

A Review of SOAP Performance Optimization Techniques to

Improve Communication in Web Services in Loosely Coupled

Systems

Mutange Kennedy Senagi1, Okeyo George2 and Cheruiyot Wilson3, Sati Arthur4 and Kalunda Jades5

 1,4,5 Information Technology, Dedan Kimathi University of Technology

Nyeri, Kenya

2,3 Computing Department, Jomo Kenyatta University of Agriculture and Technology

Nairobi, Kenya

Abstract
Web services (WS) implements Service-Oriented Architecture

(SOA). WS extends World Wide Web (WWW) infrastructure.

This provides a means of integrating software applications in

loosely coupled distributed systems. WS communication is

facilitated by Simple Object Access Protocol (SOAP). SOAP

offers a simple and lightweight mechanism for exchanging

structured and typed information among peers in a decentralized,

distributed computing environment. However, SOAP’s

transmitted data is represented in XML. XML documents are

huge in size and verbose (highly redundant), and processing of

XML information and its conversion to and fro memory data

types are some of the major hindrance in performance for high

performance applications. This survey paper gives an insight of

previous researchers’ contributions on techniques used in

optimizing SOAP in communication in WS in terms of

bandwidth utilization and throughput. To optimize SOAP,

several techniques covered include: client side caching,

differential serialization, SOAP binding, compression, server

side caching, and differential deserialization.

Keywords: SOA, web services, SOAP, XML, WSDL, and SOAP

performance evaluation.

1. Introduction

SOAP is a protocol that exists in the web service (WS)

architecture. SOAP was coined in 1998 and adopted by

World Wide Web Consortium (W3C) in 2000. SOAP does

packaging and exchange of messages in loosely coupled

systems. SOAP messages are XML based; SOAP messages

are packaged in XML documents [1]. In messaging, SOAP

depends on several ubiquitous protocol and data formats.

Among them being XML and HTTP. However, XML has a

verbose and huge structure; it has redundant textual

characteristics and uses tags to delimit data. Therefore,

processing and conversion of XML data to and fro

memory data types are one of its major performances

undoing in high performance applications [2]. In this

survey paper, we will address SOAP optimization

techniques addressed by researchers and how they

improved SOAP performance in communication in WS in

loosely coupled systems.

This paper is organized as follows. In section 1.1 we will

discuss what a service is in the context of SOA. We will

then discuss web services stack in section 1.2. In section

1.3, we discuss SOAP message structure. In section 1.4 we

discuss why this survey paper is interested in SOAP. In

section 1.5 we discuss SOAP some of the performance

evaluation techniques and some of the tools used in

evaluating various performance metrics. In section 2 we

discuss various SOAP optimization techniques classified

as client side, communication channel, and server side.

Section 3 concludes this survey research paper.

1.1 Services in Service Oriented Architecture

SOA is a loosely coupled architecture designed to meet

various business needs of organizations. There has been

paradigm shift from Object Oriented Systems Analysis

Design (OOSAD) in the 1980’s to Component-Based

Development (CBD) in the 1990’s and ultimately we have

SOA. This is a transmutation from the remote invocation

of objects in OOSAD to message passing between services

in SOA. Good software engineering practices recommend

separation of business component from the user interface

component as opposed to the traditional approach in which

both were a single entity. Nonetheless, with SOA,

particularly WS, business functionality is implemented

through exposure of services that can be consumed by

heterogeneous applications outside the control of the

system [3].

A service is a well-defined business functionality that can

be consumed by a different application [4]. SOA contains

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 142

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

a set of linked services that can be accessible over the

network or internet [5]. As shown in Figure 1.1, SOA

comprises of three main components: service consumer,

service provider, and service registry. The service

consumer is an application, a module or another service

that requires a service. The service consumer initiates

enquiry from the registry, binds the service over the

transport component and executes the service function. It

executes the service as per the interface contract. The

service provider, on the other hand, is an addressable

network entity that accepts and executes requests from the

consumer. The service provider publishes its services and

interface contract to the service registry; so that the service

consumer can discover and access the services. The last

component, the service registry, is the enabler of service

discovery. The service registry contains a repository of

available services. It allows interested service consumers

to look up for services of available service providers.

Operations in SOA include: publish, find and bind and

invoke. Publish involves a service publisher making a

service accessible. Find operation involves a service

consumer querying the service registry for a service that

meets its benchmarked needs. Binding and invoke

operations involves the service consumer retrieving a

service description from the service registry and entreating

the service as per the service description [6].

SOA is being adopted by many programmers as a way of

integrating heterogeneous software systems and providing

different services thus building dynamic systems that are

loosely coupled [7]. Some of the technologies that

implement SOA include: Common Object Request Broker

Architecture (CORBA) [8], Java Remote Method

Invocation (RMI) [9], Component Object Model (COM)

[10] and web services [11]. Java RMI, CORBA and COM

are used in developing highly coupled systems where client

and server are dependent on each other thus monolithic in

nature [2] [12] [13]. WS develop loosely coupled systems

that are platform independent and work in heterogeneous

systems [2] [13]. Moreover, WS is the most recommended

technology for realizing SOA because of its ease of use,

modularity, multiple vendor support, compose-ability, low

cost, and commonality with the SOA model [14].

1.2 Web service

A WS is a software system designed to underpin

interoperability of machines within a network [11]. This

has led to tremendous rise in the usage of WS [15]. The

main goal of WS is to have a standard way of exchanging

information between applications [13]. Its roles

complement those of SOA as shown in Figure 1.1. WS

allow interoperability between heterogeneous systems

though it’s quite complex. Nonetheless, Snell et al. (2001)

provides a simplified and elaborate WS stack as shown in

figure 1.2.

The WS has five layers namely: discovery, description,

packaging, transport, and network. Each layer plays a

specific role. In the discovery layer, discovery is

performed by end users. It’s the act of locating a resources

description from the service registry thus providing an easy

publish/find functionality. Service discovery in WS is

handled by Universal Description Discovery and

Integration (UDDI). The description layer describes the

public interface of a WS. Description in WS is done by

Web Services Description Language (WSDL), Resource

Description Framework (RDF) or DARPA Agent Markup

Language (DAML). RDF and DARPA are rich but

complex in describing WS than WSDL. Packaging layer

does the packaging of messages before relaying them in

the network. The message is usually in a format that all

parties understand in the heterogeneous environment.

SOAP or Representational State Transfer (REST) is

responsible for the packaging of messages in WS.

Transport layer transports data and enables application-

application communication on top of the network. Some of

the protocols involved include HTTP, TCP, SMTP, and

Jabber. The network layer provides critical basic

communication, addressing, and routing capabilities [16].

WS implementation can be done in SOAP or REST. SOAP

adopts XML-based messages that are huge in size and

parsing which are computationally expensive. In REST

architecture, resources (data and functionality) are

accessed using web Uniform Resource Identifiers (URIs)

via simple well-defined HTTP operations [17]. SOAP

causes relatively high network traffic, high latency and

processing delays as compared to REST [13] [17]. In

systems with limited resources like Mobile Operating

Systems (MOS), REST is preferred to SOAP [18] [19] [20]

Interaction

Service

Contract

………….

..………

…..……

……..

Service

Fig. 1.1: Service-Oriented Architecture roles. Adopted from [16]

Client

Service

Provider

Publish
Find

Service

Registry

Service

Consumer

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 143

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

[21]. Nevertheless, SOAP can also be implemented in

MOS [22]. SOAP enjoys the benefit of being more secure

than REST. SOAP and REST have their own strengths and

weaknesses, therefore, the choice to use one depends on

application complexity, requirements and constrains etc.

The software developer should choose wisely the

technology to adopt [23] [24]. Notwithstanding,

researchers are working around the clock to improve

SOAP performance as discussed in details in section 2.

