

Practical application of a light-weight formal implementation for
specifying a multi-agent robotic system

Nadeem Akhtar1 and Malik M. Saad Missen2

 1 ArchWare team, IRISA – University of South Brittany, Vannes, FRANCE
Assistant professor, The Department of Computer Science & IT, The Islamia University of Bahawalpur

Bahawalpur, 63100, PAKISTAN

2 Assistant professor, The Department of Computer Science & IT, The Islamia University of Bahawalpur
Bahawalpur, 63100, PAKISTAN

Abstract

Light-weight formal specifications are flexible, have a concrete
syntax, and play vital role in correctness of a multi-agent robotic
system. To specify such systems in a way that it ensures
correctness properties of safety and liveness is important,
especially as these systems have high concurrency and in most of
the cases have dynamic environment. We have considered a case-
study of a multi-agent robotic system for the transport of stock
between storehouses to exemplify light-weight formal
specifications. The specifications have been modelled as a
Labelled Transition System for light-weight formal verification..

Keywords: Multi-Agent System, Formal methods, Light-weight
formal methods, Finite State Process (FSP), Labelled Transition
System (LTS), Safety property, Liveness property.

1. Introduction

One of the most challenging tasks in software specification
engineering for multi-agent robotic systems is to ensure
correctness properties of safety and liveness, especially as
these systems have high concurrency and in most cases
have dynamic environment. Safety and liveness properties
complete each other to ensure system correctness. Light-
weight formal implementation of safety and liveness
properties can play major role in system correctness.

Verifying that the code matches its requirement and design
specifications is important. The understanding and
expertise of formal methods requires time and technical
expertise. Formal languages require mathematical training
as a pre-requisite therefore they are less accessible to
programmers. They use semantics that is very different

from the semantics of the main-stream semi-formal
programming languages. In most cases, formal
specifications have operations based on complex
mathematical concepts. Projects having formal
specifications longer than the implementation code are
simply too costly. The light-weight formal specifications
are executable and practical. In some cases we can use
light-weight formal language based specifications to only
specify critical portions of the system, this can limit the
number of states by system composition and hide the
internal actions.

An agent is considered as a computer system situated in
some environment, capable of autonomous actions in this
environment in order to meet its design objectives [13].
Multiple agents are necessary to solve a problem,
especially when it involves distributed data, knowledge, or
control. A multi-agent system is a collection of several
interacting agents in which each agent has incomplete
information or capabilities for solving the problem [7].
These are complex systems and their specifications
involve many levels of abstractions.
Our system consists of small robotic agents that work in a
closed environment. LTS specifications based on FSP
language have been used for specification definition of our
multi-agent robotic system. In this work, requirement
specifications are defined by using Gaia multi-agent
method [14]. These Gaia specifications define early
requirements, and then these specifications are
transformed into light-weight formal LTS specifications
for checking correctness properties of liveness and safety.
These Gaia specifications are also used to define the

system architecture specification by using -ADL dot NET

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 247

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

specifications. Finally system is implemented by using a
service-oriented architecture. Figure-1 shows our approach.

Fig.1 Approach and Proposed solution

This paper concentrates on the requirement verification
portion of our approach. It put forwards the role of light-
weight formal specifications for ensuring correctness
properties of safety and liveness. The requirement
specification phase, satisfaction relation from requirement
specification to requirement verification, refinement
relation from requirement specification to architecture
specification, refinement relation from π-ADL dot NET
architecture specification to service-oriented
implementation, satisfaction relation from service-oriented
implementation to requirement verification are not covered
in this paper. These light-weight formal specifications are
flexible, less rigorous and more practical than formal
specifications and play vital role in ensuring correctness
properties of safety and liveness. Therefore by using light-
weight formal methods we are able to obtain a concurrent
system in which there are processes working in parallel
and there are synchronizations between different processes.

