

Abstract:

A data warehouse is system which that support

decision-making in production

environment .Classical data warehouse

management system are often optimized by

improving query performance. Such

improvement is casually achieved by using

caches, indexes and materialized views and

required selecting the best set of data structures

(materialized views, indexes, etc...). In the cloud

based data warehouse performing such selection

become more challenging due to the complexity

of a cloud computing environment .In this paper

we propose a materialized view selection

algorithm based on monetary which take in

consideration the computation cost, storage cost

and transfer cost. By using query prediction our

algorithm can perform in a dynamic manner to

select the best set of materialized view.

Keywords: Cloud computing, Materialized

views selection, data warehouse, OLAP, query

optimization

Introduction:
Cloud Computing is one of the most emerging

technological model that supports business

intelligence through fast analysis of terabytes of

data in a large and very complex distributed

environment. It helps to deal with huge among

of data by offering On-demand Self-services.

To implement and maintain a successful

decision-making system a Data Warehouse (DW)

needs to be build. DW can bring together

selected sources from multiple database or other

resources into a single repository. Offering Data

Warehouse services through cloud is very

challenging due to the big among of data that we

need to deal with，that involve joins between

relations and aggregations of tuples.

Materialized views are able to provide better

performance for DW queries. However in a

cloud environment these views have computing

cost, storage cost and also transfer cost.

We can see in one side of the spectrum user with

a big constraint in term of financial budget may

accept a long query response time but in the

other side user with strong budget may disregard

cost and ask for a very fast response time.

Materialized view can be build to support this

goal and the challenge here lies on selecting a

set of views that can be materialized in the cloud

to improve the query processing respond time

and the cost in cloud.

Three scenarios can be considered based on the

same idea in [10]:

Budget limited: Given a predefined

financial budget, the challenge here lies on

selecting a proper dataset views that can be

materialized in the cloud to minimize the query

respond time

 Respond-Time limited: With limited

respond time, here the challenge is to select a set

of materialized view which can minimize the

financial cost

 Tradeoff between the budget and the
time: In this scenario we have to deal with the

tradeoff between the query response time and

the financial budget. The objective is to select a

set of views to materialize in the cloud that

gives an optimal solution in both query response

time and financial budget limit.

In the cloud, Data warehouse can be

geographical distributed and can lead to serious

performance and storage problem. User can

pose queries in different data marts at different

A dynamic materialized view Selection in a Cloud-based Data

Warehouse
Yang Kehua, Abdoullahi Diasse

Hunan University

College of computer science and communication
 Changsha 410082 Hunan, China

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 120

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

times instead of a single data repository. Those

data marts can also be located in different data

centers in the cloud. Regarding to such issues

the selection of view to materialize in the cloud

has two main challenges .First select the view to

materialize in a dynamic manner when queries

are constantly posed in different data center at

different time. Thus the materialized view

selection algorithm should take in consideration

the new coming views and be able to extract the

optimal set to materialize in the cloud. This can

also lead to the dematerialization process of

some views in the cloud and store the most

beneficial views .Second if the nature of queries

changes over the time and result to degradation

of performance, a new set of materialized views

is required to regenerate.

In other words we need to constantly monitors

the incoming queries and materialize the best set

of views by taking in consideration the pricing

constraints (storage cost, computation cost and

transfer cost)

Our approach for the materialized view

selection in a cloud based data warehouse is a

two-phase operation: Startup and the Online

phase

In the Startup phase which is based on an initial

query stream, the system starts by selecting an

initial set of views by taking in consideration the

resource constraint (budget, response time). In

the Online phase an “in use” system will be

considered and an existing set of views V has

already been selecting and materialized

However the materialized view is expensive in

term of computation and storage(resource

constraint) ,so materialized all possible views in

relatively impossible .Thus the key challenge in

the online phase becomes selecting a new set of

view V’ by discarding some views from V given

a new query workload based on some query

prediction.

I. Preliminary knowledge
1. Materialized view :

Materialized views have been used for a long

time in both OLTP and OLAP system for

performance improvement. While views

virtually store a query result and can help to

solve complex query, materialized views store it

physically in a table so that no need to

recompute a query when its corresponding view

is already materialized at any time the same

query is entered in the system. Thus

materialized view further improves query

response time which is crucial in big OLAP

system.

