

Proposal of Dynamic Load Balancing Algorithm in

Grid System

Sherihan Abu Elenin

Faculty of Computers and Information

Mansoura University, Egypt

Abstract

This paper proposed dynamic load balancing for

Grid systems in order to quickly render

information to consumer requests. The proposed

algorithm is based on migration the requests

from Registry to failover registry if there are

overloaded at Registry or Registry is failed.

The new point in this algorithm is that the tasks

will be ordered in ready queue of Registry or

failover registry depending on the priority

values (trust values of consumers). The

proposed dynamic load balancing algorithm is

evaluated by measuring response time, system

utilization, and throughput. Finally, we compare

all the types of LB algorithms with the proposed

dynamic load balancing algorithm. It successes

in reducing response time and increasing

throughput.

Keywords: Grid computing, trust management,

monitoring system, dynamic load balancing.

 1. Introduction

Load Balancing (LB) is not a new concept in

the server or network space. Several products

perform different types of load balancing [1].

However, load balancers have emerged as a

powerful solution for mainstream applications

to address several areas, including server farm

scalability, availability, security, and

manageability [1].

The main goal of load balancing algorithm is to

prevent, if possible, the condition where some

processors are overloaded with a set of tasks

while others are lightly loaded or even idle [2].

Although load balancing problem in

conventional distributed systems has been

intensively studied, new challenges in Grid

computing still make it an interesting topic and

many research projects are under way. This is

due to the characteristics of Grid computing and

the complex nature of the problem itself. Load

balancing algorithms in classical distributed

systems, which usually run on homogeneous

and dedicated resources, cannot work well in

the Grid architectures [3]. Grids have a lot of

specific characteristics, like heterogeneity,

autonomy, scalability, adaptability and

resources computation-data separation, which

make the load balancing problem more difficult

[4].

2. Related Work in Load Balancing

Load balancing algorithms can be classified into

two categories: static or dynamic.

2.1 Static Load Balancing Algorithms

In these algorithms, the performance of the

processors is determined at the beginning of

execution [7]. The goal of static load balancing

method is to reduce the overall execution time

of a concurrent program while minimizing the

communication delays. A general disadvantage

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 186

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

mailto:Sherihan@mans.edu.eg

of all static schemes is that the final selection of

a host for process allocation is made when the

process is created and cannot be changed during

process execution to make changes in the

system load.

Static load balancing algorithms [8] are Round

Robin algorithm, Randomized algorithm,

Central Manager algorithm, and Threshold

algorithm.

Robin algorithm [8] distributes jobs evenly to

all slave processors. All jobs are assigned to

slave processors based on Round Robin order,

meaning that processor choosing is performed

in series and will be back to the first processor

if the last processor has been reached.

Randomized algorithm [8] uses random

numbers to choose slave processors. The slave

processors are chosen randomly following

random numbers generated based on a statistic

distribution. Central Manager algorithm [8], in

each step, central processor will choose a slave

processor to be assigned a job. The chosen slave

processor is the processor having the least load.

In Threshold algorithm [8], the processes are

assigned immediately upon creation to hosts.

Hosts for new processes are selected locally

without sending remote messages. Each

processor keeps a private copy of the system’s

load. The load of a processor can characterize

by one of the three levels: underloaded, medium

and overloaded.

2.2 Dynamic Load Balancing

It differs from static algorithms in that the work

load is distributed among the processors at

runtime. The master assigns new processes to

the slaves based on the new information

collected [9]. Unlike static algorithms, dynamic

algorithms allocate processes dynamically when

one of the processors becomes under loaded.

Instead, they are buffered in the queue on the

main host and allocated dynamically upon

requests from remote hosts.

Dynamic load balancing algorithms [10] are

Central Queue algorithm and Local Queue

algorithm. Central Queue Algorithm works on

the principle of dynamic distribution. It stores

new activities and unfulfilled requests as a

cyclic FIFO queue on the main host. Each new

activity arriving at the queue manager is

inserted into the queue [16]. Then, whenever a

request for an activity is received by the queue

manager, it removes the first activity from the

queue and sends it to the requester. The basic

idea of the local queue algorithm is static

allocation of all new processes with process

migration initiated by a host when its load falls

under threshold limit, is a user-defined

parameter of the algorithm. The parameter

defines the minimal number of ready processes

the load manager attempts to provide on each

processor [16].

