
 

 

 
 
 
 
 
 

 
Abstract: 

A data warehouse is system which that support 

decision-making in production 

environment .Classical data warehouse 

management system are often optimized by 

improving query performance. Such 

improvement is casually achieved by using 

caches, indexes and materialized views and 

required selecting the best set of data structures 

(materialized views, indexes, etc...). In the cloud 

based data warehouse performing such selection 

become more challenging due to the complexity 

of a cloud computing environment .In this paper 

we propose a materialized view selection 

algorithm based on monetary which take in 

consideration the computation cost, storage cost 

and transfer cost. By using query prediction our 

algorithm can perform in a dynamic manner to 

select the best set of materialized view. 

Keywords: Cloud computing, Materialized 

views selection, data warehouse, OLAP, query 

optimization  

Introduction: 
Cloud Computing is one of the most emerging 

technological model that supports business 

intelligence through fast analysis of terabytes of 

data in a large and very complex distributed 

environment. It helps to deal with huge among 

of data by offering On-demand Self-services. 

To implement and maintain a successful 

decision-making system a Data Warehouse (DW) 

needs to be build. DW can bring together 

selected sources from multiple database or other 

resources into a single repository. Offering Data 

Warehouse services through cloud is very 

challenging due to the big among of data that we 

need to deal with，that involve joins between 

 

 

 

 

 

 

 

relations and aggregations of tuples. 

Materialized views are able to provide better 

performance for DW queries. However in a 

cloud environment these views have computing 

cost, storage cost and also transfer cost.  

We can see in one side of the spectrum user with 

a big constraint in term of financial budget may 

accept a long query response time but in the 

other side user with strong budget may disregard 

cost and ask for a very fast response time.  

Materialized view can be build to support this 

goal and the challenge here lies on selecting a 

set of views that can be materialized in the cloud 

to improve the query processing respond time 

and the cost in cloud.  

Three scenarios can be considered based on the 

same idea in [10]: 

Budget limited: Given a predefined 

financial budget, the challenge here lies on 

selecting a proper dataset views that can be 

materialized in the cloud to minimize the query 

respond time 

 Respond-Time limited: With limited 

respond time, here the challenge is to select a set 

of materialized view which can minimize the 

financial cost  

 Tradeoff between the budget and the 
time: In this scenario we have to deal with the 

tradeoff between the query response time and 

the financial budget. The objective is to select a 

set of views to materialize in the cloud that 

gives an optimal solution in both query response 

time and financial budget limit.  

In the cloud, Data warehouse can be 

geographical distributed and can lead to serious 

performance and storage problem. User can 

pose queries in different data marts at different  
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times instead of a single data repository. Those 

data marts can also be located in different data 

centers in the cloud. Regarding to such issues 

the selection of view to materialize in the cloud 

has two main challenges .First select the view to 

materialize in a dynamic manner when queries 

are constantly posed in different data center at  

different time. Thus the materialized view 

selection algorithm should take in consideration 

the new coming views and be able to extract the 

optimal set to materialize in the cloud. This can 

also lead to the dematerialization process of 

some views in the cloud and store the most 

beneficial views .Second if the nature of queries 

changes over the time and result to degradation 

of performance, a new set of materialized views 

is required to regenerate. 

In other words we need to constantly monitors 

the incoming queries and materialize the best set 

of views by taking in consideration the pricing 

constraints (storage cost, computation cost and 

transfer cost) 

Our approach for the materialized view 

selection in a cloud based data warehouse is a 

two-phase operation: Startup and the Online 

phase 

In the Startup phase  which is based on an initial 

query stream, the system starts by selecting an 

initial set of views by taking in consideration the 

resource constraint (budget, response time). In 

the Online phase an “in use” system will be 

considered and an existing set of views V has 

already been selecting and materialized 

However the materialized view is expensive in 

term of computation and storage(resource 

constraint) ,so materialized all possible views in 

relatively impossible .Thus the key challenge in 

the online phase becomes selecting a new set of 

view V’ by discarding some views from V given  

 

 

 

 

 

a new query workload based on some query 

prediction.   

 

I. Preliminary knowledge  
1. Materialized view : 

Materialized views have been used for a long 

time in both OLTP and OLAP system for 

performance improvement. While views 

virtually store a query result and can help to 

solve complex query, materialized views store it 

physically in a table so that no need to 

recompute a query when its corresponding view 

is already materialized at any time the same 

query is entered in the system. Thus 

materialized view further improves query 

response time which is crucial in big OLAP 

system. 