2. Running example:
To illustrate our work we use TCP-H benchmark

models. Parts are bought form the suppliers and

sold to customers. Each month the business

needs to analyze the total profit per part, per

suppliers, per and customer, per nation and per

region. The Table 1 provides an excerpt of this

dataset. Thus there are fives dimension we are

interesting: Part, Suppliers, Nation, Region and

Customer.

II. Cost model for view selection in
a cloud environment:

The cost model is an important issue in a view

selection problem, it help to achieve a multi

criterion optimization (CPU utilization,

bandwidth consumption and disk allocation) of

materialized view under the budget

constraint .In this section we introduce the cost

model for view materialization in a cloud

environment and it relies on the one introduced

in [6]. In [6] it assumes that all queries are

Part Customer Supplier Region Nation Sum
steel chiffon pink puff Customer#002 Supplier#1191 America Brazil 38
floral sienna bisque Customer#006 Supplier#2150 Europe France 37
olivegoldenrod smoke Customer#007 Supplier#3074 Europe Germany 28
aquamarine seashell p Customer#001 Supplier#1534 America Argentina 24

Table1: Sales Dataset Excerpt

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 121

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

executed on a constant number of identical

instances		���	���� = ���	�, ∀� = 1. . ��� . Here

we suppose that queries are executed on

instances configuration IC with a number of
instances equal to 			��� 			then �� = {���}���..��� .

1. Computation Cost
The computation cost 					����, �, ���		 of

answering a set of queries		� = {��}���..�� 		by

using a set of view � = {��, …���} in an

instance configuration �� can be expressed by

the following formula: ����, �, ��� = �� !���, �, ��� +	�#$��%��, ���+ �#$%��, ���
The processing cost �� !���, �, ��� is defined

by the query workload Q, the set of materialized

view V, the rented cloud instances

configurations and the queries frequency and it

can be expressed as follow: �� !���, �, ��� =∑ ∑ '� !���� , �, ���� ×�����)� *����+� ×,��� , ��+�
Materialize a view require executing its

associate query .In cloud such operation must be

paid .Let '#$%���, ���� the materialization time
of view �� on a cloud instance ��� ,Then the

materialization cost can be defined as follow �#$%��, ��� = ∑ ∑ '#$%���, ���� ×������� *����+�
If a considerable modification is done at the

source dataset an update of already materialized

view set is required. The update or maintenance

cost is proportional to time required for updating

materialized view and the materialized views

update frequency. Let the maintenance time and

the update frequency of �� be '#$��%���, ����
and -���, ��+� respectively on a cloud instance ��� then the maintenance cost can be defined as

follows �#$����, ��� =∑ ∑ '#$�����, ���� ×������� *����+� × -���, ��+�

2. Data storage cost:
Storage cost is an important issue especially in a

cloud based architecture where any stored data

need to be paid with respect to the storage time.

Using materialized view to improve queries

performance implies to store selected view in

the cloud and pay the corresponding price. The

data storage cost is proportional to the size of

data (Initial dataset (DS) and Materialized view)

and the storage time and can be expressed as

follow: �.%! $/0 = ∑ *.�1�23� + 1���� ×��%0 4$5�'.%$ % − '0�7� × �1�23� + 1���� 		1() return the size in GB of any parameters and *. is the CSP storage cost function.

3. Data transfer cost
 The data transfer cost �% $�.80 or bandwidth

consumption cost depends on the size of the
inputted data (the queries workload{��}���..�)),
outputted data (the queries result {9�}���..�) 		by

exploiting the set of materialized view � ={��, …���}), the whole dataset (initial dataset

and inserted data) and the CSP’s atomic transfer

cost *% �% $�.80 = �∑ �1�����)��� + 1�9��� + �1�2'� +
1�:�1;<=;>	2?=?��� × *%

III. Materialized View Selection
In this section we propose our approach for

materialized view selection. Our algorithm is

based on PR_Q system predictor [12] and which

can operate as a complete view management

system. It predicts the next query and

materializes the view for it if necessary. Our

algorithm for materialized view selection is

described in the figure 1 and as mentioned

earlier it has two phases: Startup and Online

phases.
Algorithm for materialized view selection

Input:
1. � :A query stream form the user
2. BL, the budget limit
3. Recurrent_pattern_th: A specified

