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Abstract 
In the paper we solve parametric linear systems of 

equations whose coefficients are , in the general case, 

nonlinear functions of interval parameters. Here solution 

means that we enclose the set of all solutions, the so-

called parametric solution set, obtained when all 

parameters are allowed to vary within their intervals. 

This task appears in many scientific and engineering 

problems involving uncertainties. A C-XSC 

implementation of a parametric fixed-point iteration 

method for computing an outer enclosure for the solution 

set is proposed in this paper .This method requires to 

bound the range of a multivariate function over a given 

box and often delivers intervals which are too wide for 

practical applications. We computed tight enclosures of 

the parametric solution set by using a new generalized 

interval arithmetic which is an arithmetic for intervals 

(which are representing uncertainties). The most 

important property of this method is to reduce the effect 

of the dependency problem which is inherent in the 

computation with standard interval arithmetic. We used 

the new arithmetic to tightly bound the range of a 

multivariate nonlinear function over a box, a task to 

which many problems in mathematics and its 

applications can be reduced. We applied the new 

bounding technique to improve the efficiency of the 

solution for parametric systems. Numerical examples 

illustrating the applicability of the proposed method are 

solved, and compared with other methods. 

Keywords:  Interval Arithmetic, dependency problem, 

validated interval software, parametric interval systems, 

C-XSC, electrical circuits, structural mechanics. 

1. Introduction 

In many engineering design problems, linear 

prediction problems, and models in operation 

research, etc. there are often complicated 

dependencies between the coefficients. Engineering 

problems that involve such parametric linear 

systems may stem from structural mechanics, the 

design of electrical circuits, resistive networks, and 

robust Monte Carlo simulation, etc.. The source of 

parametric uncertainty is often the lack of precise 

data which may result from a lack of knowledge or 

an inherent variability in the parameters. Many 

sources of uncertainty exist in models for the 

analysis of structural mechanics problems and 

electrical circuit. These include, e.g., measurement 

imprecision, manufacturing imperfections, and 

round-off errors. An uncertain quantity is often 

assumed to be unknown but bounded, i.e., lower 

and upper bounds for this quantity can be provided 

(without assigning any probability distribution). 

Therefore, these quantities can be represented by 

intervals. Interval arithmetic provides the means to 

keep track of such uncertainties throughout the 

whole computation. Consequently, the result, 

which is again an interval quantity, is guaranteed to 

contain the exact result. 

Scientific and engineering problems described by 

systems of linear equations involving uncertain 

model parameters include problems in engineering 

analysis or design [1,2,3,4,5,6,7], control 

engineering [8], the design of electrical circuits [9], 

resistive networks, and robust Monte Carlo 

simulation [10,11], etc. Significant research in this 

field is directed towards the use of intervals [12, 

13] to represent the uncertain quantities in such 

systems. 

The solution of a parametric linear system, the so-

called parametric solution set (abbreviated by ∑� 

henceforth) is the set of all solutions which are 

obtained when all parameters are allowed to vary 

within their intervals. It can be described explicitly 

only in very simple cases. Therefore, one attempts 

to find the smallest axis-aligned box in ℝ� 

containing ∑� . Since even this set can only be 

found easily in some special cases, it is more 

practical to compute a tight outer approximation to 

this box. 

The parametric residual iteration is a self-verified 

method for bounding the parametric solution set. 

This is a general-purpose method since it does not 

assume any particular structure among the 

parameter dependencies. The method originates in 

the inclusion theory for nonparametric problems, 

which is discussed in many works. The basic idea 

of combining the Krawczyk operator [14] and the 

existence test by Moore [13] is further elaborated 

by S. Rump who proposes several improvements 

leading to inclusion theorems for the interval 

solution. S. Rump gives in [15] a straightforward 

generalization to linear systems with affine-linear 

dependencies in the matrix and the right hand side. 

With obvious modifications, the results can also be 

applied directly to linear systems involving 

nonlinear dependencies between the parameters.  