1.3 SOAP (Simple Object Access Protocol)

SOAP is a standardized de facto XML-based protocol for

packaging, services invocation and exchanging messages

in distributed systems aided by WS interfaces [12]. As

shown in Figure 1.3, SOAP structure has four regions

namely: envelope, header, body, and fault. SOAP message

structure has four regions. The SOAP envelope

<Envelope> is the root element in every SOAP message,

and contains two child elements, an optional <Header> and

a mandatory <Body>. The SOAP header <Header> is an

optional sub-element of the SOAP envelope, and is used to

pass application-related information that is to be processed

by SOAP nodes along the message path. The SOAP body

<Body> is a mandatory sub-element of the SOAP envelope,

which contains information intended for the fundamental

recipient of the message. The SOAP fault <Fault> is a sub-

element of the SOAP body, which is used for reporting

errors [25].

SOAP protocol relies on HTTP or HTTPS in

communication. However, SOAP can still ride on SMTP,

and other compatible transfer protocols. The advantage of

riding on HTTP is that, it is: firewall friendly, an open

standard, and a universally accepted transfer protocol.

SOAP messages are encapsulated within HTTP. HTTP is a

universal standard in the WWW. The SOAP XML

document is embedded in HTTP. Firewalls by default

allow traffic through port 80 which HTTP uses in

communication. This gives SOAP the power to be platform

independent [26]. SOAP request and responses are via

HTTP. SOAP uses the HTTP GET method for requests

and HTTP POST method for both request and response.

HTTP explores TCP/IP protocol for network transport

because of reliability. Some researchers have explored

HTTP binding on UDP which proved to improve

performance although it is less reliable [27].

1.4 Why SOAP?

In SOA, WS provide a comprehensive solution for

representing, discovering and invoking services in

distributed systems. At the core of the WS, lie various

XML-based standards including SOAP. SOAP is a

protocol that ensures WS extensibility, robustness and

interoperability between heterogeneous systems. However,

SOAP has basically two major performance-related

drawbacks:

 XML structure is huge and verbose (highly

redundant) which results to high network traffic

thus poor utilization of bandwidth and relatively

high response time.

 Conversion of XML data to and fro memory data

types cause a high computational burden leading

to high latency and poor memory utilization.

1.5 SOAP Performance Evaluation Parameters and

Tools

SOAP is a service oriented technology which cannot run

away from Quality of Service (QoS). QoS can be defined

as a set of techniques geared towards managing of

resources [28]. Moreover QoS is a set of perceivable

Discovery

Description

Packaging

Transport

Network

Fig. 1.2: The web service technology stack. Adopted from [16]

SOAP envelope

SOAP Header

Header block

Header block

SOAP body

Message body

Fig. 1.3: SOAP message structure. Adopted from [26]

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 144

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

characteristics expressed in a user-friendly language with

quantifiable parameters that may be subjective or objective.

Software performance evaluation is an area of interest in

QoS; which is also a field of concern in software

engineering [29].

Performance evaluation emerged in the 1970’s and 1980’s

as an important component in computer science. It

involves use of accepted methods in measuring computer

systems. The field of computer systems and software

engineering focuses on specific components in computer

science. These components can be evaluated in terms of

their effectiveness. SOAP performance metrics involves a

standard measure of SOAP performance indices. In the

OSI (Open Standards Interconnection) model of

communication in a network, SOAP metrics can be

evaluated at multiple layers in the protocol stack, for

instance, IP packets round trip time (network layer), and

channel utilization (transport layer). There are other

various performance evaluation parameters which include:

throughput, good put, packet loss rate, and MAC layer

retries [29] [30] [31] [32]. This research survey is

interested in SOAP performance which is widely measured

in terms of:

 Round trip time (responsiveness): It’s the time

required to traverse a network and coming back.

Round trip time is measured in milliseconds (ms).

 Bandwidth/channel utilization. It measures

utilization of a channel. It is the amount of data

transmitted or received at a given time. Its

measured in megabytes per second (mbps)

 Throughput: Measures the packets that are

flowing out (e.g. requests) of a node/client. In WS,

it can be measured in either megabytes per second

(mbps) or requests per second (req/sec). It’s

usually measured at the server side [30].

Researchers in [32] did a study of web services testing

tools using soapUI [33], JMeter [34] and Storm [35] in

terms of their architecture, features, interoperability,

software requirements, and usability. Moreover, they did a

comparison of their throughput, response time and

usability; only JMeter and soapUI support testing of

throughput. Nonetheless, soapUI outperformed JMeter and

Storm thus can be regarded as fastest tool in terms of

response time, JMeter had better throughput than soapUI,

and Storm had a very simple and easy to use interface. It

was observed that response time values taken at 6:00 AM

are most optimal [32].

Apache Bench can be used to test various metrics among

them: throughput and response time [36]. Web services

performance testing tools is a rich area of study that can

exploited. Nevertheless, there are many vendors in the

internet who have come up with tools that can test web

services. Some of these tools include: Fiddler [37],

NetMon [38], Wire Shark [39], and NeoLoad [40].

Software testing in complex systems can be very involving.

Software performance profiling can be very essential in

determining a software performance in terms of memory

utilization, execution time etc. [41] [42]

The goal of this survey research is to provide a survey of

techniques that can improve SOAP performance which are

covered in the following section. The classifications are

thematic: client side, communication channel and server

side.

2. SOAP Performance Techniques

The dependence of SOAP on XML in messaging is the

major hindrance in performance for high performance

applications. Several researchers have made contributions

on how to optimize SOAP performance in web services

communication. This section covers various SOAP

optimization techniques that are thematically classified as:

client side in section 2.1, communication channel in

section 2.2 and server side in section 2.3.

2.1 Client Side

A client is a computer that sends requests to the server;

normally it is the end users computer. All the computing

operations involved in client computer are said to exist in

the Client Side. In this section we discuss client side

caching technique in 2.1.1 and differential serialization

(DS) discussed in 2.1.2 as client side optimization

techniques.

2.1.1 Client Side Caching

Client side caching is the storage of data in the client side.

Client side caching is a technique of improving SOAP

performance in terms of improving response time. SOAP

client side caching has been supported by several

researchers [2] [43] [44] [45] [46]. Caching has been

embraced solely to improve the amount of traffic and

latency between the service and underlying data providers

[2] [43] [46]. Client caching can store data temporarily

within the internet browser or by a JavaScript data

structure [46].

Data in SOA is categorized as server state and service data.

Service state is data that concerns the state of the business

process/service while service result is data that is delivered

by the business process/service back to the presentation

layer. Moreover, caching can be categorized as: client side

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 145

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

caching, proxy caching, reverse proxy caching, and web

server caching. Figure 2.1 shows different types of caching.

In client side caching, data is stored by the client side

browser temporarily on the local disk or browser’s internal

memory. Its advantage is that data cached on the local

client can be easily accessed and reduces network traffic

while its disadvantage is that cached data in the client is

browser dependent and is not shareable. Proxy caching

uses a proxy server that stores cached data between the

client and the web server. This data cached in proxy server

can be shared among clients thus leverages the weakness

identified in client side caching. Its advantage is that it

fulfills all requests from web page without sending them

out to the actual web server over the internet, resulting in

faster access and reduced traffic. Its disadvantages include

deployment and infrastructure overhead to maintain the

proxy servers. In reverse proxy caching, the proxy is

placed in from of the web server. The proxy responds to

the most frequent request and passes others to the web

server. As much it reduces the number of request directed

towards the web server, its position in front of the server

increases network traffic. In web server caching, the web

server stores its own cached data. It improves the

performance of a site by decreasing the round trip of data

retrieved from database or other servers, reduces server

load, and reduces bandwidth consumption [43].

After profiling the client side, researchers in [44] note that

around 40% of execution time is spent in XML encoding

which involves serializing and marshalling the SOAP

payload before transmitting it to the server. Similarly,

researcher in [43] [46] also noted an improved

performance using client side caching. Therefore, clients

that send the same request to the server frequently

consume a considerable amount of time in encoding XML.

To overcome this challenge, caching such request(s) not

only saves a considerable amount of execution time in

recreating the payload, but also the time involved in trips

to fetch data from the sever. The client always checks if the

request was previously indexed and cached on the client

side before sending it to the server. If the request was

cached, it does a simple file I/O operation to fetch the

payload from the client side cache [44]. In as much as [44]

used RPC-style in WSDL 1.1 binding which is an

inefficient SOAP binding style as discussed in section

2.2.1, an evaluation of SOAP caching on the client side

showed an improved performance by a remarkable 800%.