threshold to determine a pattern is
recurrent

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 122

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

4. THQ: A specified threshold to extract
recurrent pattern of queries

Materialized_view_selection_cloud()
1:	��$�2_Phase_Optimization_approach(Q,THQ);
2: If ��@1=	��, 	��$�� 	> BC� Then
3: 	�8��$5= 		Knapsack0/1���$� , BL	, �O , �P, �%);
4: Else
5: 			�8��$5=			��$� ;
6: While (�� 	is entering){
7: Answer (�� , �,:�?Q);
10: Pattern_extraction(Q,Recurrent_pattern_th);
11: 		�� =Predict_next_query(recurrent_patterns);
12: If((R� 	 ∉ �)and
13:						��@1=	��� , R�� 	+ �@1=	��, �� 	≤ 	BC))
14: �,:�?Q = 	�,:�?Q		 ⋃ 	 {R�} ;
15: Else
16: If (R� 	∉ 	�,:�?Q) {
17: While��@1=	��� , R�� 	+ �@1=	��, �� > BC)
18: Select			RVWX ∈ �,:�?Q;
19: � = 	�,:�?Q	 − RVWX;
20: }
21: �,:�?Q = 	�,:�?Q				 ⋃ 		{		 R�} ;
22: }

1. Startup phase:
In the Startup phase (line 1 to 5) the system

begun with an inputted query stream, the

threshold of the queries stream (THQ) is

specified by the database administrator. We

assume that we have a substantial knowledge of

the incoming query stream. A good knowledge

of the query stream will allow us to make all

necessary estimation we need for our algorithm.

Indeed '� !����, �, ���� , 	'#$%���, ���� and 	'#$%���, ���� all need to be estimated upstream

(from experiments or statistical models).the

startup phase in turn operate in two successive

steps: Two-Phase Optimization approach and

the knapsack 0/1 optimization.

1.1. Two-Phase Optimization approach
Firstly it performs a static view selection based

on Two-Phase Optimization approach (2PO)
[7]. In [7] the 2PO approach uses MVPP

(Multiple View Processing Plan) [8] to express

the relationship between views. It combines two

optimization algorithms proposed in more

previous works which is the Iterative
Improvement (II) [19] and the Simulated
Annealing (SA)[13].It was shown that 2PO

perform better than most materialized view

selection algorithm compared to [8] and [9] in a

Data warehouse environment.

The (2PO) has the queries stream and the

specified threshold THQ as parameters. The

output of this first step is Vcan which denotes a

set of candidate views. In our case we have

made some modification in the (2PO). Instead

of using MVPP to express the relationship

between views we decide to use data cube

lattice introduced by Harinarayan and al in [15].

1.2. knapsack 0/1 optimization
Because the view selection problem in cloud

based architecture is essentially an optimization

problem in term of monetary cost, we found

necessary to integrate in our algorithm an

optimization process that take in consideration

the financial budget of the user (BL variable in

our algorithm). In our case we focus only on a

budget limited scenarios, where a predefined

financial budget is given so that the challenge

becomes on selecting a set of views that can be

materialized in the cloud to minimize the query

respond time under the budget constraint. To

solve this problem a dynamic programming

approach have been opted calls knapsack 0/1[11]

problem .As input we provide necessary

elements of our cost models, the result
is 			�8��$5 = 	Knapsack0/1���$� , BL	, FO[, FO\ , FO])

where FO[, FO\ , FO] are functions representing

parameters in our cost model.The knapsack 0/1

problem can be represented as follow:

Where -�^ represent the gain in respond time

by exploiting the view �̂ .We use _�^ as

decision variables: _�^ = 1 if the query �� exploit the view �̂ and _�^ = 0 if not. =�

`:�
a
bc'� !���� = de=� −f-�^ ∗ _�^�h

^�� i
�j

��� k
lm

	�� !� 		+ �#$��% + �#$% + �P + �% ≤ 	BL

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 123

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

denotes the query �� respond time without

exploiting any materialized view.