Consider a parametric system, 
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                        ���� ⋅ 
 = ����,                            (1)  

where ���� ∈ 	ℝ�×� , and ���� ∈ ℝ�  depend on a 

parameter vector � ∈ ℝ� . The elements of ���� 
and ����  are in general, nonlinear function of � 

parameters �� , ⋯ , �� ������ = ������, ⋯ , ���																														����� = �����, ⋯ , ���,			��, � = 1,2,⋯ , ��             (2) 

The parameters are considered to be unknown or 

uncertain and varying within prescribed intervals � ∈ ��� = ���, ⋯ , ���⊺. 
When � varies within a range ��� ∈ !ℝ�, the set of 

all solution to all ���� ⋅ 
 = ����,		� ∈ ��� , is 

called parametric solution set, and is denoted by ∑� ≔ ∑�����, ����, ���� ≔																																							 #
 ∈ ℝ�|���� ⋅ 
 = ����		for	some		� ∈ ���+     (3) 

Since the solution set has a complicated structure 

(it does not even need to be convex), which is 

difficult to find., one looks for the interval hull 

◊�∑� here ∑ is a nonempty bounded subset of ℝ�. 

For ∑ ⊆ ℝ�, define ◊ ∶ .ℝ� ⟶ !ℝ� by
1
 

◊�∑� ≔ �inf	∑,	sup	∑	� = ⋂#�
� ∈ !ℝ�|∑ ⊆ �
�+. 
The calculation of ◊�∑� is also quite expensive. 

Since it is quite expensive to obtain ∑ or ◊(∑), it 

would be a more realistic task to find an interval 

vector  �5� ∈ !ℝ�  which tightly encloses         �5� ⊇ ◊�∑�� ⊇ ∑�. 

Probably the first general purpose method for 

computing outer (and inner) bounds for the interval 

hull of �∑��  is based on the fixed-point interval 

iteration theory developed by S. Rump. In [15] he 

applies the general verification theory for system of 

nonlinear equations to the solution of parametric 

linear systems involving affine-linear 

dependencies. This method was generalized to 

nonlinear parameter dependencies; however, it is 

required to find tight bounds on the ranges of 

nonlinear functions. Meanwhile, there were many 

attempts to construct suitable methods for solving 

parameter dependent interval linear systems [16, 

17]. Kolev proposed a directed method [18, 19] and 

an iterative method [16] for computing an 

enclosure of the solution set. Parameterized Gauss-

Seidel iteration was employed by Popova [20]. A 

direct method was given by Skalna in [21], and a 

monotonicity approach in [22]. Inner and outer 

approximations by a fixed-point method was 

developed and implemented in [23]. A 

Mathematica package for solving parametric 

interval systems is introduced in [24]. We do not 

intend to give here a complete overview of these 

methods. Most of the methods developed so far 

address linear systems involving affine-linear 

dependencies between the parameters and only few 

                                                           
1
  .ℝ� is the power set over ℝ� . Given a set S, the 

power set of S is the set off all subset of S 

articles study the general case of nonlinear 

parameter dependency [25, 5]. 

The goal of this work is to introduce a new C-XSC 

software (C- for Extended Scientific Computing) 

[26] for a new generalized interval arithmetic to 

tightly enclose multivariate nonlinear functions, 

and use it to find the solution set of parametric 

interval systems, i.e., interval vectors, which 

contain all possible solutions of this system. We 

will compare our method to other methods. 

In Section 2 the dependency problem is introduced. 

The rest of  the paper is organized as follows. The 

new generalized form and  its arithmetics is 

introduced in Section 3. The theoretical framework 

of the paper is presented in Section 4. The main 

results of this paper is presented in Section 5. 

Numerical experiments  illustrating the features of 

the proposed method are provided in Section 6. The 

paper ends with concluding remarks. 

We use the following notations ℝ,ℝ� , ℝ�×� , !ℝ, !ℝ� , !ℝ�×�, to denote the set of real numbers, 

the set of real vectors with n components, the set of 

real n×n matrices, the set of intervals, the set of 

interval vectors with n components and the set of 

n×n interval matrices, respectively. For a real 

interval �
�  we mean a compact interval 	�
� ≔ 7
, 
8 ≔ #
 ∈ ℝ| 
 ≤ 
 ≤ 
+  , Where 
 

and 
  denote the lower and upper bounds of the 

interval �
�, respectively. 

For a real interval �
� define the mid-point 


:=mid��
�� ≔ �
 + 
� 2=  

and the radius  rad��
�� ≔ �
 − 
� 2=   , 

Definition of real intervals and operation with such 

intervals can be found in a number of references 

[12,13]. However, we present the main interval 

arithmetic operation. For Definition of real 

intervals and operation with such intervals can be 

found in a number of references [12,13]. However , 

we present the main interval arithmetic operations. 