The labelled transition system and its associated analysis
tool LTSA have an incremental and interactive approach
to the development of component based systems.
Consequently, components can be designed and debugged
before composing them into larger systems. The goal is to
specify our system by using light-weight formal FSP
notation along with LTS to prove correctness properties.

2. Background studies

2.1 Light-weight Formal methods

Semi-formal methods do not give sufficient results in
terms of precision and preciseness; they don’t have the
formal verification aspects. In contrast a formal
specification method has precise mathematical semantics
which in turn support formal verification.

We can prove system correctness by using formal methods.
Here the word prove means mathematical rigorous proofs
that specifications are according to the objectives, code is
according to the specification, and code produces only the
results that are required. These methods can achieve
complete exhaustive coverage of the system thus ensuring
that undetected failures in behavior are excluded. The core
objective of a solid formal approach is to provide
unambiguous and precise specification [4]. Correctness of
the system is proved by formalizing the specifications of
each component and process. Formal methods provide the
formal analysis of the software. This formal analysis can
be done manually, can be completely automated, or can be
achieved by a combination of tools with human assistance.
A formal method uses formal tools and notations; it uses
mathematical notation consisting of set theory and logic
but can also use a much more complicated notation. The
requirements model based on mathematics create precise
specification of the software, and ensures correctness. The
formal representation of software requirements provides a
way for logical reasoning about the construct produced
and this achieves precise description and allows a stronger
design that satisfies the required properties.

Formal notations are used to produce a complete detailed
representation of the system that helps in the
understanding, design, and development of the system.
The requirements for distributed, large and complex
systems are complicated, problematic at the initial stages
and evolve periodically throughout the life cycle. This
creates a need for the method of requirement
implementation to be flexible and robust, so that it can
easily accommodate the continuous versions of change [8].
This leads us to think about a light-weight implementation
of formal methods. Formal methods can be applied to
selected components of a system in varying degrees,
depending on the needs. This degree of formalization can
range from very formal to very informal. Light-weight
formalization lies at a level between very formal and very
informal. In very formal, meta-language is also formalized.
In the very informal model, the meta-language can be a
simple natural language representation. This range of

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 248

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

formalization gives us the flexibility to apply formal
methods according to our requirements and
implementation rigor. Light-weight formal methods will
provide the advantages of formalism and at the same time
will reduce drawbacks due to over formalization.

Model-checking [1] [3] is a type of formal method used to
verify concurrency properties; it can be viewed as
exhaustive investigation of a system state space to prove
certain correctness properties. Process calculi based
symbolic techniques such as π–ADL [11], CSP [6], CCS
[10], ACP [2] and LOTOS [12] provide formal
specifications for complex systems. Here complex means a
system with a large number of independent interacting
components, with concurrency between components and
constant evolution. As formal verification techniques are
getting more mature, our capability to build complex
systems also increases.

2.2 Formalism: Labelled Transition System

LTS is a collection of techniques for the automated formal
verification of finite-state concurrent systems. It consists
of interacting finite state machines along with their
properties; it performs compositional analysis to
exhaustively search for violations of the required
properties. Each component of a specification is described
as LTS, which has all the possible states a component can
reach and all possible transitions it can perform.

Fig.2 LTS Analyzer takes FSP as input

FSP is a process algebra notation having finite state
processes used for the concise description of component
behavior particularly for concurrent systems. It is a light-
weight implementation of formal methods that provides
construct to formalize specifications of software

components and architecture. Each component consists of
processes; each process has a finite number of states and is
composed of one or more actions. There exists
concurrency between elementary calculator activities for
which there is a need to manage the interactions,
communication and synchronization between processes. [9]
proposed an analysis tool LTS Analyzer for FSP notation.

2.3 Correctness: Safety and liveness properties

Safety property is an invariant which asserts that
“something bad does never happen”, that is an acceptable
state of the system is maintained. For example, a property
which assures that a power reactor temperature would
never exceed 100 degree Centigrade etc. [9] have defined
safety property S = {a1, a2 … an} as a deterministic
process that states that a trace consisting of the actions in
the alphabet of S, is accepted by S. ERROR conditions are
like exceptions which present the states that are not
required. In complex systems safety properties are
specified by directly specifying what is required.