The idea is to find a set of materialized view

which minimize the total query respond time by

maximize the gain when materialized view

exploiting. So our knapsack 0/1 can be

reformulated as follow:

`?_:n:o; pf-� ∗ _��4
��� q			

The output of the knapsack 0/1 problem	�8��$5
which is used as input in the online phase if a

new query is entered in the system.

2. Online Phase
The Online phase (from line 6 to 22) is the run-

time phase of the system .During the Online

phase the system materializes predicted views

and moreover the system should identify

insignificant old materialized view to be

removed.

The Online view selection problem can be

defined as follows: Given an already
materialized view set � = {��, … ���} and a
previous query workload{r�}���..�) 		, find a V’

(adding or discarding views form �) based on

prediction of future query workload with respect

to the resource constraints.

The prediction of future data query workload is

done using the same technique as PR_Q system

predictor which uses association rules mining

and probabilistic reasoning approach.

While queries arrive this part is executed and

the first operation of the online phase is

Answer(�� , �,:�?Q) at line 7.

This procedure answers the incoming query by

using the set of final materialized view �,:�?Q .
If query definition exists in the materialized

view pool the query ��	 is answered by using

only one Materialized view R� in	�,:�?Q . In

case of the query definition doesn’t exist in

materialized view pool, lets	s�R�) be the

smallest ancestor of R� in the lattice [15]. If s�R�� 	∈ 	�,:�?Q	 then 	�� is answer

through	s�R��	, otherwise the query is answered

by using the fact and dimension tables.

The Pattern_extraction (figure 2) procedure

is the next operation of the online phase. This

procedure extracts the recurrent patterns by

giving in parameters a query stream and the

recurrent pattern threshold and also by

calculating the conditional probability of their

last query occurrence (LQCP). To compute such

a probability we apply the following conditional

probability formula: t�r� = ?�|	r� = ?�, rv = ?v, …,			r�w�= ?�w�� = t�r� = ?�, rv = ?v, …,			r� = ?��	/	t�r� =?�, rv = ?v, …,			r�w� = ?�w�� = ∏�r� = ?�, rv = ?v, …,			r� = ?��	/	∏�r� = ?�, rv = ?v, …,			r�w� = ?�w��.
In this formula the current query stream

is	��w� = {r�, rv, … , r�w�}, and then we use the

formula to calculate the probability of entering r� when ��w� is entering previously.

Algorithm for recurrent pattern extraction

 Input:	�, Recurrent_pattern_threshold
Output: recurrent_patterns, Recurrent patterns with
conditional probability in their last query.
Pseudo Code:
1: Pattern_extraction () {
2: recurrent_patterns=∅;
3: n=2;
4: While (n_ary patterns are recurrent){
5: recurrent_patterns= recurrent_patterns U
6: recurrent n_ary pattern with the conditional
7: probability of their last query;
8: n++;
9: }
10: }

Figure 2: Pattern_extraction

The Predict_next_query (figure_3) has

the recurrent patterns outputted by the

Pattern_extraction procedure as parameter. This

procedure predict the next query by finding the

last query with maximum conditional

probability from the recurrent patterns with

length between 2 and the maximum length of

recurrent patterns from the Pattern_extraction

procedure.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 124

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Algorithm for next query prediction

Input:	<;*z<<;�=_|?==;<�1
Output: predicted_query
Pseudo Code:
1: Predict_next_query () {
2: Max_len_pattern: Maximum length of patterns 												 in <;*z<<;�=_|?==;<�1;
3: n=2;
4: While (n<= Max_len_pattern) {
5: Find the n_ary recurrent pattern with 																maximum Conditional probability in their 																last query;
6: n++;
7: }
8: predicted_query: last query with maximum 								conditional probability from founded recurrent 								patterns
}

Figure3: Predict_next_query()
Example:

We assume the data base administrator

assigns 2 and 20 Recurrent_pattern_threshold

and THQ respectively and Q is the query stream.