For �
�and �5� ∈ !ℝ� �
� + �5� = �
 + 5, 
 + 5�																																																		�
� − �5� = �
 − 5, 
 − 5�																																																		�
� ∙ �5� = �min�
5, 
5, 
5, 
5�,max�
5, 
5, 
5, 
5��1 �5� = B1 5⁄ , 1 5= D 				if		0 ∉ �5�= 																																				
�
� �5� = �
� ⋅ B1 5⁄ , 1 5= D 							if		0 ∉ �5�= 																							

   (4) 

2. Dependency problem 

The dependency problem arises when one or 

several variables occur more than once in an 

interval expression. Dependency may lead to 

catastrophic overestimation in interval 

computations. For example, if the interval �
� =�1,2� is subtracted from itself �
� − �
� = �−1,1� is 

obtained as the result and not the interval �0,0� as 

expected. Actually, interval arithmetic cannot 
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recognize the multiple occurrence of the same 

variable x. The result is #
 − 5|	
 ∈ �
�,		5 ∈ �5�+ 
instead of  #
 − 
|	
 ∈ �
�+ . In general, when a 

given variable occurs more than once in an interval 

computation, it is treated as a different variable in 

each occurrence.  

For a less extreme example, take G	�
� 	= 	 �10	 +	
� 	 · 	 �10	 − 	
� for 
	 ∈ 	 �
� 	= 	 �−1, 1� Using the 

basic formulas (4) , we get 10 + �
� = �9,11�10 − �
� = �9,11��10 + �
�� ⋅ �10 − �
�� = �81,121�. 
The interval formulas give an interval whose 

diameter is 40, whereas the exact interval result    G��
�� 	= 	 �99, 100� has a diameter of only 1. Note 

that when one operand in the product                   �10	 + 	
� · �10	 − 	
� is at the maximum value 11, 

the other must be at the minimum value 9; the 

combination 9	 · 	9  and 11	 · 	11 , which gave the 

extreme values of  L	��
��, never occur. 

A simple remedy for this example is to rewrite    

(10 + x) · (10 − x) = 100 − x
2
 , which has only one 

occurrence of the variable x. An interval 

computation of this new expression will give the 

exact result. Unfortunately, this remedy is often 

impossible to apply in practice.  

Several other methods have been proposed to 

attack the dependency problem. The main class of 

methods is known as centered forms [9], in several 

incarnations and generalizations, such as mean-

value form [9] and slopes [14]. 

The purpose of a new generalized interval 

arithmetic method is to reduce the effect of the 

dependency problem when computing with 

standard interval arithmetic, and in addition, it 

provides the enclosure of the range of a nonlinear 

interval function by linear interval forms. 

3. New Generalized Interval Arithmetic 

For our purposes, it is convenient to represent an 

interval �
� = 7
, 
8  in the form �
� 	= 	M	 + 	 �N� 
where c is the mid-point of [x], [u] = [−r, r ] is 

symmetrical interval, and r is the radius of [x]. 

Thus an arbitrary point x ∈ [x] may be expressed as 
	 = 	M	 + 	O where O	 ∈ 	 �−P, P	� and r ≥ 0. 

Definition 1. [9,27]:  A generalized interval �
Q� is 

given by 

                     �
Q� = �RS� + ∑ O��N�S���T�                (5) 

where �RS�  and �N�S� , ��	 = 	1, 2,·	·	·	, ��  are 

computed  intervals and O� ∈ �−P� , P��. 
When we reduce the generalized interval in (5) to 

an ordinary interval, we obtain 

reduce��
Q�� = reduce��RS� + V�−P� , P���N�S��
�T� �

≔ �RS� + �−1,1�VP�N�S
�

�T�
 

where N�S ≔ |�N�S�| . In general, the absolute value 

of an interval �
� = 7
, 
8   is defined as        |�
�| ≔ max�W
W, |
|� . Conversely, any ordinary 

interval can be represented by a generalized 

interval. The ordinary interval �
� = 7
, 
8 can be 

represented as the generalized interval              �
Q� = �RS� + O��N�S� , where �RS� ≔ BSXSY , SXSY D , O� ∈ BSZSY , SZSY D and �N�S� ≔ �1,1�. In general, if we 

have an interval vector  �
� ≔ ��
��,⋯ , �
���⊺ ∈!ℝ� , the j-th interval can be represented with the 

generalized interval form 7
Q�8 = �RS[� + �0,0�O� + ⋯+ �0,0�O�Z� + �1,1�O� +�0,0�O�X� + ⋯+ �0,0�O�																									= �RS[� + �1,1�O� 																																														  

Assume two generalized intervals �
Q�  and �5Q�  are 

expressed as �
Q� = �RS� + ∑ O��N�S���T�  and  �5Q� = �R\� + ∑ O��N�\���T� respectively. We now 

consider the arithmetic operations applied to these 

generalized intervals. 