3. Proposed Grid Monitoring System

3.1 Overview

The proposed Grid Monitoring System is based

on the Grid Monitoring Architecture (GMA)

[12]. The GMA specification sets out the

requirements and constraints of any

implementation. It is based on simple

Consumer/ Producer architecture with an

integrated system registry and distinguishes

transmission of monitoring data and data

discovery logically.

The architecture of proposed Grid monitoring

system is shown in Figure 1 [5], [6]. The

proposed Grid monitoring system consists of

producers (P), registry, consumers (C), and

failover registry. The main aim of proposed

system is to provide a way for consumers to

obtain information about Grid resources as

quickly as possible. It also provides fault

tolerance system supported by failover registry.

The solid line is the normal communication

between consumer and registry. The dotted line

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 187

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

is the replacement communication in case of

registry failure.

Figure 1. Proposed Grid Monitoring System

3.2 Components of Proposed Grid

Monitoring System

Producers are Grid services which register

themselves in registry, describe the type and

structure of information by SQL CREATE

TABLE and SQL INSERT TABLE, and reply

to the query of consumer.

Registry acts as a discovery Grid service to find

relevant producers matching the query of a

consumer. The overall purpose of the registry is

to match the Consumer with one or more

Producers. This is achieved by that Producers

publish information about themselves and then

Consumers search through the registry until

they find the relevant match and then the two

communicate directly with each other. The

registry is not responsible for the storage of

database, but only the index of it.

Failover registry is a backup version of all

layers in registry. It acts like registry in the

situation of failure of registry. It also has all the

functions of registry.

Consumers can be software agents or users that

query the Registry to find out what type of

information is available and locate Producers

that provide such information.

3.3 Trust and Monitoring System

Our Grid system is divided into Grid domains

(GDs). GD consists of application domain (AD),

resource domain (RD), client domain (CD), and

Trust Manager (TM). TM’s operations consist

of Trust Locating, Trust Computing, and Trust

Updating. This system was proposed and tested

in [13]. Every client has a trust level value. This

value is one point real value from 0 to 1 to

measure the trust value for every client. We add

another operation to TM. This operation is

Registry to manage the relationship between

producers and consumers.

Every domain can have any number of

producers and consumers. But it has one TM

with Registry; this makes management, and one

failover registry node; this makes failure

recovery. The domain can have any number of

nodes that is intersection with other domains or

not.

After analyzing the architecture of the proposed

trust model and Grid monitoring system, we

observe that there may be overloaded in

Registry if the number of requests is large. So

Load Balancing (LB) should be added to the

proposed Grid monitoring system to get better

performance. It is important in order to get

optimal resource utilization, maximize

throughput, minimize response time, and avoid

overload.

We analyzed and evaluated the four types of

static load balancing algorithms in [6]. In this

paper, we propose a dynamic load balancing in

order to know which will get better performance

result.

4. Proposed Dynamic Load Balancing

The most proposed load balancing algorithms

were developed in mind, assuming

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 188

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

homogeneous set of sites linked with

homogeneous and fast networks [14]. If this

assumption is true in traditional distributed

systems, it is not realistic in grid architectures

because following properties that characterize

them [15]:

 Heterogeneity: A Grid involves multiple

resources that are heterogeneous in nature

and might span numerous administrative

domains across a potentially global expanse.

 Scalability: A Grid might grow from few

resources to millions. This raises the

problem of potential performance

degradation as the size of a Grid increases.

 Adaptability: In a Grid, a resource failure is

the rule, not the exception. That means that

the probability of some resources fail is

naturally high.

These properties make the load balancing

problem more complex than in traditional

parallel and distributed systems, which offer

homogeneity and stability of their resources

[11]. Also interconnected networks on grids

have very disparate performances and tasks

submitted to the system can be very diversified

and irregular. These various observations show

that it is very difficult to define a load balancing

system which can integrate all these factors.

Already we have Grid system based on trust and

monitoring management. Therefore, we take

into consideration when we propose the

dynamic load balancing algorithm the properties

of proposed trust and monitoring systems.