2. Running example: 
To illustrate our work we use TCP-H benchmark 

models. Parts are bought form the suppliers and 

sold to customers. Each month the business 

needs to analyze the total profit per part, per 

suppliers, per and customer, per nation and per 

region. The Table 1 provides an excerpt of this 

dataset. Thus there are fives dimension we are 

interesting: Part, Suppliers, Nation, Region and 

Customer. 

 

II. Cost model for view selection in 
a cloud environment: 

The cost model is an important issue in a view 

selection problem, it help to achieve a multi 

criterion optimization (CPU utilization, 

bandwidth consumption and disk allocation) of  

materialized view under the budget 

constraint .In this section we introduce the cost 

model for view materialization in a cloud 

environment and it relies on the one introduced 

in [6].  In [6] it assumes that all queries are 

Part Customer Supplier Region Nation Sum 
steel chiffon pink puff  Customer#002 Supplier#1191        America                 Brazil                   38 
floral sienna bisque  Customer#006 Supplier#2150        Europe              France                  37 
olivegoldenrod smoke Customer#007 Supplier#3074        Europe                 Germany                28 
aquamarine seashell p Customer#001 Supplier#1534        America                   Argentina              24 

Table1: Sales Dataset Excerpt 
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executed on a constant number of identical 

instances		���	���� = ���	�, ∀� = 1. . ��� . Here 

we suppose that queries are executed on 

instances configuration   IC with a number of 
instances equal to 			��� 			then   �� = {���}���..��� .  
 

1. Computation Cost 
The computation cost 					����, �, ���		 of 

answering a set of queries		� = {��}���..�� 		by 

using a set of view � = {��, …���}  in an 

instance configuration ��  can be expressed by 

the following formula: ����, �, ��� = �� !���, �, ��� +	�#$��%��, ���+ �#$%��, ��� 
The processing cost �� !���, �, ���  is defined 

by the query workload Q, the set of materialized 

view V, the rented cloud instances 

configurations and the queries frequency and it 

can be expressed as follow: �� !���, �, ��� =∑ ∑ '� !���� , �, ���� ×�����)� *����+� ×,��� , ��+�  
Materialize a view require executing its 

associate query .In cloud such operation must be 

paid .Let '#$%���, ���� the materialization time 
of view ��  on a cloud instance ��� ,Then the 

materialization cost can be defined as follow  �#$%��, ��� = ∑ ∑ '#$%���, ���� ×������� *����+�  
If a considerable modification is done at the 

source dataset an update of already materialized 

view set is required. The update or maintenance 

cost is proportional to time required for updating 

materialized view and the materialized views 

update frequency. Let the maintenance time and 

the update frequency of  ��  be '#$��%���, ���� 
and -���, ��+�  respectively on a cloud instance ���  then the maintenance cost can be defined as 

follows �#$����, ��� =∑ ∑ '#$�����, ���� ×������� *����+� × -���, ��+�  

2. Data storage cost: 
Storage cost is an important issue especially in a 

cloud based architecture where any stored data 

need to be paid with respect to the storage time. 

Using materialized view to improve queries 

performance implies to store selected view in 

the cloud and pay the corresponding price. The 

data storage cost is proportional to the size of 

data (Initial dataset (DS) and Materialized view) 

and the storage time and can be expressed as 

follow: �.%! $/0 = ∑ *.�1�23� + 1���� ×��%0 4$5�'.%$ % − '0�7� × �1�23� + 1����  		1() return the size in GB of any parameters and *. is the CSP storage cost function. 

3. Data transfer cost 
 The data transfer cost �% $�.80  or bandwidth 

consumption cost depends on the size of the 
inputted data (the queries workload{��}���..�) 		), 
outputted data (the queries result {9�}���..�) 		by 

exploiting the set of materialized view  � ={��, …���} ), the whole dataset (initial dataset 

and inserted data) and the CSP’s atomic transfer 

cost *% �% $�.80 = �∑ �1�����)��� + 1�9��� + �1�2'� +
1�:�1;<=;>	2?=?��� × *%  

 

III. Materialized View Selection 
In this section we propose our approach for 

materialized view selection. Our algorithm is 

based on PR_Q system predictor [12] and which 

can operate as a complete view management 

system. It predicts the next query and 

materializes the view for it if necessary. Our 

algorithm for materialized view selection is 

described in the figure 1 and as mentioned 

earlier it has two phases: Startup and Online 

phases. 
Algorithm for materialized view selection 

Input: 
1. � :A query stream form the user 
2. BL, the budget limit 
3. Recurrent_pattern_th: A specified 

threshold to determine a pattern is 
recurrent 
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4. THQ: A specified threshold to extract 
recurrent pattern of queries 