  

Addition and Subtraction 

The sum (difference) of  �
Q�  and �5Q�  is another 

generalized interval �]̌� = �R_� + ∑ O��N�_���T�   . 

 It holds  �
Q� ± �5Q� = �RS� ± �R\� + ∑ O���N�S� ± 7N�\8���T�     (6) 

Thus we have to define 

     
�R]�: = �R
� ± �R5�																												�N�]� ≔ �N�
� ± �N�5�,			�� = 1,2,⋯ , ��                (7) 

Multiplication: 

To obtain a rule for multiplication of two 

generalized intervals, note that  �
Q� ⋅ �5Q� = #
Q ⋅ 5Q|	
Q ∈ �
Q�,	5Q ∈ �5Q�+																																																						
⊆ �R
� ⋅ �R5� + V O���R
��N�5� + �R5��N�
���

�=1
+VV O�O�

�
�T�

�
�T� �N�
�7N�58																								

	
we shall choose to retain only linear terms in O�   �� = 1,2, . . . . . . . , ��  although higher order terms 

could be kept. 

Note that, we can take the absolute value (upper 

bound)  for the term ∑ ∑ O�O���T���T� �N�
�7N�58   and  

add it to the midterm as follows. 

 

�
Q� ⋅ �5Q� ⊆ b�R
� ⋅ �R5� + cVV O�O�
�

�T�
�

�T� �N�
�7N�58cd 																		
+V O���R
��N�5� + �R5��N�
���

�=1
= :			�]̌� = �R_� + VO��N�_��

�T� 																					
	

where 
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�R_� ≔ e�R
� ⋅ �R5� + f∑ ∑ O�O���T���T� �N�
�7N�58fg     																																																																																								 (8) 

and 

     �N�_� ≔ �R
��N�5� + �R5��N�
�                            (9) 

Division: 

For division of two generalized intervals, note that  �
Q��5Q� = h
Q5Q |
Q ∈ �
Q�,	5Q ∈ �5Q�i ⊆ �R_� + VO��N�_��
�T�  

with 

                      �R_� ≔ �R
��R5�                                  (10) 

and 

            �N�_� ≔ �R5��N�
�−�R
�7N�58�R5�e�R5�X�Z�,��∑ j[k[lm[no g             (11) 

 

Example 1.   Consider  

 L = �
� ⋅ �5� 	− �
� ⋅ �5� 
with  �
� 	= �1,2�  and �5� 	= 	 �3,4]. 

 Ordinary interval computation give L	 = 	 �1,2�	. �3,4� 	− 	�1,2�	. �3,4�= 	 �3,8� 	− 		 �3,8� 	= 	 �−5	,5�   

The exact result  is [0,0]  for any two intervals [x]  

and  [y] 

Using generalized interval arithmetic with: �
Q� = �1.5,1.5� + �1,1�O�,			O�∈�-0.5,0.5�	�5Q� = �3.5,3.5� + �1,1�OY,			OY∈�-0.5,0.5�    

Now, by using the forms (8) and (9) give: �
Q� ⋅ �5Q� = �5.5,5.5� + �3.5,3.5�O� + �1.5,1.5�OY 

Then, the forms (6) and (7) give: 

 �
Q� ⋅ �5Q� − �
Q� ⋅ �5Q� = �0,0� + �0,0�O� + �0,0�OY 
                                 =[0,0] 

which is the exact result. 

 

Example 2.  [13]  Consider  

 L = �So�X�St��So�Z�St� with �
�� = �1,2� and �
�� = �5,10�. 
Using  (7) gives: 

  
�
Q�� + �
QY� = �9,9� + �1,1�O� + �1,1�OY�
Q�� − �
QY� = �−6,−6� + �1,1�O� + �−1,−1�OY 

 with O� ∈ �−0.5,0.5� and OY ∈ �−2.5,2.5�  
Using (10) and (11) we get: L = −96 + v−56 ,− 518w O� + v 118 , 16w OY 

which reduces to  �−2.334	, −0.666�. 
The result 	�−3.723, 0.7223�  is obtained by Moore 

[13] using the mean value theorem. 