This resulted to better performance than the traditional

binary Java RMI which outperformed SOAP as discussed

in [47]. Figure 2.2 shows the round trip results of SOAP

with Java RMI.

Some of the challenges involved in client side caching

include: how frequent the data needs to be updated, the

data being user specific or application-wide, and what

mechanism to use to indicate that the cache needs updating

[43] [44] [46] [48]. Researchers in [46] [44] noted that

proper indexing and time stamping can be used to verify its

validity. Consequently, [44] notes that data in the client

side can be updated not only by deleting and renewing data

period of time, but also by updating last modified

timestamps by use of a cache provider. Updating last

modified timestamps is much better because it imposes less

overhead as compared to reloading the entire data set.

Research in [46] suggests hybrid reverse caching strategy

in web caching. Hybrid reverse caching caches data

structures rather than static values. This caching can be

built on unified data stores to eliminate redundant and

duplicate data. Client side caching performance can be

enhanced further by doing more research on caching

algorithms that can further improve fetching and

serialization of XML data.

Fig. 2.2: Comparison of SOAP (with client-side caching) with Java

RMI and the traditional SOAP. Adopted from [44]

Fig. 2.1: Client side caching, proxy caching, reverse proxy caching

and web server caching respectively. Adopted from [43]

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 146

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

2.1.2 Differential Serialization

Differential serialization (DS) avoids serializing of the

whole message structure. Serialization of sent/outgoing

messages involves conversion of in-memory data types to

SOAP XML-based ASCII string formats, and then packing

this data into message buffer; this counts as one of the

major performance bottlenecks of SOAP performance as it

accounts for 90% of end-to-end message time. The client

that sends the requests is called the bSOAP. In DS, once a

serialized message has been sent by a SOAP

communication end point, the client saves the message so

that it can be reused by future subsequent messages as a

template. Subsequent messages that have the same

structure or are identical can reuse the structure and avoid

the serialization overhead involved in regenerating the

structures from scratch. This works best if the same client

sends a stream of similar messages. This technique

improves response time [2] [15] [49] [50] [51] [30].

The steps to follow to make DS a success is: tracking data

changes and overwriting only those values that have been

changed since the last sent message, expanding the

serialized message to accommodate large serialized values,

storing the message in chunks and padding them with

white spaces to reduce the cost of expansion, and

overlaying the same memory region with different portions

of the same outgoing message to reduce memory

consumption. The steps outlined above demonstrated a

best case performance of ten times faster. The study also

showed that send times reduced by a factor of five only

when parts of the message were to be re-serialized. In

designing the DS, when comparing the outgoing message

to the saved templates the different matching possibilities

are [49]:

 Message content matching: This entails the

entirely sent message being exactly the as the one

sent from the client earlier; the client sends the

message as it is.

 Perfect structure match: This entails the message

having the same structure and size as an earlier

message but having values of some field that have

changed. In this case, the serialized message is

replaced with the changed values only.

 Partial structure match: This entails the message

having a structure but a change in size of the

message as compared to an earlier message. Also,

some of the values may not have matched. Unlike

in memory base types, the serialized message

template may be expanded or contracted to meet

the requirements of the new message.

 First time send: This phase encounters the normal

overheads involved in creating a serialized

message from scratch, checking whether it exists

amongst the saved templates and saving a pointer

to it after it has been created.

From the different matching possibilities, researchers in

[49] notes that partial structure match can be avoided using

several techniques which are: stuffing, shifting, chunking,

and stealing.

 Shifting: This involves expanding the message in

memory when the serialized form of a new

message exceeds its field width as shown in

Figure 2.3. It involves shifting bytes in the

template to make room for the new values then

updating Data Update Tracking (DUT) Table

accordingly. This is expensive because it entails

memory moves, possibly memory reallocation,

and updating DUT table.

 Stuffing: This involves adding extra white spaces

in the serialized message to accommodate

potential future updates that would otherwise

require expansion as shown in Figure 2.4. The

white spaces can be explicitly created when the

template is created or after serializing a value that

requires less space. This technique can avoid

shifting which is an expensive technique.

 Stealing: This reduces the costs of increasing field

size by stealing extra spaces from neighboring

fields instead of shifting entire portions of

memory chunks. This technique is actually less

expensive than shifting. Performance of stealing

depends upon the Halting Criteria (tell when to

stop stealing) and direction (tell left, right or

back-and-forth of memory chunks).

…</w><x xsi:type='xsd:int'>1.2</x><y xsi:type=….

becomes

…</w><x xsi:type='xsd:int'>1.23456</x><y xsi:type=….

Fig. 2.3: Shifting technique in Differential Serialization.

Adopted from [49]

…<y xsi:type='xsd:int'>678</y><z

xsi:type=…

can be represented as
…<y xsi:type='xsd:int'>678</y>□□□□<z

xsi:type=…

Fig. 2.4: Stuffing technique in Differential Serialization. Adopted

from [49]

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 147

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

 Chunking: This involves storing messages in

potential non-contiguous memory chunks to limit

the impact of the expensive Shifting.

Clients that send the same message frequently can

maximize the advantage of DS in improving performance

of that system. DUT Table comes in handy to track

whether a program has changed data items in new

messages since the last serialized SOAP messages. DS had

an impact of up to 17% improvement [49]. However, in as

much as [52] proposed an optimized version called

XSOAP that used a new XML parser specialized for

SOAP arrays, [53] notes that, in scientific grid computing

(an area of high performance computing that is adopting

the web service architecture), sending scientific data e.g.

large arrays of floating point numbers and complex data

types via standard implementation of SOAP is expensive.

2.2 Communication Channel

The SOAP XML document is embedded in HTTP as the

default transport protocol. SOAP messages can be

transported in SMPT and FTP among other protocols.

HTTP uses port 80 as the default communication port. By

default SOAP uses HTTP-GET or HTTP-POST protocol

to communicate in WS [26] [27]. The wire format of data

in communication channel affects SOAP performance [44]

[54]. In this section we discuss SOAP binding style in

section 2.2.1 and compression techniques in section 2.2.2

as techniques that improve SOAP communication. These

techniques are discussed as follows.

2.2.1 SOAP Binding Style

In section 1.2, we discussed the web service stack which

contains the description layer. The description layer is

responsible for describing the public interface of a specific

web services. Services are exposed on the public interface

of a web service. Service description (location and

methods exposed) is handled by Web Service Description

Language (WSDL). Other approaches include the W3C’s

Resource Description Framework (RDF) and DARPA

Agent Markup Language (DAML) which provide a much

rich capability but very complex to describe web services

than WSDL [7].

WSDL is a model that provides an XML format for

describing WS in the web community; this ensures

interoperability in heterogeneous systems. As per WSDL

1.1 [55] standards, the document structure of the XML has

two sections abstract and concrete. The abstract elements

(Type, Message, and PortType) defines WS interface while

the concrete section (Binding and Service) describes how

abstract interface maps messages on the wire [7] [55] [56].

All the WSDL 1.1 elements include:

 Type: This is a container for the schema type

definitions.

 Message: This defines an abstract message that

serves as the input/output of an operation. An

operation is a message exchange; a focal point of

a service interaction

 PortTypes: It’s also known as Interfaces. It’s an

abstract set underpinned by one or more

endpoints. It describes a function signature

(operation name, input parameters, and output

parameters) in a Message. An endpoint defines a

combination of an address and a binding e.g. URI

 Bindings: This is a concrete protocol and data

format specification for a particular PortType.

 Services: This is a collection of related network

endpoints. An endpoint is a port

This research is interested on the binding element. Binding

defines the message format and protocol details for

operations and messages as defined by a particular

PortType. In WSDL 1.1, binding has two attributes which

include: style and use. The default style of the service is

either RPC or document and the default transport protocol

(HTTP) while in the communication channel [55]. The

styles are discussed as follows:

 Document-style (previously called message-style)

in SOAP dictates that the body contains an XML

document, and the message part specifies the

XML elements.