 The steps of proposed dynamic load balancing

are as shown in Figure 2:

Step 0: All the requests come from the

consumers to Registry of TM. LB of Registry

(primary) takes these queries in Task_list in the

waiting queue.

Step 1: TM checks the number of tasks

(queries) in Task_list. If they are less than or

equal 7, then there is no overloaded and go to

step 2. But if they are more than 7, then there is

overloaded and the first seven tasks will be

executed at Registry. The next seven tasks will

be executed at Failover Registry in the same

time. Therefore, step 2 and step 5 will be

executed in parallel.

Step 2: LB of Registry (primary) enters the

requests to the ready queue after ordering them

depending on the priority values (trust values of

consumers) i.e., the request of consumer with

higher trust value will be executed before the

request of consumer with lower trust value.

Step 3: TM updates all databases.

Step 4: TM checks Task_list again, if it is

empty then the algorithm is finished else go to

step 1.

Step 5: TM migrates the next seven tasks (task 8

to task 15) from the waiting queue of LB of

Registry (primary) to the waiting queue of LB

of Failover registry (secondary).

Step 6: LB of Failover registry (secondary)

enters the requests to ready queue after ordering

them depending on the priority values (trust

values of consumers). Then got to step 3.

The proposed dynamic load balancing algorithm

is embedded with the proposed Grid monitoring

system as shown in Figure 3. Firstly, Registry

takes all requests from the consumers in the

context. Registry is the primary load balancing

in the system. It has two queues: waiting queue

and ready queue. Secondly, if LB (primary) of

Registry has overloaded, then the proposed

dynamic load balancing will be loaded. If

Registry is failed, Failover registry will replace

it. Failover registry is the secondary load

balancing in the system. It also has two queues:

waiting queue and ready queue. LB (secondary)

of Failover registry will work in the same time

with LB (primary) of Registry in case of

overloaded. Thirdly, Registry or Failover

Registry or both will choose the suitable

producers for the requests of the consumers.

Finally, the producers send the replies to the

consumers.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 189

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

The proposed dynamic load balancing algorithm

has some Characteristics:

 Security: It works with the proposed trust

model depending on the trust value of

every user.

 Management: It provides a way for

consumers to obtain information about

Grid resources as quickly as possible by

Registry.

 Dependability: It recovers any failures in

Registry by using Failover registry.

 Scalability: Any number of nodes or users

can be added or deleted.

 Efficiency: It is used Java servlets. Java

servlets are more efficient, easier to use,

more powerful, and more portable.

 Flexibility: It is used Structured Query

Language (SQL).

 Load balancing: It distributes the load in

the system between two nodes; Registry

and Failover registry.

5. Evaluation Results

5.1 Experimental Platform

Our Grid platform consists of as shown in

Figure 4: 1) Hardware Components: Nodes: 5

PCs (Intel Pentium4 2.2 GHz processor,

Intel RAM 256 MB) and 10 PCs (Intel Atom

1.66 GHz processor, Intel RAM 2 GB), and

Interconnection Network: Gigabit Ethernet

1000Mbps. 2) Grid Middleware: Globus Toolkit

4.2.1. 3) Software Components: Operating

System in all nodes: Linux Fedora 10, and

Tools: Programs written in Java, Apache Ant

for Java- based build tool, and Microsoft SQL

server 2008.

This platform is heterogeneous because it has

different hardware. But the software is

homogeneous in all nodes. Every node has

Linux Fedora 10 and Globus Toolkit 4 and

programming interface (Java, Ant, and SQL).

Figure 2. Flowchart of Proposed Dynamic Load

Balancing

The proposed Grid monitoring system uses

hundreds of databases that exist in Chiba

University, Japan. Every producer has tens of

databases about students, staffs, published

papers, laboratory contents. The consumer can

send any query after entering the system by his

performance and recovering failure and

published in [5].