Directed  use  of  interval arithmetic yields �−4	, −0.666�	.	
We obtain an exact result  using interval arithmetic 

by rewriting L as L = 1 + 2 ��
�� �
Y�⁄ − 1�⁄  since 

each variable occurs only once.  We find             L	 = 	 �−2.334	, −1.222�.	
 

Example 3.   Consider  

 L = �
� − �y�S�X t�z�,  with  �
� = �1,3�    
By using ordinary interval computation, we get L = �−5,1�. 

Using  (6), (7) , (10) and (11) give: L = �−1.3333, −1.3333� + �1,1.95238�O, O ∈�−1,1�, which reduces to  �−3.2857143	, 0.61904762�.	
While the mean-value form FMN ([x]) and the slope 

form FS ([x]) leads to the intervals [14] : 

FMN ([x])= [-5.1333, 2.4666],  FS ([x])= [-3.6666,1]. 

 

Example 4.   Consider  G = �
� ⋅ 
Y − 
Y� ⋅ �
� ⋅ 
{ − 
{�, 
with	
� ∈ �5,10�  , 
Y ∈ �1,2� and 
{ ∈ �2,3� 
Using  (6), (7) , (8) and (9) give: 

  L = �259,259� + �53.75,53.75�O� + �113.75,113.75�OY+�71.5,71.5�O{																																																									 	
where O� ∈ �−2.5,2.5�,	OY ∈ �−0.5,0.5�		and			O� ∈�−0.5,0.5�  which reduces to 	L = �32,486�. 
Directed use of  interval arithmetic yields �21	, 532�	.	
We obtain an exact result  using interval arithmetic 

by rewriting f as G = 
Y ⋅ 
{ ⋅ �
� − 1�Y since each 

variable occurs only once.  We find that             L	 = 	 �	72	, 486�.	 
4. Theoretical Background 

In this section we give a brief summary of the 

theory of the enclosure method for our problem, in 

case of the system (1) involving affine-linear 

dependencies between the parameters. 

 

Theorem 1. [23]  Consider parametric linear 

system (1), where A(p) and b(p) are defined by 

������ ≔ ����y� + V�|����|��
|T� 																																		

����� ≔ ���y� + V�|���|�,				��, � = 1,2,⋯ , ���
|T�

 

  Let } ∈ ℝ� , �5� ∈ !ℝ� , 
~ ∈ ℝ�  be given and 

define �� ∈ !ℝ�and ������ ∈ !ℝ�×� by 

��� ≔ } ⋅ ���y� − ��y�
~� + V7�|8�}��|� − }��|� ⋅ 
~��
|T�

������ ≔ � − } ⋅ ��y� + V7�|8�} ⋅ ��|���
|T�

 

where ��y� ≔ �����y��,⋯ , ���� ≔ �������� ∈ ℝ�×�  , ��y� ≔ ����y��,⋯ , ���� ≔ ������� ∈ ℝ�    . Define ��� ∈ !ℝ�   by means of the following Single step 

method 1 ≤ � ≤ �	:	���� = �◊#��� + ��� ⋅ �N�+�� 						where�N� ≔ �����,⋯ , ���Z��, �5��,⋯ , �5���⊺  

 

If ��� ⊏ �5�2, then R and every matrix  ����, � ∈���  is regular, and for every � ∈ ���  the unique 

solution 
: = �Z���� ⋅ ����  of ���� ⋅ 
 = ����  

satisfies 
: ∈ 
~ + ���. 
                                                           

2
 ⊏ is the inner inclusion relation 
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The above theorem generalized Theorem 4.8  from 

[15] by requiring of the range of  ������ instead 

using an interval extension �������� [20]. 

5. Main Results 

In this section, method for computing an outer 

solution for the system (1), in the general case, is 

suggested. The derivation of the method is based 

on the generalized interval arithmetic employed in 

section 3 in this paper above. 

Let G: ��� ⊂ ℝ� ⟶ ℝ�  be a continuous function. 