Liveness property states the “something good happens”
that shows and specifies the states of system that can be
brought about by an agent under certain given conditions
[14]. Progress is a type of liveness property. Progress P =
{a1, a2 ... an} defines a property P which states that at
least one of the actions from a1, a2 … an will be executed
infinitely in an infinite execution of the system. [5].

3. CASE STUDY: Multi-Agent Robotics
Transport System

In this section we present a case study of multi-agent
robotics system. It is a system composed of robotic
transporting agents. The objective is to specify our
system and then verify the correctness properties of
safety and liveness. The mission is to transport stock
from one storehouse to another. They move in their
environment which in this case is static i.e. topology
of the system does not evolve at run time. There is a
possibility of collision between agents during the
transportation. Collision resolution techniques are
applied to avoid system deadlocks. We have
specified each and every part of the system i.e. agents
along with the environment in the form of LTS.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 249

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

3.1 Types of Agents

There are three types of agents
1) Carrier agent: It transports stock from one store-

house to another; can be loaded or unloaded and;
can move both forward and backward direction.
Each road section is marked by a sign number and
the carrier agent can read this number.

2) Loader / Un-loader agent: It receives/delivers stock
from the storehouse, can detect if a carrier is waiting
(for loading or unloading) by reading the presence
sensor, it ensures that the carrier waiting to be
loaded is loaded and the carrier waiting to be
unloaded is unloaded.

3) Store-manager agent: manages the stock count in
the storehouse and it also transports the stock
between storehouse and loader/un-loader.

3.2 Environment

There is a road between storehouse-A and storehouse-B
which is composed of a sequence of interconnected sec-
tions of fixed length. Each road section has a numbered
sign, which is readable by carrier agents. There are three
types of road sections depending upon the topology of the
road as shown in fig.3. Each of the three types of road
sections has a unique numbered sign. The road is single
lane and there is a possibility of collision between agents.
There is a roundabout at storehouse-A and storehouse-B.

(a) N is the unique

numbered sign. P is

the parking Flag

(TRUE or FALSE) e.g.

the section that can be

used as a parking.

(b) N is the unique

numbered sign.

(c) Road section

present at the loader

and un‐loader which

detect the presence of

the carrier agents at

the loader and un‐

loader.

Fig.3 Environment consisting of road partitions

3.3 Scenario

In this case study we have used a road topology consisting
of nine road partitions to represent all states and processes
as shown in figure-3. It is the smallest circuit (i.e.
combination of road partitions) that allows us to study all
properties that would be in a much larger circuit. We have
considered the case in which initially storehouse-A is full
and storehouse-B is empty. The carrier task is to transport
stock from storehouse-A to store-house-B until the
storehouse A is empty. Loader at the storehouse-A loads,
and the un-loader at the store-house-B unloads the carrier
agent. The store-manager keeps a count of stock in each
storehouse. In this case the environment is static. At the
central section (3, 4, 5) there is a possibility of collision
between carrier agents coming from the opposite
directions. Priority is given to the loaded carriers i.e. if
there is a collision between a loaded and an empty carrier
than the empty carrier moves back and waits at the parking
region during which the loaded carrier passes and unloads.
The parking region as shown in the fig.3 consists of the
road partition 8.

4. Light-weight LTS specifications and
verification

4.1 Road – System Environment

In our case study the road is environment and each carrier
has its particular route. The route is the path taken by
carrier agents on the road to transfer stock from one
storehouse to another. The route has been classified in two
types the FULL_ROUTE path taken by loaded carriers and
the EMPTY_ROUTE path taken by the empty carriers.
The carrier agents move on the route in a clockwise
direction. Here below are the FSP specifications for the
route.