 RPC style in SOAP dictates that the body

contains an XML representation of a remote

procedure being invoked and the message parts

representing the parameters to the method.

The use attribute specify the encoding to be used to

translate the abstract message parts to concrete

representations. It has two possible values are encoded or

literal.

 In encoded, abstract definitions are translated to a

concrete format by using the SOAP encoding

rules.

 In literal, the abstract type definitions turn to be

the concrete definitions, that is, you can simply

inspect the XML Schema type definitions to

validate the concrete message format.

…'>678</y><z xsi:type='xsd:double'>1.166</val>□□□□□

y can steal from z to yield…

…'>677.345</y><z xsi:type='xsd:double'>1.166</val>□

Fig. 2.5: Stealing technique in Differential Serialization. Adopted

from [47]

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 148

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

The style and use attributes forms four possible

combinations called binding styles, common once being

RPC-encode as shown in Figure 2.7 and document-literal

as shown in Figure 2.8 [7].

Fig. 2.7: SOAP document-literal call. Adopted from [26]

Fig. 2.8: SOAP RPC-encoding call. Adopted from [26]

Several researchers have done research on the different

binding styles and their effects on performance on SOAP

in communication. RPC-encode have more overheads than

document-literal [7]. As much as document style had its

own short comings, [7] [57] recommended adoption of

document-literal over RPC style in a bid to improve

performance. Java which had document style (MTOM

technology enabled) showed that, web service using RPC

style requires 15% more time as compared to document-

literal style [58]. Moreover, [59] notes that test client-side

experiments built on document- literal encoding style was

faster than previous implementation using RPC. The

research findings in [58] notes that RPC style requires 15%

more than document- literal as shown in figure 2.9.

WSDL 2.0 [60] is a later version of WSDL 1.1. WSDL 2.0

comes with certain features and language elements

changed and expanded. For example the definitions

element is renamed to descriptions, portType element is

renamed to interface, port element is renamed to endpoint,

and message element is discarded. The message element

defined RPC (parameter driven) and message (document

type) communication. Due to the limited expressive

powers of RPC in message element, WSDL 2.0 discards it

altogether and simply allows an operation to reference a

type (such as an XML schema element) directly [61].

WSDL 2.0 component model is a set of components with

attached properties which collectively describe a WS.

Components in WSDL 2.0 are typed collections of

properties that correspond to different aspects of WS.

Components in WSDL 2.0 are serializable in XML 1.0

format but are independent of any particular serialization

of the component model. WSDL 2.0 components include:

description, element, type, interface, interface fault,

interface operation, interface message reference, interface

fault reference, binding, binding fault, binding operation,

TCP HTTP SMTP

Messages

Interface

Operation

Operation

Interface

Operation

Operation

service

resource

Fig. 2.6: WSDL Interface and bindings. Adopted from [7]

Fig. 2.9: Performance measurement of Web service in different

networks. Adopted from [58]

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 149

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

binding message reference, binding fault reference, service,

endpoint, and extension component [52]. WSDL 1.1 the

predecessor of WSDL 2.0 has lots of restructuring. Some

of the new alterations might be beneficial upon its full

understanding [61].

2.2.2 Compression

Several researches have supported compression as a

promising solution to improving the huge verbose XML

messages in SOAP [2] [22] [43] [44] [59] [62] [63].

Compression improves bandwidth utilization and response

time of SOAP messages. Compression has its tradeoffs e.g.

extra compression processing time. In the research [44]

these tradeoffs were not beneficial. However, recently with

the increased hardware processing capabilities, these

tradeoffs are beneficial as is not as costly as increasing

bandwidth which is widely under constrains [22]. Different

compression algorithms have different compression ratio

and different compression time for the same XML file(s)

[45]. An attempt in [44] to compact XML tags to reduce

the length of the XML tags names had negligible effect on

encoding. The research [44] further suggested that other

than the data an XML message contained, the major cost

of the XML encoding/decoding is in its structural

complexity and syntactic\ elements. Research in [63] [59]

notes that XML files are highly redundant thus lossless

compression algorithm works out best to achieve better

compression ratios. Lossless compression algorithm

exploits statistical redundancy to represent sender’s data

more concisely without errors. However, [63] [59] notes

that lossless compression will not work for high entropy

(high disordered) data e.g. already compressed data,

random data or encrypted data as it will result in expansion

rather than compression. Lossless compression algorithms

include Gzip, Bzip2, Fast Infoset (FI), Efficient XML

Interchange (EXI) etc. WS-security performance can be an

interesting area to explore.

Experiments set up in [63] to compare the best

compression algorithm between EXI, FI, and Gzip. It was

indicated that FI performed the poorest. EXI showed

slightly better compression ratios and response time than

Gzip. However, [63] recommended Gzip compression

algorithm in disadvantaged network. EXI [64] showed

promising better performance outcomes than Gzip

although it is still under open source test and test [63], a

commercial version is yet to be released.

In [62] they focus on compression on textual data. They

used an algorithm that works in three steps: removal of

white spaces, compressing data to UpperCamelCase then

decompress compressed data. Experiment in [62] had

significant performance gains of up to 22% in bandwidth

utilization. The algorithm works in small and large sizes of

messages. Nevertheless, experimental results in [62] show

that use of Gzip compression algorithm further improves

bandwidth utilization as data integrity is observed. In

multimedia data, a detailed analysis of multimedia

streaming and compression is tackled in [65] [66]. This

survey paper is interested in textual data compression.

Researchers in [15] did an evaluation of performance of

Gzip and Bzip2 compressors by doing a comparison

against three XML compressors (XMILL, xmlppm and

XBXML). The methodology involved building an XML

tree and converting it into a binary tree then encoding the

XML tags by Fixed Length and Huffman techniques. This

eventually removes all the closing tags thus saving the

opening tags and data leaves of the created tree hence

reduces the size of the messages sent and received.

Nevertheless, in the experiments, out of the 160 messages

that were equally divided into four groups in terms of

message size categorizes data as small messages (140-800

bytes), medium massages (800-3000 bytes), large

messages (3000-20000 bytes), and very large messages

(20000-55000 bytes).

In the results of XML (uncompressed), XML (Bzip2),

XML (Gzip), XMILL (Bzip2), XMILL (Gzip), XMILL

(ppm), xmlppm and wbxml, evaluations shows Gzip

compression was more effective than Bzip2 by achieving

better compression ratio but XMILL (ppm) outperforms

Gzip and Bzip2. The findings are shown in Table 1. Their

experiment conclusions reveal that Huffman encoding was

the most efficient for large and very large documents while

Fixed Length encoding was found to be efficient for small

documents. The compression trends observed in Table 1

can be attributed to the fact that look up tables are usually

created in lossless compression techniques. Look up

tables’ aid in mapping of symbols to binary codes during

compression process. Therefore, lookup tables in large

documents consume a small space as compared to encoded

data while in small documents the lookup table tends to be

larger than the encoded data. This explains why a high

compression ratio is exhibited in large documents as

compared to small documents.

The research [2] [22] [63] [62] [63] [59] [44], support the

fact that compression has a deep impact in not only

reducing the response time, but also the improving

bandwidth utilization hence increases the performance of

SOAP based applications. Furthermore, [67] categorizes

data compression algorithms methods into three:

 General Purpose Compression Algorithm: This

include Gzip which is based on Huffman coding,

LZ77 which is a substitution compressor and

Bzip2 which is an implementation of Burrows-

Wheeler block-sorting algorithm

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 150

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

 XML Aware Compression Algorithm: This

explores the separation between XML markup

and payload. The simplest in this category are

substitution-based algorithms that work at the

markup level. They include BXML, WBXML,

XMILL, XMLPPM, ESAX etc.

 Schema-Aware Compression Algorithm: This

defines their schemas in form of XSD or DTD

files. They do not encode part of infoset which

can be decoded by the receiving party.