Q:{ 	r��r}r~r�r�r��r�vr}r~r��r}r~r�r�vr�r} r~r��r�r�r�r��r}r~r�r�r�vr�}
Q is at fist used in the startup phase and allow us

to get our		�,:�?Q . Now we suppose that r�

entering in the system r�	is now answered by

using Answer (r�, �,:�?Q). The next step is to

call Pattern_extraction (Q, 2) procedure .The

table 2 show the different step of the

Pattern_extraction procedure.

Now Predict_next_query () is call to predict the

next query and our query stream becomes	Q +{r�} . This procedure starts by extracting the

maximum length of recurrent extracted patterns.

In our case this length is 5 which represent the

length of the pattern r��r}r~r�r� .The idea

here is to search below recurrent patterns (with

length between 2 and 5) and find that one with

maximum probability in their last query: {r� ∗}; {r}r~r� ∗}	; {r��r}r~r� ∗} with (∗)
means the predicted query.

It appears clear that r}r~r�r� has the biggest

probability in its last query which is 3/4 thus r�

is chosen as predicted query.

If the corresponding view (which we can

call �� for simplicity) of r� was not

materialized and we do not exceed our budget

we just materialized	�� . If �� was not

materialized and we have already reached our

budget limit we have to keep dematerializing

least recently used views until materializing 	��

can be possible .

If r� is entered as the next query, r� will

be answered by using 	�� through Answer

procedure and next the query is predicted and

materialized if necessary .the same process is

repeated while new queries are entered in the

system.

The run time performance of the system is

improved by replacing old non-used

materialized views with new views when a

considerable change on the nature of queries

stream is noticed.

IV. Experimental Studies:
To evaluate our work a number of

experimentation have been conducted .In this

section we describe our experimental setup and

the result that we have obtained from our

experiments. As we mention earlier we are

interested only in the budget limit case where

the challenge rely on selecting the best set of

materialized view under a budget constraint.

1. Experiment setup:
In the cloud side our experiment have been

Recurrent_pattern
_th(N)

 N-ary Pattern LQCP

N=2

Recurrent Binary
Patterns

r��r} 3/5 r}r~ 1 r�r� 2/3 r�vr� 2/3 r~r�� 1/2 r�r�� 2/3
N=3

Recurrent
Triplicate Patterns

r��r}r~ 2/3 r}r~r�� 1/2 r�r�r�� 2/3 r}r~r� 3/5
N=4

Recurrent
quadruple
Patterns

r��r}r~r� 1 r}r~r�r� 3/4

N=5
Recurrent
quintuple Patterns

r��r}r~r�r� 2/3

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 125

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

conducted in a virtual cluster composed of four

virtual machines running Ubuntu 10.0.4 with

8GB disk, 512 MB of RAM and 1vCPU.All

nodes are feature Hadoop (Version 1.2.1)[1] and

Hive (Version 0.11.0)[2].TCP-H [3] is used as

dataset (scale factor 1) and all query are written

in HiveQL[4] within the MapReduce[5,19]

framework.

On the client side all algorithms are

implemented on PC core i5-2410M 2.3GHz,

with 4GB of RAM

2. Experimental results:
In order illustrate our work we experiment the

budget limit use case where we need the select

the best set of materialized views in order to

minimize the response time under a budget

constraint. We exploited the user total cost and

the total query respond time for a period of 12

months with S3 [21] and EC2 [20] small

instance pricing. To simulate the dynamic

fashion of OLAP system, a random query

generator has been use for our experimentations.

Firstly it randomly generates a query

stream with 20 in length, which is going to be

used in the static phase to get the first set of

materialized view. In the dynamic phase it

generates a number 30 of queries, it give 60 %

of chance to select the predicted query, 30% of

chance to select pick a query from the current

query stream and 10% of chance to generate a

not yet entered query.

Our results are plotted in the figure 4.It

clear depicts the cost and total response time

with and without materialized view for a period

of 12 months. A significant improvement is

showed in both cases. For example the total with

and without materialized view are 6.38 USD

and 11.92 USD respectively for a period of 6

months .Also a considerable improvement is

noticed in the query processing time, indeed for

the same period the processing time with and

without materialized view are 11.13 hours and

36.88 hours respectively . Those results show

that materialized views in the cloud are

considerably desirable.