The LTS generated by these formal FSP specifications is
shown in fig.4.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 250

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

4.2 Carrier agent

The next step is to specify the carrier agents i.e. specify the
empty-carrier and full-carrier agents. Here only one carrier
agent (e.g. c1) is taken to represent all the possible states of
the system that can arise.

Fig.4 LTS specifications of the route (environment)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

range R = 1..9
ROUTE = EMPTY_ROUTE[9],
FULL_ROUTE[v:R]=(
 when (v==7) readunloadSign -> FULL_ROUTE[v]
| when (v!=7) readSign[v] -> FULL_ROUTE[v]
| when (v>=1&v<=6)movetonext -> FULL_ROUTE[v+1]
| when (v==7) waitforunloading -> EMPTY_ROUTE[7]
),
EMPTY_ROUTE[v:R]=(
 when (v==1) readloadSign -> EMPTY_ROUTE[1]
| when (v!=1) readSign[v] -> EMPTY_ROUTE[v]
| when (v==7) movetonext -> EMPTY_ROUTE[v+1]
| when (v==8) movetonext -> EMPTY_ROUTE[5]
| when (v==5) movetonext -> EMPTY_ROUTE[v-1]
| when (v==4) movetonext -> EMPTY_ROUTE[v-1]
| when (v==3) movetonext -> EMPTY_ROUTE[9]
| when (v==9) movetonext -> EMPTY_ROUTE[1]
| when (v==3) movetoprevious -> EMPTY_ROUTE[v+1]
| when (v==4) movetoprevious -> EMPTY_ROUTE[v+1]
| when (v==5) movetoprevious -> EMPTY_ROUTE[8]
| when (v==1) waitforloading -> FULL_ROUTE[1]
).

1
2
3
4
5
6
7
8

range R = 1..9
CARRIER = MOVE_EMPTY,
MOVE_EMPTY = (readSign[s:R] -> {movetonext,movetoprevious} -> MOVE_EMPTY
 | readloadSign -> waitforloading -> MOVE_FULL
),
MOVE_FULL = (readSign[s:R] -> movetonext -> MOVE_FULL
 | readunloadSign -> waitforunloading -> MOVE_EMPTY
).

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 251

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Fig.5 LTS specifications of Carrier agent

4.3 Loader & Un-loader agents

Loader and un-loader agent loads and un-loads the carrier
agents respectively

Fig.6 LTS specifications of Loader agent

Fig.7 LTS specifications of Un-Loader agent

4.4 Stock management

Stock management ensures that the stock at the beginning
of the case study at storehouse A is equal to the stock at
the end of the case study at storehouse B.

4.5 NOLOSS property

Safety property NOLOSS of Carrier agent infers that there
is no loss of stock during the carrier load, unload, and
movements between the storehouses. To represent the LTS
here with all its states, we have taken a mini-route with
only three road partitions. The carrier is loaded and then

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

const MaxS = 2 /// maximum number of Stock
range S = 0..MaxS

STOCKFULL_MANAGEMENT = STOCK_FULL[MaxS],
STOCK_FULL[st:S] =
 (stockCountA[st] -> STOCK_FULL[st]
| when(st>0)
 decrementStockA -> send -> STOCK_FULL[st-1]
| when(st==0) stockEmptyA -> STOP).

STOCKEMPTY_MANAGEMENT = STOCK_EMPTY[0],
STOCK_EMPTY[st:S] =
 (stockCountB[st] -> STOCK_EMPTY[st]
| when(st<MaxS)
 receive -> incrementStockB -> STOCK_EMPTY[st+1]
| when(st>=MaxS) stockFullB -> STOP).

||STOCKSYSTEM =
 (STOCKFULL_MANAGEMENT || STOCKEMPTY_MANAGEMENT)
/{decrementStockA/receive, incrementStockB/send}.

1 LOADER = (waitfordeliver -> waitforloading -> LOADER).

1
2

UN_LOADER =
waitforunloading -> waitforreceive -> UN_LOADER).