In as much as [67] argues that compression reduces

response time, other factors about a compression algorithm

need to be considered e.g. encoding and decoding time, the

number of messages transferred, average compression time,

number of processes involved, network components

passing time, and geographical distance. Experiments in

[67], prepared in .NET, studies Bzip2 and BXML

algorithms considering their response time. From Table 2

and Figure 2.10, it’s inferred that despite Bzip2 having a

better compression ratio than BXML, BXML has a better

response time because it has a lower compression time.

Moreover, [67] notes that when using a compression

algorithm, if the data size is more than a specific threshold

it may increase the response time and improve

performance otherwise it degrades the performance.

Researchers in [22] gave a detailed algorithm on how a

client and server communicate exploring text compression

technique in a bid to improve performance in web-service-

based applications. The algorithm showed text was

reduced by 80%, meaning 80% less storage space was

saved. Nonetheless, the text data being transferred required

less time which translated to high performance for client-

server application communication. As much the

compression had some tradeoffs like processing time, it

resulted to a general better performance of the system.

Figure 2.11 shows an implementation of the compression.

Text input from the client through the proxy is serialized as

text-based SOAP message, compressed then sent to the

server. The text is then decompressed, de-serialized then

passed to the web service. The web service processes the

request and returns the result which is later serialized and

compressed before being sent to the client. Lastly, the

client collects the text message which is de-serialized and

decompressed through the proxy. The total processing time

of a request is given in Eq. 1 where tser is time needed to

serialize the request in xml format, ttr is the time needed to

actually transfer the serialized request, tdeser is the time

needed to de-serialize the xml text and tservproc is the

time needed for processing the request and producing the

results at the server side [22].

The research done in [45] gives an assessment formula Eq.

2 to calculate T which is the transmission time a WS can

be reduced. In the formulae: N is network speed in bytes

per second, C is the computing speed of the device in units

per second, compression algorithm requires Z computing

units, and compression algorithm can compress the SOAP

message out E byte. If the result of T is a positive value

then the transmission performance of WS is improved. If

it’s a negative value, then it means that the compression

algorithm does not improve the transmission performance

of the algorithm.

Table 2: The percentage of compression using Bzip2 and BXML

algorithms. Adopted from [67]

Fig. 2.10: The percentage of compression using Bzip2 and BXML

algorithms. Adopted from [67]

Ttotal = 2˖(tser + ttr + tdeser) + tservproc + tcom/dec (1)

Equation 1 T (seconds) = (E ÷ N) – (Z ÷ C) (2)

Table1: Result compressed size of different SOAP messages using

xmill, xbmill, Gzip, and Bzip2 compressors in addition to fixed

and variable length encoding. Adopted from [15]

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 151

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

In as much as there is a tradeoff between compression and

CPU usage, this can be resolved by use of powerful server

that uses multi-processing cores [14]. Moreover Moores’s

Law shows the doubling of transistors in integrated circuits

(IC) in computer hardware in a span of approximately two

years. This show processing speeds will not be a limiting

factor for compression in the near future.

Gzip compression algorithm has been adopted by web

browsers [72] and web servers [73] [74] as a way of

compressing data in client-server communication model.

Web browsers can decompress and render Gzip files

compressed by web servers. This has improved bandwidth

utilization and response time of files fetched to and fro the

web server.

2.3 Server side

A server is a computer that receives and processes requests

from client(s). Normally a server computer is has high

hardware specifications in order to process its client’s

requests efficiently. All the computing operations involved

in server computer are said to exist in the Server Side. In

this section we will discuss some of the techniques

involved in the server side operations in relation to SOAP

which are: server side caching technique discussed in

section 2.3.1 and differential deserialization (DDS)

discussed in section 2.3.2. These techniques are discussed

as follows.

2.3.1 Server Side Caching

Server side caching is the storage of data on the server side.

Server side caching improves response time [2] [45] [46].

As discussed in client side caching in section 2.1.1, server

side caching is slightly different as data is temporarily

stored in serialized objects [46].

In [45], cache is categorized in two methods: message

body and template cache.

 Message body: This involves storing all SOAP

message body calls. According to the client’s

request, the cache identifies each message body

with two parameters: unique ID and Time To Live

(TTL). If the requested XML message exists in

cache and the TTL is valid, then the message is

fetched from the cache and returned accordingly.

Otherwise it’s fetched in the server.

 Template cache: In this method, it’s argued that in

a service process, clients request the same

elements but with different real time values. With

this technique, the elements can form the template

as the real time values are dynamically

interchanged. This avoids

reconstruction/destruction of the template

message. Just like the message body technique

functions, unique IDs are generated for message

bodies and validated against when a client makes

requests vis-à-vis its TTL in the template cache.

This is managed by the template cache

management module. Template cache structure is

as shown in figure 2.12.

Results of optimized message and template cache are as

shown in figure 2.13. Template caching is seen to have

better performance than message body caching technique.

Fig. 2.11: Implementation of Compression and Decompression after

serialization and before deserialization. Adopted from [22]

Fig. 2.12: Structure of Template Cache. Adopted from [45]

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 152

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Server side data chunking is one technique that is typically

handled on the server side. As the number of records to be

loaded on the browser increases, the time required to load

the data increases. Data chunking comes in as a very

important technique for the response from the server to

return a sustainable amount of data to the client. In Data

chunking, the client specifies the range of data in the

request; though this is handled programmatically. The

server then composes the chunk and returns it via the

response method. This improves performance of loading

thousands of data, by loading chunks or bits [43] [68].

Among other JavaScript libraries, Ext. JavaScript 4.1 [68]

has adopted this technique as paging which is quite

essential in modeling controls e.g. grid as shown in Figure

2.14.

Similarly as discussed in section 2.1.1 (client side caching),

the challenge of keeping the cache up-to-date is also a

major problem in server side caching [46]. Nevertheless,

research in [46] [48] proposes use of database-aided

caching technique in the web server. Database caching

comes with many advantages including: modifications can

be done easily, it has the ability to augment data with

metadata, it eliminates the need to parse an entire XML

structure which is computationally expensive, and an extra

column can be used to store the aforementioned last

modified timestamp value for each record easily. A

suitable predicate value can be stored in replacement of

last modified timestamp value to allow quick comparison

between requests. Session management between multiple

clients and proxy web server is a rich area of study that can

be exploited further [46] [48].

2.3.2 Differential deserialization

Differential Deserialization (DDS) works in the

server/receiver side. DDS technique has been supported by

other researchers [2] [30] [49] [50] [53]. DDS works best

if similar messages are sent by different clients [2] [49].

DDS is somehow similar to Differential Serialization (DS).

DDS and DS take advantage of sequence of similar

messages to avoid the expensive SOAP message de-

serialization/serialization process respectively. Neither of

them changes the SOAP protocol, the SOAP message nor

SOAP message wire format. Both implementations remain

independent and interoperable with other SOAP

implementations [49]. Moreover, researchers in [51] note

that DDS is more promising implementation technique

than DS because DS works if the same client sends a

stream of similar messages whereas DDS can avoid

deserialization of similar messages sent by multiple clients.

The speed of the server among other factors determines

performance in DDS. Some of the differences between

DDS and DS are captured in table 3.

Deserialization is an expensive process that involves

conversion of SOAP XML-messages to application object.

Deserialization involves a series of undertakings which

include fetching an appropriate deserializer from the type

mapping registry, and constructing a Java object from an

Fig. 2.13: Test results for template and message body caching.

Adopted from [45]

Fig. 2.14: Data chunking/paging example in Ext. Js. Adopted from [68]

Table 3: Comparison between differential deserialization and

differential serialization

Differential deserialization Differential serialization

Works in the server side Works in the client side

Targets incoming messages Targets outgoing messages

Deserialization process

involves converting of SOAP

XML-messages to application

object

Serialization process involves

conversion of in-memory data

types to SOAP XML ASCII

format

Uses parse checkpointing the

state of the deserializer for

incoming messages

Uses Data Update Tracking

(DUT) Table to track whether

a program has changed data

items in new messages since

they were last serialized SOAP

messages in outgoing message

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 153

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

XML message. To be precise and relatively simple, the

process of de-serializing an XML message into Java

objects is as follows [53]:

 Open an XML document that represents the

object.