The function G��� can be enclosed in the interval 

vector ���  by the following linear interval form 

(generalized interval form)  

    7�����8 ≔ �R�� + ∑ O|7N|�8,		� ∈ ����|T�       (12) 

where �R��  and 7N|�8, �� = 1,2,⋯ , ��  are real 

intervals, and O| ∈ �−rad���|��,rad���|��� . The 

form (12) can be determined in an automatic way 

using the method described  in section 3. It has the 

inclusion property   

                    G��� ∈ 7�����8, � ∈ ���                 (13) 

We assume that ������ and �����, ��, � = 1,2,⋯ , �� 

in (2) are continuous functions. In accordance with  

(12), the corresponding linear interval forms are 

7������8 ≔ �R��[� + VO|7N|��[8�
|T�

������� ≔ �R��� + VO|7N|��8�
|T�

 

and have the inclusion property 

������ ∈ 7������8 ≔ �R��[� + VO|7N|��[8�
|T�

����� ∈ ������� ≔ �R��� + VO|7N|��8�
|T�

 

Now, we can write a new parametric interval 

system as follows 

               ���O�� ⋅ 
 = ���O��, O ∈ �O�                (14) 

where  and  are defined by 

          
�����O�� ≔ �����y�� + ∑ O|�����|��,�|T�����O�� ≔ ����y�� + ∑ O|����|��,�|T�           (15) 

The following theorem is a modification of 

theorem  1. 

Theorem 2.  Consider parametric linear system 

(1), where A(p) and b(p) are defined by(2), Let ���O�� ∈ !ℝ�×� and  ���O�� ∈ !ℝ�be given by (15) 

with O ∈ ℝ� , and let } ∈ ℝ� , �5� ∈ !ℝ� , 
~ ∈ ℝ� 

be given and define �� ∈ !ℝ�and ���O�� ∈ !ℝ�×� 

by 

��� ≔ } ⋅ ����y�� − ���y��
~� + 																																	
V7O|8�} ⋅ ���|�� − } ⋅ ���|�� ⋅ 
~��
|T�

���O�� ≔ � − } ⋅ ���y�� + V7O|8�} ⋅ ���|����
|T�

 

where 

 ���y�� ≔ ������y���,⋯ , ������ ≔ ���������� ∈ !ℝ�×�  , ���y�� ≔ �����y���,⋯ , ������ ≔ ��������� ∈ ℝ�  

Define ��� ∈ !ℝ�  by means of the following Single 

step method 1 ≤ � ≤ �	:	���� = �◊#��� + ��� ⋅ �N�+�� 						where�N� ≔ �����,⋯ , ���Z��, �5��,⋯ , �5���⊺  

 

If ��� ⊏ �5�3 , then R and every matrix  ��O� ∈���O��, O ∈ �O�  is regular, so every matrix ����,	� ∈ ��� is regular, and for every � ∈ ��� the 

unique solution 
: = �Z���� ⋅ ����  of ���� ⋅ 
 =����  satisfies 
: ∈ 
~ + ���. 
 

Now, we give an algorithm for computing an outer 

solution for the system (1) 

 

Algorithm 1:  Parametric interval linear systems 

1.Initialization   �� ≔ mid����O���; 	�� ≔ mid����O���;	  
2.Computation of an approximate mid-point 

solution  
~ = } ⋅ ��;( } ≈ �Z�� 

3. Using The method described  in section 2 to 

obtain the linear form for every element in the 

parametric matrix and right hand side vector. 

4.Computation of an enclosure  [C] ��� ≔ � − } ⋅ ���y�� + ∑ 7O|8�} ⋅ ���|����|T� ; 

5. Computation of an enclosure [Z] 	��� ≔ } ⋅ ����y�� − ���y��
~� +																																	∑ 7O|8�} ⋅ ���|�� − } ⋅ ���|�� ⋅ 
~��|T� ; 

6. Verification step  

        �5�: = ���;  
         max = 1;  
       repeat  

        	�55�: = �5�; 
         for 	� = 1 to  n   do 

           �5�� = ���� + 7��Row����8 ⋅ �55� 
         max + +; 
       until �5� ⊏ �55� or  max	 ≥ 	10 

7.  

    if  �5� ⊏ �55� 
        
 ∈ 
~ + �5�  ; 
    else  { Error;}   

8. end   

 

                                                           
3
 ⊏ is the inner inclusion relation 
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6. Numerical and practical examples 

The results are rounded outwardly to  8 digits 

accuracy. 