Materialized_view_selection_cloud() 
1:	��$�2_Phase_Optimization_approach(Q,THQ); 
2:       If ��@1=	��, 	��$�� 	> BC� Then 
3:       	�8��$5= 		Knapsack0/1���$� , BL	, �O , �P, �%); 
4: Else 
5:     			�8��$5=			��$� ; 
6:  While (�� 	is entering){    
7:     Answer (�� , �,:�?Q); 
10:   Pattern_extraction(Q,Recurrent_pattern_th);         
11: 		�� =Predict_next_query( recurrent_patterns); 
12:    If((R� 	 ∉ �)and 
13:						��@1=	��� , R�� 	+ �@1=	��, �� 	≤ 	BC))  
14:       �,:�?Q = 	�,:�?Q		 ⋃ 	 {R�} ; 
15: Else 
16:      If (R� 	∉ 	�,:�?Q) { 
17:       While��@1=	��� , R�� 	+ �@1=	��, �� > BC) 
18:  Select			RVWX ∈ �,:�?Q; 
19: � = 	�,:�?Q	 − RVWX; 
20:        } 
21:        �,:�?Q = 	�,:�?Q				 ⋃ 		{		 R�} ; 
22:  } 

 

1. Startup phase: 
In the Startup phase (line 1 to 5) the system 

begun with an inputted query stream, the 

threshold of the queries stream (THQ) is 

specified by the database administrator.  We 

assume that we have a substantial knowledge of 

the incoming query stream. A good knowledge 

of the query stream will allow us to make all 

necessary estimation we need for our algorithm. 

Indeed '� !����, �, ���� , 	'#$%���, ����  and 	'#$%���, ����  all need to be estimated upstream 

(from experiments or statistical models).the 

startup phase in turn operate in two successive 

steps: Two-Phase Optimization approach and 

the knapsack 0/1 optimization. 

1.1. Two-Phase Optimization approach 
Firstly it performs a static view selection based 

on Two-Phase Optimization approach (2PO) 
[7]. In [7] the 2PO approach uses MVPP 

(Multiple View Processing Plan) [8] to express 

the relationship between views. It combines two 

optimization algorithms proposed in more 

previous works which is the Iterative 
Improvement (II) [19] and the Simulated 
Annealing (SA)[13].It was shown that 2PO 

perform better than most materialized view 

selection algorithm compared to [8] and [9] in a 

Data warehouse environment.  

The (2PO) has the queries stream and the 

specified threshold THQ as parameters. The 

output of this first step is Vcan which denotes a 

set of candidate views. In our case we have 

made some modification in the (2PO). Instead 

of using MVPP to express the relationship 

between views we decide to use data cube 

lattice introduced by Harinarayan and al in [15].  

1.2.    knapsack 0/1 optimization  
Because the view selection problem in cloud 

based architecture is essentially an optimization 

problem in term of monetary cost, we found 

necessary to integrate in our algorithm an 

optimization process that take in consideration 

the financial budget of the user (BL variable in 

our algorithm). In our case we focus only on a 

budget limited scenarios, where a predefined 

financial budget is given so that the challenge 

becomes on selecting a set of views that can be 

materialized in the cloud to minimize the query 

respond time under the budget constraint. To 

solve this problem a dynamic programming 

approach have been opted calls knapsack 0/1[11] 

problem .As input we provide necessary 

elements of our cost models, the result 
is 			�8��$5 = 	Knapsack0/1���$� , BL	, FO[ , FO\ , FO] ) 

where FO[ , FO\ , FO]   are functions representing 

parameters in our cost model.The knapsack 0/1 

problem can be represented as follow: 

 

 

 

 

 

 

 

 

Where  -�^  represent the gain in respond time 

by exploiting the view �̂ .We use _�^  as 

decision variables: _�^ = 1  if the query �� exploit the view �̂  and _�^ = 0   if not. =� 

`:�
a
bc'� !���� = de=� −f-�^ ∗ _�^�h

^�� i
�j

��� k
lm 

	�� !� 		+ �#$��% + �#$% + �P + �% ≤ 	BL 
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denotes the query ��  respond time without 

exploiting any materialized view. 

The idea is to find a set of materialized view 

which minimize the total query respond time by 

maximize the gain when materialized view 

exploiting. So our knapsack 0/1 can be 

reformulated as follow: 

`?_:n:o; pf-� ∗ _��4
��� q			  

The output of the knapsack 0/1 problem	�8��$5 
which is used as input in the online phase if a 

new query is entered in the system. 