 Reclusively de-serialize the object’s members

which are encoded as sub-elements after locating

an appropriate deserializer from the type mapping

system.

 Create a new instance of the Java type, initializing

it with deserialized members.

 Return the new Java object.

These undertakings become more complex and expensive

when the XML message becomes bigger and deeper.

Deserialization can be improved by processing new

regions of the XML messages and reuse of the constructed

objects deserialized in the past. It even becomes more

expensive when handling scientific data stored in arrays,

floats, and doubles [53] [50] [69]. Objects are created

before they are used and garbage collected after they are

finished to be used. The use of more objects affects the

performance of garbage-cycling process [53].

Researchers in [71] noted that reuse of the entire object

trees works for messages that have exactly the same

structure. Researchers in [53] improved on the approach

presented in [71]. In [53] it’s noted that the fundamental

characteristic of processed SOAP-based web services

messages is that, their wire format structure has lots of

similarity. By exploiting this weakness redundancy can be

avoided by using a deserialization mechanism that reuses

matching structures/objects from previously deserialized

applications objects; deserialization for new regions is only

performed on regions that will not have been processed

before. Researchers in [53] obtained a 288% maximum

performance gain by the use of this technique. However, in

large messages on the wire that have repetitive elements

like GoogleSearchLargeservice and in cluster-like

environments, in such cases, reusing the entire object tree

is not the optimal solution because repetition number

might differ for each request and requires us to consider

issues such as thread safeness and scalability respectively

[53].

Nonetheless, DDS primary shortcomings in SOAP

message exchange are processing of XML data/content and

conversion of strings to in-memory data types;

checkpointing is explored further [69]. DDS works by

periodically checkpointing the state of SOAP deserializer,

which reads and de-serializes incoming message portions,

and computing checksum of these SOAP message portions.

The checksum is compared against those of the

corresponding message portion in the previous message. If

the checksums match, the deserializer avoids redoing de-

serializing (parsing and converting SOAP message)

contents in that region. Essentially, the deserializer runs in

two different modes: regular and fast mode. In regular

mode, the deserializer reads and processes all the SOAP

tags and message content as it creates checkpoints and

corresponding message checksum along the way to the end

of the SOAP message, whereas, in fast mode, the

deserializer considers the sequence of checksum of each

disjointed portions of the message and compares them

against the sequence of checksums associated with the

most recent received message. The deserializer switches

between regular and fast mode appropriately.

Fast mode is switched on if the parser state is the same

(checksum match) as the one that has been saved in a

checkpoint. Regular mode is switched on when there is a

checksum mismatch. This indicates a difference in the

incoming message and the corresponding previous

message. The deserializer switches from fast to regular

mode where it reads and converts the message portion’s

content. Regular mode is actually the normal parsing

without DDS optimization. In terms of performance, in fast

mode, in the best scenario (when all the message portions

are identical, though unrealistic), the normal cost of de-

serializing is replaced by the cost of computing and

comparing checksums which is generally significantly

faster. In regular mode, the worst case scenario (when all

the message portions are not identical), the DDS enabled

deserializer runs much slower than a normal deserializer

because it does the same work plus the added work of

calculating checksums and creating parser checkpoints

[69]. Further, [69] [70] noted that creating many

checkpoints can increase fast mode performance in terms

of speed at the expense of checkpoint creation time, check

point memory utilization, and checksum calculation and

comparison time. Actually checkpointing is memory

intensive.

Due to the relatively high memory requirements

experienced in [69], [70] introduces a new technique for

storing only the difference between successive parser state

for messages, this technique is called Differential

Checkpointing (DCP). DCP involves only the differences

between the consecutive checkpoints as opposed to storing

the entire parse states for each checkpoint. DCP optimizes

DDS by improving its speed and reducing memory

requirements. Despite the fact that DCP reduced memory

requirements, it still required significant processing

overheads. Moreover, DDS primary shortcomings in its

implementation are generating, storing, and using parse

checkpoints. Researchers in [69] introduced Lightweight

Checkpointing (LCP), a checkpointing approach

significantly reduced cost of DCP and DDS techniques.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 154

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

LCP checkpoints contain very little state information

(fewer bytes) created at predefined points within the

structure of the message. Each lightweight checkpoint in

LCP has a reference to a base checkpoint that contains

state information it shares with other lightweight

checkpoints. In LCP checkpoints are be created much

faster than regular checkpoints, hence requires much less

memory and requires less processing overheads. LCP takes

only 10% of memory that DCP requires and 3% of the

memory original checkpointing algorithm required. For

processing time, deserialization with LCP was

approximately 36% better than DCP and approximately

52% better than Full Checkpointing (FCP), on average,

when approximately half of the message is not changed

from the previous message. In FCP, the full parser state is

stored with each checkpoint.

Moreover, [50] suggested a Serialization Enhancement

Middleware (SEM) Technique that a utilization a

combination of DS and DDS techniques to improve

response time. SEM is an implementation that runs on the

middleware to run on top of any web server. SEM acts as

the primary module and takes advantage of similar SOAP

requests in a web server. Similarly, SEM avoids redundant

serialization stage of SOAP response for request which

have completely the same parameters. SEM maintains a

trie of incoming parameters for current requests thus

processing and serialization of response of same requests is

done only once.

3. Conclusion

WS is the most widely used techniques in realizing SOA as

compared to the traditionally used CORBA, and Java RMI.

SOAP and REST are the only techniques used in

implementing SOAP. Despite the fact that REST is a light

weight technology and consumes lesser bandwidth, SOAP

has proven to be adopted by many software vendors and is

more secure than REST. As opposed to SOAP, REST is

being adopted mostly in mobile programming.

Notwithstanding, programmers are advised to choose

wisely on whether to adopt REST or SOAP while

developing their applications putting into consideration the

entirely on application complexity, requirements, and

constrains. Many researchers evaluate SOAP majorly in

terms of bandwidth utilization, response time and

throughput. WS performance evaluation tools and

techniques is a research area that is yet to be explored fully

and benchmarked.

Many researchers disagree on whether SOAP is indeed a

lightweight protocol. In this survey paper, we uncovered

that SOAP is a lightweight mechanism for packaging

messages; its dependence on XML is the primary

performance drawback. XML documents are not only huge

and verbose, but also the processing of XML content and

conversion to and fro memory data types, are the major

performance hindrances in high performance application.

These have led to high network traffic, high latency and

processing delays.

An overwhelming number of researchers have made

various tremendous contributions in optimizing SOAP in

high performance application. W3C sets the standards that

software vendors should adhere to in implementing SOAP

based WS. Software vendors include Microsoft, IBM etc.

As per SOAP’s characteristics, researchers have come in

with various techniques in optimizing SOAP performance.

This survey paper has classified these techniques

thematically: client side, communication channel, and

server side. The client side has covered client side caching,

and differentials serialization. The communication channel

has covered SOAP binding styles and compression. Lastly,

server side has covered server side caching and differential

de-serialization. In SOAP optimization, integrating

multiple optimization techniques is a growing trend which

indeed has brought better results and conclusions that has

shown SOAP even performing much better than traditional

Java RMI, and CORBA. Nevertheless, there exist other

SOAP optimization techniques that were not covered in

this survey paper including: transport protocol, client

caching algorithms, compression algorithms comparisons,

and SOAP parsing.

References

[1] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N.

Mendelsohn, H. F. Nielsen, S. Thatte and D. Winer.

Simple Object Access Protocol (SOAP) 1.1.

http://www.w3.org/TR/2000/NOTE-SOAP-

20000508/. [Cited: August 11, 2013]

[2] Seyyed, Hasan and Roya, Zareh. A Combination

Approach for Improvement Web Service

Performance. Proceedings of the International

MultiConference of Engineers and Computer

Scientists, Hong Kong, Vol I

[3] D. Linthicum. Service Oriented Architecture (SOA).

http://msdn.microsoft.com/en-

us/library/bb833022.aspx. [Cited: August 13, 2013]

[4] H. Qusay. Service-Oriented Architecture (SOA) and

Web Services: The Road to Enterprise Application

Integration (EAI).

http://www.oracle.com/technetwork/articles/javase/so

a-142870.html. [Cited: August 13, 2013]

[5] New to SOA and web services.

http://www.ibm.com/developerworks/webservices/ne

wto/index.html#ibm-pcon. [Cited: August 13, 2013]

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 155

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

[6] M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte,

P. Krogdahl, L. Min and T. Newling. Patterns:

Service Oriented Architecture and Web Services.