 

Example 1: Consider the parametric linear system 

b−����Y + �Y� ���{ �Y�Y�� �YY 1���Y �{�� + �� �YY
d ⋅ 
 = ��Y�{11 � 

��� = ��1,1.2�, �2,2.2�, �0.5,0.51�, �0.39,0.4�, �0.39,0.4��⊺ 
Proposed method Elaraby [28 ] 

[-0.11831523,-0.07530551] [-0.1186099,-.07514419] 

[ 0.17114571, 0.20374365] [0.17093864, 0.20434426] 

[ 0.23211413, 0.27158007] [0.23180722,0.27203779] 

 

Example 2: Consider 

b−����Y + �Y� ���{ �Y�Y�� �YY 1���Y �{�� + �� �YY
d ⋅ 
 = � �Y�{���� + ��1 �, 

��� = ��1,1.2�, �2,2.2�, �0.5,0.51�, �0.39,0.4�, �0.39,0.4��⊺ 
 

Proposed method Elaraby [28 ] 

[-0.12264510,-.08131776] [-0.12295217,-0.08115167] 

[0.07593567, 0.09016943] [ 0.07575593, 0.09048336] 

[0.24435325, 0.29285135] [ 0.24405491, 0.29335273] 

 

Practical example1 [9]: The new method will be 

illustrated with the following example. The 

elements of the linear system considered are �−��1 + �2��4 �2�4�5 �3�5� ⋅ 
 = e11g 

 

The interval vector [p] is given by  ��� =																																																																																																															��0.96,1.04�, �1.92,2.08�, �0.96,1.04�, �0.48,0.52�, �0.48,0.52��⊺  

Systems of the above type arise in robustness 

analysis of linear electric circuits [9] (for the 

example considered the radius is given as a 4% 

“tolerance” on the nominal parameter value �1,2,1,0.5,0.5�⊺ ). 
Proposed method 

Kolev's 

Method [9,17] 
Elaraby[ 28] 

[0.287555,0.513212] [0.2844,0.5156] [0.28704259,0.51295744] 

[0.287555,0.513212] [0.2844,0.5156] [0.28704259,0.51295744] 

 

Practical example2:  Structural engineers use 

design codes formulated to consider uncertainty for 

both reinforced concrete and structural steel design. 

A simple one-bay structural steel frame (initially 

considered in [1]), is presented in the following 

figure. 

 

 

The authors of  [1] have applied conventional 

methods for analysis of frame structures to 

assemble a system of  linear equations � ⋅ 
 = L. 

In [1], the system has been presented as follows: 

�
  
  
  
  
 ¡
12¢£�£�£{ + ��¢���06¢£�£�£Y00−��¢���00

		

012¢�����{ + �£¢£�£06¢�����Y6¢�����Y0−12¢�����{0

		

6¢£�£�£Y0¤ + 4¢£�£�£−¤0000

		

06¢�����Y−¤¤ + 4¢�����2¢�����0−6¢�����Y0

		

06¢�����Y02¢�����¤ + 4¢£�£�£0−6¢�����Y−¤

¥ 

 

¥

− ��¢���0000��¢��� + 12¢£�£�£{06¢£�£�£Y

		

0−12¢�����{0−6¢�����Y−6¢�����Y012¢�����{ + �£¢£�£−6¢�����Y

		

0000−¤6¢£�£�£Y−6¢�����Y¤ + 4¢£�£�£ ¦
§§
§§
§§
§§
§§̈

⋅
�
   
  
¡©2S©2\P2_P5_P6_©3S©3\P3_¦

§§§
§§̈ =

�
   
 ¡
ª0000000¦
§§§
§̈

 

whose elements are, in general, nonlinear functions 

of the following parameters: Material properties ¢� , ¢£ , cross sectional properties �� , I£ , �� , A£  , 

lengths �� , �£ , and the joint stiffness α. The right 

hand side vector L = �ª, 0,0,0,0,0,0,0�⊺ in this 

example is considered to depend only on the 

applied loading H. Table 1 will show the typical 

nominal parameter values and the corresponding 

worst case uncertainties as proposed in [1] . 

Table 1 Parameters involved in the steel frame example, their 

nominal values, and worst case uncertainties 

Parameters  Nominal value Uncertainty 

Young  modulus Eb 29*106 lbs/in2 ±348*104(±12%) 

 Ec 29*106 lbs/in2 ±348*104(±12%) 
Second moment Ib 510 in4 ±51(±10%) 
 Ic 272 in4 ±27.2(±10%) 
Area Ab 10.3 in2 ±1.03(±10%) 
 Ac 14.4 in2 ±1.44(±10%) 
External forces H 5305.5 lbs ±2203.5(±41.6%) 
Joint stiffness α 2.77461*108lb-

in/rad 

±1.26504*108 

(±45.6%) 
Length Lb 288 in  

 Lc 144 in  
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In [1] all the parameters, except the lengths, are 

considered to be uncertain and varying within 

given intervals. Replacing Lb and Lc with their 

nominal values will give the following parametric 

interval linear system 

                     ���� ⋅ 
 = L���                            (16) 

where the vector of the uncertain parameters is � = �¢� , ¢£ , �� , �£ , �� , �£ , ¤, ª�⊺, the right hand side 

vector is  L��� = �ª, 0,0,0,0,0,0,0�⊺  and the 

parametric matrix K(p) is 

�
  
  
  