V. Conclusion:
In this paper we propose an approach to

dynamically select materialized view in a cloud

based data warehouse.

Our approach is based on PR_Q system

predictor to predict the upcoming query and

materialize its corresponding view by using

conditional probability.

In contrast to most [3, 5, 8, 12] materialized

view selection algorithm which use a cost model

based on the size of tuples in the view, here we

use a cost model based on monetary cloud

pricing.

The results of our experimentations show that

our approach perform with a considerable

improvement both in term of monetary cost as

well as in term of processing time.

VI. References:
[1] Hadoop. http://hadoop.apache.org/, February 2014

[2] Hive:http://hive.apache.org/, February 2014

[3] TCP-H. www.tpc.org/tpch, February 2014

[4] HiveQL, http://hive.apache.org/, February 2014

[5] Soumya Sen, Debabrata Datta, Nabendu Chaki “An

Architecture to Maintain Materialized View in Cloud

Computing Environment” 2012 International

Conference on Computing Sciences

[6] Thi-Van-Anh Nguyen, Laurent d’Orazio, Sandro

Bimonte, Jérôme Darmont “Cost Models for View

Materialization in the Cloud”, DanaC 2012, March 30,

2012, Berlin, Germany

[7] Jiratta Phuboon-ob, and Raweewan

Auepanwiriyakul,”Two-Phase Optimization for

Selecting Materialized Views in a Data

Warehouse”,World Academy of Science ,Engineering

and technology 1 2007

[8] J.Yang, K. Karlapalem, and Q. Li ,”Algorithms for

materialized view Design in Data Warehousing

Environement ”,VLDB conference ,1997,136-145

[9] R. Derakhshan, F. Dehne, O. Korn and B.

Stantic,”Stimulated annealing for materialized view

Selection in Data Warehousing Environment”

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 126

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

[10] H. Kllapi, E. Sitaridi, M. M. Tsangaris, and Y. E.

Ioannidis. ” Schedule optimization for data processing

on the cloud”. In Proceedings of the ACM SIGMOD

International Conference on Management of Data,

pages 289{300, Athens, Greece, 2011}

[11] Knapsack Problem 0/1 : V .Chvatal .Hard Knapsack

problems.Operations Reseach 28:1402-1411,1980.

[12] Negin Daneshpour, Ahmad Abdollahzadeh

Barfourosh “Dynamic view Management System for

Query Prediction to view materialization”.

International journal of Data Warehouse and Data

Mining, 7(2), 67-96,April-June 2011

[13] T.V. Vijay Kumar and Santosh Kumar BDA 2012,

LNCS 7678, pp. 168–179, 2012. .Materialized View

Selection Using Simulated Annealing.

[14] Panos Kalnis, Nikos, Mamoulis, Dimitris Papadias.

View Selection Using Randomized Search

[15] V.Harinaynan, A Rajaraman and J.D Ullman,”

Implementing data cubes efficiently”, in proc

SIGMOD ‘ 96 pp.205-216,ACM 1996.

[16] Michael Lawrence and Andrew Rau-

Chaplin .Dynamic View Selecting for OLAP. DaWak

2006,LNCS 4081 ,pp. 33-44,2006

[17] Roozbeh Derkhshan , Frank dehne ,Othmar korn ,Bela

stantic “ Simulated annealing for materialized view

selection in data warehouse environment

[18] J. Dean and S. Ghemawat. Mapreduce: simplied data

processing on large clusters. Communications of the

ACM, 51(1):107{113, 2008.

[19] T.V. Vijay Kumar and Santosh Kumar “ Materialized

view using simulated annealing” Advances in Computing

& Inf. Technology, AISC 178, pp. 205–213. ,2013

[20] Amazon EC2 http://aws.amazon.com/ec2/, February

2014.

[21] Amazon S3 http://aws.amazon.com/s3/, February

2014.

Acknowledgment:
This work is supported by program for the

growth of young teachers of Hunan University.

Figure 4: Result of Experimentations

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12

C
o

st
($

)

Period (Months)

DMV No MV

(a) Total Cost under the periode

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12

ti
m

e
(h

)

Period(months)

DMV No MV

(b): Total response time under the periode

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 2, No 1, March 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 127

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