Red Books, 2004. Vol. I

[7] P. Bianco, R. Kotermanski and P. Merson.

Evaluating a Service-Oriented Architecture.

Hanscom, Carnegie Mellon University, 2007

[8] IONA Technologies. CORBA Programmer’s Guide,

Java. Sun Microsystems, Inc, 2005. Vol. 6.3.

[9] W. Grosso. Java RMI. O'Reilly, 2001

[10] COM: Component Object Model Technologies.

http://www.microsoft.com/com/default.mspx. [Cited:

August 23, 2013]

[11] D. Booth, H. Haas, F. McCabe, E. Newcomer, M.

Champion, C. Ferris and D. Orchard. Web Services

Architecture. http://www.w3.org/TR/ws-

arch/#whatis. [Cited: August 13, 2013]

[12] G. Coulouris, J. Dollimore and T. Kindberg.

Distributed Systems Concepts and Design. Essex ,

Pearson Education Limited, 2009, pp. 789. Vol. IV

[13] S. Mumbaikar and P. Padiya. Web Services Based

On SOAP and REST Principles. International Journal

of Scientific and Research Publications, 2013, Vol.

III

[14] H. El-Bakry and N. Mastorakis. Studying the

Efficiency of XML Web Services for Real-Time

Applications. Proceedings of the 2nd WSEAS

International Conference on Sensors, and Signal and

Visualization, Imaging and Simulation and Material

Science. Wisconsin, USA, pp. 209-219

[15] D. Al-Shammary and I. Khalil. SOAP Web Services

Compression using Variable and Fixed Length

Coding. Network Computing and Applications, 2010

[16] J. Snell, James, D. Tidwell and P. Kulchenko.

Programming Web Services with SOAP. Canada:

O'Reilly, 2001, pp. 7. Vol. I

[17] H. Hamad, M. Saad and A. Ramzi. Performance

Evaluation of RESTful Web Services for Mobile

Devices. International Arab Journal of e-Technology,

2010, Vol. I

[18] F. AlShahwan, K. Moessner and F. Carrez.

Evaluation of Distributed SOAP and RESTful

Mobile Web Services. International Journal on

Advances in Networks and Services, 2010, Vol. III.

[19] H. Hamad, M. Saad and A. Ramzi. Performance

Evaluation of RESTful Web Services for Mobile

Devices. International Arab Journal of e-Technology,

2010, Vol. I

[20] K. Hameseder, S. Fowler and A. Peterson.

Performance Analysis of Ubiquitous Web Systems

for SmartPhones. IEEE International Symposium on

Performance Evaluation of Computer and

Telecommunication Systems (SPECTS’11), 2011

[21] A. Mullally, N. McKelvey and K. Curran.

Performance Comparison of Enterprise Applications

on Mobile Operating Systems. TELKOMNIKA,

2011, Vol. IX

[22] I. Ivanovski, S. Gramatikov and D. Trajanov.

Enhancing Performance of Web Services in Mobile

Applications by SOAP Compression. Proceeding of:

Telekomunikacioni Forum Telfor, 2008, Belgrade

[23] A. Gandhi. SOAP vs. REST – The Best Web Service

http://greatgandhi.wordpress.com/2010/06/16/soap-

vs-rest-%E2%80%93-the-best-webservice/. [Cited:

November 16, 2013]

[24] P. Cesare. REST vs. SOAP: Making the Right

Architectural Decision. 1
st
 International SOA

symposium. Amsterdam, 2008

[25] The structure of a SOAP message.

http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/

index.jsp?topic=%2Fcom.ibm.cics.ts31.doc%2Fdfhw

s%2Fconcepts%2Fsoap%2Fdfhws_message.htm.

[Cited: August 16, 2013]

[26] M. Papazoglou. Web Services: Principles and

Technology. Pearson Education Limited, 2008. Vol.

I.

[27] K. Phan. Enhanced SOAP Performance for Low

Bandwidth Environments, 2007

[28] Quality of Service (QoS).

http://www.cisco.com/en/US/products/ps6558/produ

cts_ios_technology_home.html. [Cited: November

21, 2013]

[29] M. E. Gomez. Performance Analysis of Web

Applications, 2005

[30] J. Tekli, E. Damiani, R. Chbeir and G. Gianini.

Similarity-based SOAP Processing Performance and

Enhancement. IEEE, 2011, Vol. 5, pp. 387 - 403

[31] B. Kinicki. Advanced Computer Networks.

http://web.cs.wpi.edu/~rek/Nets2/C10/C10.html.

[Cited: November 2013, 2013]

[32] H. Shariq, Z. Wang, I. K. Toure and D. Abdoulaye.

Web Service Testing Tools: A Comparative Study,

2012

[33] soapUI. http://www.soapui.org/. [Cited: November

21, 2013]

[34] Apache Software Foundation.

http://jmeter.apache.org/. [Cited: November 21,

2013]

[35] Storm. http://storm.codeplex.com/. [Cited: November

21, 2013]

[36] Apache Software Foundation.

http://httpd.apache.org/docs/2.2/programs/ab.html.

[Cited: November 21, 2013]

[37] Terelik – Fiddler. http://fiddler2.com/features.

[Cited: November 21, 2013]

[38] Network Monitor Tool and Parsers.

www.microsoft.com. [Cited: January 1, 2014]

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 156

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

[39] Wireshark. http://www.wireshark.org. [Cited:

January 1, 2014]

[40] NeoLoad Cloud Testing.

http://www.neotys.com/introduction/neoload-cloud-

testing.html. [Cited: November 21, 2013]

[41] M. Nagy. Software Performance Profiling. ACM,

2008

[42] T. Dorsey. Tools and Techniques for .NET Code

Profiling. http://msdn.microsoft.com/en-

us/magazine/hh288073.aspx. [Cited: November 21,

2013]

[43] C. Mouli and C. Rajendra. Caching and SOAP

Compression Techniques in Service Oriented

Architecture. International Journal of Advanced

Research in Computer Engineering & Technology,

2012, Vol. I

[44] K. Devaram and D. Andresen. SOAP Optimization

via Client-side Caching. Citeseer, Manhattan, 2003

[45] H. Zhai-wei, Z. Hai-xia and G. Guo-hong. A Study

on Web Services Performance. Third International

Symposium on Electronic Commerce and Security

Workshops, 2010

 [46] M, Schapranow, J. Krueger, V. Borovskiy, A. Zeier

and H. Plattner. Data Loading & Caching Strategies

in Service-Oriented Enterprise Applications.

Congress on Services, 2009

[47] D. Davis, M. Parasha. Latency Performance of

SOAP Implementations. Proceedings of IEEE

Cluster Computing and the GRID 2002

(CCGRID'02). Berlin, 2002

[48] J. Tatemura, P. Oliver and A. Sawires. WReX: A

Scalable Middleware Architecture to Enable XML

Caching for Web-Services: International Federation

for Information Processing, 2005

[49] N. Abu-Ghazaleh, M. Lewis and M. Govindaraju.

Differential Serialization for Optimized SOAP

Performance. International Symposium on High

Performance Distributed Computing (HPDC), New

York, 2004, pp. 55-64

[50] B. Minaei and P. Saadat. SOAP Serialization

Performance Enhancement DESIGN AND

IMPLEMENTATION OF A MIDDLEWARE.

International Journal of Computer Science and

Information Security (IJCSIS), 2009, Vol.6, No. 1,

pp. 106-110

[51] N. AbuGhazaleh and M. Lewis. Differential

Deserialization for Optimized SOAP Performance.

ACM/IEEE conference on Supercomputing.

Binghamton 2005, pp. 1-12

[52] K. Chiu, M. Govindaraju and R. Bramley.

