecture without convert all its functions

to services can be done through wrapper module. The

wrapper will wrap the coding of the original function in

the legacy system to use as a virtual service until moving it

to real services in the services library.

As shown in figure 3, the suggested GenericSOA

framework use the system required from the user, services

library, in additional to the ontology as input to its GSTM

to generate its output which is the generic services task

template GSTT. When needed the GSTM uses the output

function from the wrapper as input service to be used in

generate GSTT. The wrapper used the legacy system as

input to generate the needed function to be used in new

systems. The workflow of the system will be found in the

following section.

While continuing the process of constructing GSTT

library, building new system is done by collecting

different GSTTs from it together without necessity to build

services from scratch.

3.1 GSTM Description

As shown in figure 4, GSTM consists of three main

components that help the system's developers to build

generic service task template from different services. The

following is a summarization for these components:-

 Service Selector: this component searches in the

services library to choose candidate services that are

suitable for performing job/duty in the required

template task. The candidate services are selected

according to the system requirements.

 Service Evaluator: this component evaluates the

candidate services set which is the output from the

services selector component. The best service to

perform the job/duty will be the output from this

component.

 Task Template Builder: the responsible of this is to

build the generic service task template that can be

used to solve the general problem. If a built task

needs any loop, or condition part, the Task Template

Builder allows its user to add it in the template body.

Fig. 5: GSTM Components using UML

Figure 5 illustrates the SGTM component using the UML.

As shown in this figure, the GSTM connects to various

service providers and wrapper which provide it by all the

Fig. 3: GenericSOA framework

Fig. 4: GSTM Components

GSTM components

Ontology

Service

Evaluator

System Requirements

Best Service

Template

Builder

GSTT

Service
Library

Service

Selector

Wrapper

 S
e

rv
ice

 Lib
ra

ry

Ontology

System Requirements

G

S

T

M

Generic
Service

Task
Templat

e

Provider 1

Provider 2

Provider N

S5

S6

S1

S2

S3

S4

Wrapper

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 96

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

existing services in the organization. According to the user

requirement the GSTM generate the suitable GSTT.

Fig. 6: GSTM workflow using UML

The GSTM receives the system requirement from its user

as shown in figure 6. According to this required it select

the appropriate services, which is evaluated based on some

characteristic like, the time of execution, the availability of

needed input parameters, and the accuracy of the service

output. The service evaluator selects the best services for

job or duty according to the system requirements. Finally,

a GSTT is ready to be used in solving specific problem or

performing special task.

The output from GSTM is a task template which can be

used to generate a specific task which is used in building

the organization system. Figure 7 shows the proposed

representation for a GSTT.

As Shown in figure 7, the GSTT has a name, description

of job done by it, and the needed input and the output from

this GSTT. If the task needs some specific situation to

execute, the Pre-condition part will include the needed

situation to be achieved. Also, if it needs to ensure about

some results or parameters it will be put in the Post-

condition. The execution of the task can be primitive or

complex. The primitive task just execute the used services

with a specific order. Complex task needs to execute loops

or an alternative execution of the services. In complex

task, a developer add any needed condition statement (if,

repeat, while).

3.2 GenericSOA Properties

There are some properties for GenericSOA which make it

easy to be used:

1. GenericSOA contains ontology that facilitates the

cooperation between the services and makes

standardization between them to help GSTM in

building the GSTT.

2. Any service in Library can be either primitive service

(cannot be divided into smaller services) or composite

service (contains smaller services in it).

3. Any GSTT can has pre-conditions which must be

fulfilled in order to execute it.

4. Any GSTT can has post-conditions to ensure that its

result is the right result.

5. Any GSTT can have some workflow to achieve its

goal. This workflow contains organized services

which can be either obligatory (must be execute to

complete the task) or optional (its execution does not

effect in task execution, but may be affect in the

quality of the result).

4. Related Works

As we are saying before, SOA developers depend on

building their applications using composite services. A

composite service is "a service developed by aggregating

the existing services to realize a new value-added

functionality" [8]. Static and dynamic service

compositions are the most popular approaches of service

composition [12]. In static service composition, all the

required components are determined before it is

composited. This approach is preferred when the business

partners are fixed and the business requirements are stable

for a little while. Therefore, static approach is not suitable

in case of fast changing environments [13]. On the other

hand, the dynamic service composition approach is more

suitable in such dynamic situations (e.g., daily added

services, changing of service environment, continuous

spreading, and increasing in services providers) [14].

Shortly speaking dynamic service composition is more

GSTT Name:

GSTT Description:

GSTT Input:

GSTT Output:

GSTT Pre-Condition:

GSTT Post-Condition:

Task:

<Call Service N>

 <if statement>

 <While statement>

 <Repeat statement>

Return GSTT Output

Fig. 7: GSTT Representation

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 97

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

flexible in modifying, adjusting and expanding changes

during the process runtime [15].

Researches try to enhance the SOA development by

adapting the services at runtime [7] [5]. Denaro and his

colleges presented an architecture, which facilitates clients

to automatically adapt their performance to alternative web

services [7]. The alternative Web services give compatible

functionality via different interaction protocols. The

infrastructure used in this work discovers the appropriate

interactions of the web services, and then builds models

that make the interaction protocols closer and push

runtime adaptations at client-side [7].