2. Online Phase 
The Online phase (from line 6 to 22) is the run-

time phase of the system .During the Online 

phase the system materializes predicted views 

and moreover the system should identify 

insignificant old materialized view to be 

removed.   

The Online view selection problem can be 

defined as follows: Given an already 
materialized view set � = {��, … ���}   and a 
previous query workload{r�}���..�) 		, find a V’ 

(adding or discarding views form  � ) based on 

prediction of future query workload with respect 

to the resource constraints. 

The prediction of future data query workload is 

done using the same technique as PR_Q system 

predictor which uses association rules mining 

and probabilistic reasoning approach. 

While queries arrive this part is executed and 

the first operation of the online phase is 

Answer(�� , �,:�?Q) at line 7.  

This procedure answers the incoming query by 

using the set of final materialized view  �,:�?Q .  
If query definition exists in the materialized 

view pool the query ��	 is answered by using 

only one Materialized view  R�  in	�,:�?Q . In 

case of the query definition doesn’t exist in 

materialized view pool, lets	s�R� ) be the 

smallest ancestor of  R�  in the lattice [15]. If s�R�� 	∈ 	�,:�?Q	 then 	��   is answer 

through	s�R��	, otherwise the query is answered 

by using the fact and dimension tables. 

The Pattern_extraction (figure 2) procedure 

is the next operation of the online phase. This 

procedure extracts the recurrent patterns by 

giving in parameters a query stream and the 

recurrent pattern threshold and also by 

calculating the conditional probability of their 

last query occurrence (LQCP). To compute such 

a probability we apply the following conditional 

probability formula: t�r� = ?�|	r� = ?�, rv = ?v, …,			r�w�= ?�w�� = t�r� = ?�, rv = ?v, …,			r� = ?��	/	t�r� =?�, rv = ?v, …,			r�w� = ?�w�� =      ∏�r� = ?�, rv = ?v, …,			r� = ?��	/	∏�r� = ?�, rv = ?v, …,			r�w� = ?�w��. 
In this formula the current query stream 

is	��w� = {r�, rv, … , r�w�}, and then we use the 

formula to calculate the probability of entering r� when ��w� is entering previously. 

 
Algorithm for recurrent pattern extraction  

 Input:	�, Recurrent_pattern_threshold 
Output: recurrent_patterns, Recurrent patterns with 
conditional probability in their last query. 
Pseudo Code: 
1:   Pattern_extraction () { 
2:   recurrent_patterns=∅; 
3:   n=2; 
4:   While (n_ary patterns are recurrent){ 
5:         recurrent_patterns= recurrent_patterns U  
6:         recurrent n_ary pattern with the conditional  
7:          probability of their last query; 
8:          n++; 
9:          } 
10:  } 
 

Figure 2: Pattern_extraction 

The Predict_next_query (figure_3) has 

the recurrent patterns outputted by the 

Pattern_extraction procedure as parameter. This 

procedure predict the next query by finding the 

last query  with maximum conditional 

probability from the recurrent patterns with 

length between 2 and the maximum length of 

recurrent patterns  from the Pattern_extraction 

procedure. 
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Algorithm for next query prediction 

Input:	<;*z<<;�=_|?==;<�1 
Output: predicted_query 
Pseudo Code: 
1:  Predict_next_query () { 
2:   Max_len_pattern: Maximum length of patterns         												 in  <;*z<<;�=_|?==;<�1; 
3:     n=2; 
4:    While (n<= Max_len_pattern) { 
5:    Find the n_ary recurrent pattern with  																maximum Conditional probability in their    																last  query; 
6:           n++; 
7:     } 
8: predicted_query: last query with maximum 								conditional probability from founded recurrent 								patterns 
} 

Figure3: Predict_next_query() 
Example: 

We assume the data base administrator 

assigns 2 and 20 Recurrent_pattern_threshold 

and THQ respectively and Q is the query stream. 

Q:{ 	r��r}r~r�r�r��r�vr}r~r��r}r~r�r�vr�r} r~r��r�r�r�r��r}r~r�r�r�vr�} 
Q is at fist used in the startup phase and allow us 

to get our		�,:�?Q . Now we suppose that r� 

entering in the system r�	is now answered by 

using Answer (r�, �,:�?Q). The next step is to 

call Pattern_extraction (Q, 2) procedure .The 

table 2 show the different step of the 

Pattern_extraction procedure. 

Now Predict_next_query () is call to predict the 

next query and our query stream becomes	Q +{r�} . This procedure starts by extracting the 

maximum length of recurrent extracted patterns. 