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 190

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Figure 3. The proposed dynamic LB embedded with the proposed Grid monitoring system

Table 1. Comparison of Load Balancing Algorithms

P
a

ra
m

et
er

s

R
o

u
n

d

R
o

b
in

R
a

n
d

o
m

C
en

tr
a

l

M
a

n
a
g

er

T
h

re
sh

o
ld

L
o

ca
l

Q
u

eu
e

C
en

tr
a

l

Q
u

eu
e

P
ro

p
o

se
d

D
y

n
a
m

ic
 L

B

Overload Rejection No No No No Yes Yes Yes

Fault Tolerant No No Yes No Yes Yes Yes

Forecasting

Accuracy
More More More More Less Less -----

Stability Large Large Large Large Small Small Small

Centralized/

Decentralized
D D C D D C D

Dynamic/static S S S S Dy Dy Dy

Cooperative No No Yes Yes Yes Yes Yes

Process Migration No No No No Yes No Yes

Resource Utilization Less Less Less Less More Less More

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 191

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Figure 4. Experimental platform

5.2 Response Time (RT)

Response time is the average amount of time

from the point a consumer sends out a request

till the consumer gets the response. We

measure response time depending on message

size with fixed number of requests; 15

requests. We measure response time three

times; one without load balancing (i.e. there

may be overloaded), one with static load

balancing (Central Manager algorithm), and

one with the proposed dynamic load

balancing. The result is shown in Figure 5.

All results of proposed dynamic LB that are

less than or equal 512KB are slightly less than

the results of both no load balancing and

static load balancing. However, when the

message size is more than 512 KB, the

response time of static and dynamic LB is

largely less than of that without load

balancing.

5.3 System Utilization

System utilization is the ratio of time a system

is busy (i.e. working for us); divided by the

time it is available. Utilization is a useful

measure in evaluating performance. For all

the results discussed here, the number of

requests is 15 requests. The utilization of

producers is measured over time slice; every

60 seconds as shown in Figure 6. The

utilization of proposed dynamic LB is larger

than the static LB until the second 600. After

this, the utilization of proposed dynamic LB

is the same or slightly larger than the static

LB.

Figure 5. Response Time of three cases in the

Proposed Grid Monitoring System

5.4 Throughput

Throughput is the amount of data transferred

in one direction over a link divided by the

time taken to transfer it, usually expressed in

bits or bytes per second. People are often

concerned about measuring the maximum

data throughput rate of a communications

link. The throughput is then calculated by

dividing the file size by the time to get the

throughput in megabits, kilobits, or bits per

second. We measure the throughput as a

function of data (message size) in Mega Bytes

Per Second (MBPS) as shown in Figure 7.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 192

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Figure 6. Utilization of three cases in the

Proposed Grid Monitoring System

Figure 7. Throughput of three cases in the

Proposed Grid Monitoring System

In case of proposed dynamic load balancing

system, we note that the results are higher

than of both no loading balancing system and

static load balancing system. This is because

the loaded at Registry is divided and the

queries are served by Registry and Failover

registry in dynamic environment; i.e. loaded

is distributed at run time. All requests will be

served depending on the priority value. So the

transferred data will be high. We get the

highest throughput when message size is 512

KB. So we recommended using message size

with less than or equal 512 KB when working

with the proposed Grid monitoring system to

get high performance.

6. Comparison between all LB

Algorithms

6.1 Response Time

We measure the response time twice; one as a

function of message size as shown in Figure 8

and one as a function of number of users as

shown in Figure 9. Since we could employ at

most fifteen machines, it was impossible for

us to actually implement hundreds of users.

Instead, we used multiple user processes

running on each machine. For example, to

simulate the traffic generated by 300 users in

the real world, we ran 20 traffic-generating

processes on each of the fifteen machines. We

measure response time depending on message size

with fixed number of requests; 15 requests.

6.2 Throughput

We measure the throughput as a function of

data (message size) in Mega Bytes Per

Second (MBPS) as shown in Figure 10 and as

a function of number of users as shown in

Figure 11. Since we could employ at most

fifteen machines, it was impossible for us to

actually implement hundreds of users.