Investigating the Limits of SOAP Performance for

Scientific Computing. Proceedings of 11th IEEE

International Symposium on High Performance

Distributed Computing HPDC-11 2002 (HPDC'02).

Edinburgh, pp. 246-254

[53] T. S. Takase and Tatsubori. M. Optimizing Web

Services Performance by Differential Deserialization.

IEEE International Conference on Web Services.

New York, 2005, pp. 185- 192

[54] F. Bustamante, G. Eisenhauer, K. Schwan and P.

Widener. Efficient Wire Formats for High

Performance Computing. IEEE 2000, Georgia

[55] E. Christensen, F. Curbera, G. Meredith and S.

Weerawarana. Web Services Description Language

(WSDL) 1.1. http://www.w3.org/TR/wsdl. [Cited:

November 25, 2013]

[56] http://msdn.microsoft.com/en-

us/library/ms996486.aspx. [Cited: November 25,

2013]

[57] Web services performance best practices.

http://www14.software.ibm.com/webapp/wsbroker/re

direct?version=compass&product=was-express-

dist&topic=rwbs_perfbestpractices. [Cited: August

06, 2013]

[58] T. Girish, R. Mudholkar and B. Jadhav. JAX-WS

Web Service for Transferring Image. International

Journal on Computer Science and Engineering

(IJCSE), 2013, pp. 63-69

[59] Alex, Ng, P. Greenfield and C. Shiping. A Study of

the Impact of Compression and Binary Encoding on

SOAP Performance, 2008, pp. 46-56

[60] Roberto, Chinnici, et al., et al. Web Services

Description Language (WSDL) Version 2.0 Part 1:

Core Language. http://www.w3.org/TR/wsdl20/.

[Cited: December 24, 2013]

[61] Masoud and Kalali. A Look at WSDL 2.0.

http://soa.dzone.com/news/look-wsdl-20. [Cited:

December 24, 2013]

[62] T. Wichaiwong, K. Koonsanit and C. Jaruskulchai. A

Simple Approach to Optimized Text Compression’s

Performance. Proceedings of 4th International

Conference on Next Generation Web Services

Practices, 2008

[63] P. Tomasz, J. Sliwa and M. Amanowicz. Efficiency

of compression techniques in SOAP. 2010, pp. 199-

211

[64] Liquid Technologies. Liquid XML Compression

Library. http://www.liquid-technologies.com/Liquid-

Products/XMLCompression/XMLCompressionExam

ple.aspx. [Cited: August 13, 2013]

[65] A. Paya and D. Marinescu. A Cloud Service for

Adaptive Digital Music Streaming. Eighth

International Conference on Signal Image

Technology and Internet Based Systems, 2012

[66] A. Al-Canaan and A. Khoumsi. Multimedia Web

Services Performance: Analysis and Quantification

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 157

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

of Binary Data Compression. Journal of Multimedia ,

2011, Vol. VI

[67] H. Shirazee, H. Rashidi and H. Homayouni. The

Effects of Data Compression on Performance of

Service-Oriented Architecture (SOA). International

Journal of Emerging Trends & Technology in Co

mputer Science (IJETTCS), 2012, Vol. I

[68] Custom Grid Filters Example (local filtering).

www.sencha.com. [Cited: December 27, 2013]

[69] N. Abu-Ghazaleh and M. Lewis. Lightweight

Checkpointing for Faster SOAP Deserialization.

International Conference on Web Services. New

York, 2006

[70] N. Abu-Ghazaleh and M. Lewis. Differential

Checkpointing for Reducing Memory Requirements

in Optimized SOAP Deserialization. Grid

ComputingWorkshop – IEEE. New York, 2005

[71] T. Takase, H. Miyashita, M. Tatsubori, and T.

Suzumura. An Adaptative, Fast and Safe XML

Parser Based on Byte Sequence Memorization.

World Wide Web (WWW) Conference, 2005, pp.

692 – 701

[72] R. Constantin. http://www.http-compression.com/.

[Cited: January 26, 2014]

[73]

http://www.microsoft.com/technet/prodtechnol/Wind

owsServer2003/Library/IIS/25d2170b-09c0-45fd-

8da4-898cf9a7d568.mspx?mfr=true

[74] G. Garron. How to enable gzip compression in

Apache 2.x. http://www.garron.me/en/linux/enable-

gzip-mod_deflate-compression-apache.html

Mutange Kennedy Senagi is a student undertaking Master of
Science degree in the field of Software Engineering at Jomo
Kenyatta University of Agriculture and Technology. He holds a
Bachelor’s degree in Information Technology from JKUAT (July
2012). He has undertaken a networking certification course, Cisco
Networking Academy (CCNA); CCNA I and CCNA II (2010). He
has pursued several mobile programming certification courses:
Advanced Android Native Programming at iLab East Africa
(October 2013) and Windows Phone Programming at m:Lab East
Africa (February 2014). He has worked as an intern in Kimetrica
Limited as a Software Developer (2010 - 2011) and as fully
employed staff specialized in developing field survey data
collecting system (January 2012 - April 2013). He is currently
employed by Dedan Kimathi University of Technology as a
Teaching Assistant (May 2013 to date).

Dr. George Okeyo received the B.Sc. degree in Mathematics and
Computer Science and M.Sc. in Information Systems from the
Jomo Kenyatta University of Agriculture and Technology (JKUAT)
and the University of Nairobi, Kenya, respectively. He also
received the Ph.D. degree in Computer Science from the
University of Ulster, United Kingdom. He is a lecturer at the
Department of Computing, JKUAT, Kenya. His current research
interests include intelligent agents, smart homes, ambient
assisted living, activity recognition, mobile and pervasive
computing, data analytics, web services, semantic technologies
and knowledge representation and reasoning.

Dr. Cheruiyot Wilson has acquired the following degrees:
Bachelor of Science in Mathematics and computer science (1994),
Masters of Science in Computer Application Technology (2002)
and PhD in Computer Science Applications Technology (2012). He
is also certified with Microsoft association in the following:
Microsoft Certified Database Administrator (MCDBA) and
Microsoft Certified Professional (MCP). Dr. Cheruiyot is currently a
Senior Lecturer and Deputy Director (Postgraduate Programmes)
at the Jomo Kenyatta University of Agriculture and Technology.
Previous, he worked as an auditor with the Kenya National Audit
Office (KENAO) (1994 - 2003) and the Teachers Service
Commission of Kenya (1994 – 1997). Dr. Cheruiyot is an article
reviewer with the following organizations: Journal of Petroleum
and Gas Engineering, www.academicjournals.org/JGE, Journal of
Engineering and Technology Research,
www.academicjournals.org/JETR/index.htm. His best paper award
was a paper submitted to Springerlink journal of Multimedia
systems, titled “Query quality refinement in singular value
decomposition to improve genetic algorithms for multimedia data
retrieval”, whose impact factor was 1.176 and indexed by SCI and
EI Compendex. He has published over sixteen papers in different
refereed journals. His current research interests are: Multimedia
Data Retrieval, Internet of Things, Evolutionary Computation for
Optimization, Digital Image Processing and ICT for Development.

Sati Arthur holds a Bachelors of Science degree in Information
Technology from Jomo Kenyatta University of Agriculture, Kenya
(November 2012). He has also completed CCNA I-IV (2010-2012).
He works as an IT consultant with Olivine Technology Ltd
(September 2010 to date) and Senior Technologist at Dedan
Kimathi University of Technology (March 2014 to date).

Kalunda Jades is a Bachelor of Science in Information
Technology first class honors holder from Jomo Kenyatta
University of Agriculture and Technology (June 2012) and
perusing a Master’s degree in Software Engineering in the same
university. He is A+ and N+ certified (2010). He worked as an
Intern at Safaricom Limited (2012). He is an ICT and research
consultant in Information Systems working with Multiple Tech
solutions (2010 to date), Project Strategy Risk Management
(PSRM) consultants (2010) and Felim Networks (2012 to date).
He is currently an academic tutor at the Department of Information
Technology at the Dedan Kimathi University of Technology (May
2013 to date).

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 158

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