In our case this length is 5 which represent the 

length of the pattern  r��r}r~r�r�  .The idea 

here is to search below recurrent patterns (with 

length between 2 and 5) and find that one with 

maximum probability in their last query:  {r� ∗}; {r}r~r� ∗}	; {r��r}r~r� ∗}  with (∗) 
means the predicted query. 

It appears clear that  r}r~r�r� has the biggest 

probability in its last query which is 3/4 thus r� 

is chosen as predicted query. 

If the corresponding view (which we can 

call ��  for simplicity) of  r�  was not 

materialized and we do not exceed our budget 

we just materialized	�� . If ��  was not 

materialized and we have already reached our 

budget limit we have to keep dematerializing 

least recently used views until  materializing 	�� 

can be possible . 

If  r� is entered as the next query, r� will 

be answered by using 	��  through Answer 

procedure and next the query is predicted and 

materialized if necessary .the same process is 

repeated while new queries are entered in the 

system. 

The run time performance of the system is 

improved by replacing old non-used 

materialized views with new views when a 

considerable change on the nature of queries 

stream is noticed. 

IV. Experimental Studies: 
To evaluate our work a number of 

experimentation have been conducted .In this 

section we describe our experimental setup and 

the result that we have obtained from our 

experiments. As we mention earlier we are 

interested only in the budget limit case where 

the challenge rely on selecting the best set of 

materialized view under a budget constraint. 

1. Experiment setup: 
In the cloud side our experiment have been 

Recurrent_pattern
_th(N)   

 N-ary Pattern LQCP 

 
N=2 

Recurrent Binary 
Patterns  

r��r} 3/5 r}r~ 1 r�r� 2/3 r�vr� 2/3 r~r�� 1/2 r�r�� 2/3 
N=3 

Recurrent 
Triplicate Patterns 

r��r}r~ 2/3 r}r~r�� 1/2 r�r�r�� 2/3 r}r~r� 3/5 
N=4 

Recurrent 
quadruple 
Patterns 

r��r}r~r� 1 r}r~r�r� 3/4 

N=5 
Recurrent 
quintuple Patterns 

r��r}r~r�r� 2/3 
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conducted in a virtual cluster composed of four 

virtual machines running Ubuntu 10.0.4 with 

8GB disk, 512 MB of RAM and 1vCPU.All 

nodes are feature Hadoop (Version 1.2.1)[1] and 

Hive (Version 0.11.0)[2].TCP-H [3] is used as 

dataset (scale factor 1) and all query are written 

in HiveQL[4] within the MapReduce[5,19] 

framework. 

On the client side all algorithms are 

implemented on PC core i5-2410M 2.3GHz, 

with 4GB of RAM 

2. Experimental results: 
In order illustrate our work we experiment the 

budget limit use case where we need the select 

the best set of materialized views in order to 

minimize the response time under a budget 

constraint. We exploited the user total cost and 

the total query respond time for a period of 12 

months with S3 [21] and EC2 [20] small 

instance pricing. To simulate the dynamic 

fashion of OLAP system, a random query 

generator has been use for our experimentations.  

Firstly it randomly generates a query 

stream with 20 in length, which is going to be 

used in the static phase to get the first set of 

materialized view. In the dynamic phase it 

generates a number 30 of  queries, it give 60 % 

of chance to select the predicted query, 30% of 

chance to select pick a query from the current 

query stream and 10% of chance to generate a 

not yet entered query. 

Our results are plotted in the figure 4.It 

clear depicts the cost and total response time 

with and without materialized view for a period 

of 12 months. A significant improvement is 

showed in both cases. For example the total with 

and without materialized view are 6.38 USD 

and 11.92 USD respectively for a period of 6 

months .Also a considerable improvement is 

noticed in the query processing time, indeed for 

the same period the processing time with and 

without materialized view are 11.13 hours and 

36.88 hours respectively . Those results show 

that materialized views in the cloud are 

considerably desirable. 

V. Conclusion: 
In this paper we propose an approach to 

dynamically select materialized view in a cloud 

based data warehouse. 

Our approach is based on PR_Q system 

predictor to predict the upcoming query and 

materialize its corresponding view by using 

conditional probability.  

In contrast to most [3, 5, 8, 12] materialized 

view selection algorithm which use a cost model 

based on the size of tuples in the view, here we 

use a cost model based on monetary cloud 

pricing. 

The results of our experimentations show that 

our approach perform with a considerable 

improvement both in term of monetary cost as 

well as in term of processing time. 
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Figure 4: Result of Experimentations 
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