Instead, we used multiple user processes

running on each machine. For example, to

simulate the traffic generated by 300 users in

the real world, we ran 20 traffic-generating

processes on each of the fifteen machines.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 193

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Figure 8. Comparing Response Time for 7 load

balancing algorithms depending on the message

size

Figure 9. Comparing Response Time for 7 load

balancing algorithms depending on the number

of users

6. Conclusions

Load balancing is important in order to get

optimal resource utilization, maximize

throughput, minimize response time, and

avoid overload. In this paper, we integrate

load balancing with proposed trust model and

proposed Grid monitoring system. The

proposed Grid monitoring system controls the

relationship between the producers and

consumers by registry, and recovers the

failure by failover registry. The performance

of proposed dynamic LB algorithm is

evaluated by measuring the response time,

utilization, and throughput depending on

message size of query. The experiment results

show the effectiveness of proposed dynamic

load balancing in reducing the response time,

maximizing system utilization, and increasing

throughput.

Figure 10. Comparing Throughput for 7 load

balancing algorithms depending on the message

size

Figure 11. Comparing Throughput for 7 load

balancing algorithms depending on the number

of users

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 194

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

References

[1] Ch.Kopparapu: “Load Balancing Servers,

Firewalls, and Caches”, Wiley Computer

Publishing, Edition 2002, pp. 1-7 (2002)

[2] Cheng-Zhong Xu, Francis Lau :” Load

Balancing in Parallel Computers: Theory

and Practice”, Kluwer Academic

Publishers, Boston (1997)

[3] Fran Berman, Geoffrey Fox , Tony Hey :

“Grid Computing: Making the Global

Infrastructure a Reality”, Wiley Series in

Comm. Networking & Distributed

System (2003)

[4] Y. Zhu : “A survey on grid scheduling

systems”, Technical report, Department

of Computer Science, (2003)

[5] Sherihan AbuElenin, Masato Kitakami :

“Proposal of Grid Monitoring System

with Fault Tolerance”, Journal of

Information Processing. 20 (2), pp.366-

377 (2012)

[6] Sherihan Abu Elenin , Masato

Kitakami :” Performance Analysis of

Static Load Balancing in Grid”,

International Journal of Electrical &

Computer Sciences IJECS/IJENS,

Vol.11, Issue: 03, 2011, pp.57-63 (2011)

[7] L.Eager Derek, Edward D. Lazowska ,

John Zahorjan : “Adaptive load sharing

in homogeneous distributed systems”,

IEEE Transactions on Software

Engineering, v.12 n.5, p.662-675 (1986)

[8] Hendra Rahmawan, Yudi Satria : “The

Simulation of Static Load Balancing

Algorithms”, International Conference

on Electrical Engineering and

Informatics, Malaysia (2009)

[9] Y. Wang and R. Morris:"Load balancing

in distributed systems,"IEEE Trans.

Computing. C-34, no.3, pp. 204-217

[10] Sandeep Sharma, Sarabjit Singh, ,

Meenakshi Sharma : “Performance

Analysis of Load Balancing Algorithms”,

Academy of science, engineering and

technology, issue 38, February 2008, pp.

269-272 (2008)

[11] Belabbas Yagoubi , Yahya Slimani :

“Dynamic Load Balancing Strategy for

Grid Computing”, World Academy of

Science, engineering and technology,

(19) 2006, pp. 90-95 (2006)

[12] B.Tierney, R.Aydt,D.Gunter:“A Grid

Monitoring Architecture”. http://www-

didc.lbl.gov/GGFPERF/GMAWG/papers/

GWD-GP-16-2.pdf (2004)

[13] Sherihan Abu Elenin , Masato

Kitakami : ” Trust Management of Grid

System Embedded with Resource

Management System”, IEICE

Transaction Information System, vol.

E94-D, No.1, 2011, pp. 42-50 (2011)

[14] W. Leinberger, G. Karypis, V.

Kumar, and R. Biswas : “ Load

balancing across near-homogeneous

multi-resource servers. In 9th

Heterogeneous Computing Workshop,

pages 60–71 (2000)

[15] F. Berman, G. Fox, and Y. Hey :”

Grid Computing: Making the Global

Infrastructure a Reality”, Wiley Series

in Communications Networking &

Distributed Systems (2003)

[16] William Leinberger, George Karypis,

Vipin Kumar, "Load Balancing Across

Near-Homogeneous Multi-Resource

Servers", 9th Heterogeneous Computing

Workshop, Mexico (2000)

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 195

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