CoBRA (Component Based Runtime Adaptable) is

adaptation architecture; it enables dynamic adaptation at

runtime to provide a foundation for autonomic, self-

managing, self-healing, self-optimizing, self-configuring

and self-adaptive applications [5]. The adaptation is done

by exchanging in the implementation. So the self-

managing of SOA applications to adjust services at

runtime is very essential to avoid the confusion of the

service availability within the application execution [5].

SOA approaches face the semantic ambiguity problem that

faces Web service as general. Lécué and his colleges

present a framework to perform dynamic service

composition, which uses semantic meanings for services

input and output [6]. Their framework uses semantic

matchmaking between outputs and inputs of the service to

provide interconnection and interaction between services.

The main idea of this framework relies on discovering the

appropriate semantic meanings between several service

descriptions. They apply a composition algorithm which

uses semantic graph-based approach. Their algorithm

decides the related and most suitable service compositions

for some service request by considering functional and

non-functional properties of services [6]. While, Solanki

and his colleges use ontology to solve the ambiguity

problem [16]. Their framework enriches semantic service

descriptions which are assumption and commitment

assertions. These assertions facilitate reasoning about

service composition and verification of their integration

[16].

5. Conclusion

Service Oriented Architecture (SOA) depends on building

applications using existing services. The new systems are

built by use the existing services in the organization’s old

systems instead of building it from scratch in the SOA

environment. Researchers try to enhancement the SOA to

overcome the existing problems and to maximize its

benefits. GenericSOA, the proposed architecture try to

enhance SOA by gathering the needed services in

separated templates to be used to achieve a specific task. It

consists of four components namely: services library,

Generic Services Task Model (GSTM) and Generic

Services Task Templates (GSTT), and ontology. It

provides its user by a way to build GSTTs to select from

them for building new system. Building GSTT is done by

select the suitable services to achieve the duty from the

services library. The GenericSOA ontology facilitates the

communication and cooperation between the services.

Using GenericSOA architecture to build the SOA

environment will enhance SOA. It enables its users by

update and modifies the services only on the library which

save time and effort as well as increase the efficiency of

service usage.

References

[1] Papazoglou, M. P., Van Den Heuvel, W. J.. "Service

oriented architectures: approaches, technologies and

research issues", The VLDB Journal, 16(3), pp.389–

415, 2007.

[2] Huhns, M. N., Singh, M. P, "Service-oriented

computing: Key concepts and principles", IEEE

Internet Computing, 9(1), pp.75–81, 2005.

[3] Thomas E., "Service-oriented architecture: concepts,

technology, and design", Prentice Hall PTR, Upper

Saddle River, 2005.

[4] Said, M., Ismail, O., Hassan, H., "Web Service

Composition and Legacy Systems: A

Survey", International Journal of Computer

Applications,69(17), pp.9-15, 2013.

[5] Irmert, F., Fischer, T., Meyer-Wegener, K., "Runtime

adaptation in a service-oriented component model",

In Proceedings of the international workshop on

Software engineering for adaptive and self-managing

systems, pp.97-104, ACM, 2008.

[6] Lécué, F., Silva, E., Pires, L. F., "A framework for

dynamic web services composition", In Emerging

Web Services Technology, Birkhäuser Basel,

Volume II, pp.59-75, 2008.

[7] Denaro, G., Pezzé, M., Tosi, D., Schilling, D.,

"Towards self-adaptive service-oriented

architectures", In Proceedings of the workshop on

Testing, analysis, and verification of web services

and applications, pp.10-16, ACM, 2006.

[8] Alonso, G., Casati, F., Kuno, H., Machiraju,

V., "Web Services: Concepts, Architectures and

Applications", Springer Publishing Company,

Incorporated, 2010.

[9] Sireteanu, N. A., "A Survey of web ontology

languages and semantic web services". Scientific

Annals of the Alexandru Ioan Cuza University of Iaşi

Economic Sciences, 2013

[10] W3C, Web Ontology Language (OWL) - Reference

Version 1.0, 2002. Available at

http://www.w3.org/TR/2002/WD-owl-ref-20021112/.

[11] W3c, The OWL-S Coalition. OWL-S 1.0 (Beta)

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 98

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Draft Release, 2003.

http://www.daml.org/services/owl-s/1.0/.

[12] Khadka, R., Sapkota, B., "An evaluation of dynamic

web service composition approaches", pp. 67-79,

2010.

[13] Shen, L., Li, F., Ren, S., Mu, Y., "Dynamic

composition of web service based on coordination

model". In Advances in Web and Network

Technologies, and Information Management,

 Springer Berlin Heidelberg, pp. 317-327, 2007.

[14] Dustdar, S., Schreiner, W., "A survey on web services

composition", International Journal of Web and Grid

Services, 1(1), pp.1-30, 2005.

[15] Tosic, V., Mennie, D., & Pagurek, B., "Dynamic

Service Composition and Its Applicability to E-

Business Software Systems", The ICARIS

Experience.Advances in Business Solutions, pp,93-

104, 2002.

[16] M. Solanki, A. Cau, and H. Zedan, "Augmenting

Semantic Web Service Descriptions with

Compositional Specification", In Proceedings of the

13th international conference on World Wide Web

(WWW’04), ACM Press, pp.544–552, 2004.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 99

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