  
¡ ¢£�£248832 + ��¢�28806¢£�£345600−��¢�28800

		

012¢���1990656 + �£¢£1440¢���13824¢���138240− ¢���19906560

		

¢£�£34560¤ + ¢£�£36−¤0000

		

0¢���13824−¤¤ + ¢���72¢���1440− ¢���138240

		

0¢���138240¢���144¤ + ¢£�£360− ¢���13824−¤

¥ 

¥
− ��¢�2880000��¢�288 + ¢£�£2488320¢£�£3456

		

0− ¢���19906560− ¢���13824− ¢���138240¢���1990656 + �£¢£144− ¢���13824

		

0000−¤¢£�£3456− ¢���13824¤ + ¢£�£36 ¦
§§
§§
§§
§§
§̈

 

We will solve the system (16) by algorithm 1. The 

results will be compared with other methods based 

on the approach of [1]. In order to compare the 

results generated by our method and those 

generated by other methods, we strictly follow the 

structure system and the uncertainties for the 

parameters considered in [1]. Initially, the system 

(16)  will be solved with parameter uncertainties 

which are 1% of the values presented in the last 

column of Table 1, �� 	 ∈ �	10.289699, 10.313], Ac ∈  [ 14.3856, 14.4144], 

Eb ∈  [28965200,29034800], Ec ∈  [289652,290348],       

Ib ∈ [509.49,510.51], Ic ∈ [271.728,272.272],  

α ∈ [276195900,278726100],  H ∈ [5283.465,5327.535]. 

A directed replacement approach, called naive 

interval approach, which does not take into account 

the dependencies between the parameters in 

solving practical problems. It is well-known that 

the solution of a naive interval system greatly 

overestimates the solution of the original 

parametric interval system. In [1], the naive interval 

results have been compared with the results 

obtained by the authors of [1].  

 

Disp. naive Interval [1] Tight [1] Popova  [5] Proposed  method 

d2x [0.09375783, 0.21337873] [0.15237484, 0.15476814] [0.15222223, 0.15431233]  [0.15220001, 0.15429121] 

d2y e+3 [0.19060424, 0.47412283]  [0.32940418, 0.33533906]  [0.32377600, 0.32978730] [0.32372754, 0.32974259] 

r2z e+3 [-1.3531968, -0.57250484] [-0.97085151, -0.95490139] [-0.97197309, -0.95735919] [-0.97161706,-0.95744291] 

r5z e+3 [-0.6557609, -0.26414725] [-0.4638112, -0.45611532] [-0.46935397,-0.46200391] [-0.46907740,-0.46214970] 

r6z e+3  [ -0.64100045, -0.2501251] [-0.44930811, -0.4418354] [-0.43060605, -0.42343378] [-0.43018318,-0.42373289] 

d3x [0.091230936, 0.21082444] [0.14985048, 0.15221127]  [0.14968216, 0.15174482] [0.14966080, 0.15172284] 

d3y e+3 [-0.47412283,-0.19060424 ]  [-0.33533906, -0.32940418] [-0.67739783,-0.66440928] [-0.67730130,-0.66431021] 

r3z e+3 [-1.3330326, -0.55323186] [-0.95100335, -0.93531196] [-0.93981876, -0.92572673] [-0.93954242,-0.92573427] 

 

6. Conclusion 

The problem of solving parametric linear systems 

of equations whose elements are nonlinear function 

of interval parameter is very important in practical 

applications. Well-known classical methods, such 

as interval version of Gauss elimination, fail since 

they compute enclosure for the general solution set 

which is generally much larger than parametric 

solution set. In this work we reported newly 

developed software tools for solving parametric 

linear systems whose input data are non-linear 

functions of interval parameters. A simple method 

for determining an outer solution to the linear 

system considered has been suggested in section 5. 

An algorithm is presented and some numerical and 

practice examples are solved and compared with 

another methods. 

The present approach is also applicable to other 

uncertainty theories which rely on interval 

arithmetic for computations, such as fuzzy set 

theory, random set theory, or probability bounds 

theory. 
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