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 252

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

the carrier is full, there is no loss of stock during the
carrier agent’s trajectory between storehouse A and B.
Safety property specifies the set of all traces that satisfy
the property for a particular action alphabet. When the
model produces traces, which are not accepted by the
property automata then a violation is detected during reach
ability analysis.

5. Concluding remarks

The complete system is specified as a parallel composition
of all processes and each process synchronize by means of
shared actions. This paper focuses on the role of light-
weight formal specifications for system correctness.

The development also depends upon the degree of
formalism, the more the degree of formalism, the more the
cost is, as formalism needs time, expertise, and human
resources.
This approach has models based on formal methods and it
revolves around lightweight formal verification of
correctness properties (i.e. safety and liveness) in each
phase from early requirements to the implementation i.e.
Gaia multi-agent method requirement specifications, FSP-
based LTS verification specifications.
The objective is to specify a multi-agent robotic system
based on light-weight formal methods that are practical
and feasible. The multi-agent robotic systems have con-
currency, synchronization, correctness, and deadlock
issues to be handled and formal light-weight development
methods offer solutions for these issues. Another objective
is the use of behavior analysis during analysis and design
to discover correctness and safety problems early in the
development cycle.

Fig.8 LTS specifications of stock management

1
2
3
4
5
6
7
8
9
10
11
12
13

const N=2 // Number of carrier agents
const Min=0 // First(Load) road partition
const Max=3 // Last(Unload) road partition

property NOLOSS_Stock =
 (empty.loaded -> ONTHEWAY[1]),

ONTHEWAY[part:Min..Max] = (
 when(part>Min && part<Max)
 full.moveto[part] -> ONTHEWAY[part+1]
 | when(part==Max)
 full.unloaded -> NOLOSS_Stock).
||NOLOSS = (c[1..N]:NOLOSS_Stock).

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 253

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Fig.9 LTS specifications NOLOSS

Acknowledgments

We are grateful to Dr. Muhammad Mukhtar, Vice
Chanceller, The Islamia University of Bahawalpur for his
support for computer science and technology.
We are thankful to Prof. Dr. Flavio Oquendo for his
continuous supervision and support. He is a Professor of
Computer Science and Software Engineering at the
University of South Brittany, part of the European
University of Brittany, France, where he leads the
ARCHLOG research team on Software Architecture.
We are grateful to Dr. Yann Le-Guyadec, Associate
Professor of Computer Science and Software Engineering
at the University of South Brittany, part of the European
University of Brittany, France.

References
[1] Berard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A.,

Petrucci, L., Schnoebelen, P,. and McKenzie, P. “Systems
and Software Verification: Model-Checking Techniques and
Tools”. Springer-Verlag, 2001.

[2] Bergstra, J.A., and Klop, J.W. “ACPτ:A Universal Axiom
System for Process Specification”, CWI Quarterly 15, pp.3-
23, 1987.

[3] Clarke, E., Grumberg, O., and Peled, D. “Model Checking”.
MIT Press, 2000.

[4] George, V., Vaughn, R. “Application of Lightweight Formal
Methods in Requirement Engineering”. CROSSTALK: The
Journal of Defence Software Engineering, 2003.

[5] Giannakopoulou, D., Magee, J., and Kramer, J. “Fairness
and priority in progress property analysis”. Technical report,
Department of Computing, Imperial College of Science,
Technology and Medicine, 180 Queens Gate, London SW7
2BZ, UK, 1999.

[6] Hoare, C. A. R. "Communicating sequential processes".
Communications of the ACM, v.21 n.8, p.666–677, 1978.

[7] Jennings, N., Sycara, K., and Wooldridge, M. “A roadmap
of agent research and development”. Int. Journal of
Autonomous Agents and Multi-Agent Systems, 1(1):7-38,
1978.

[8] Luqi and Goguen, J. "Formal Methods: Problems and
Promises." IEEE Software, Volume 14, No 1, pp 73-85,
1997.

[9] Magee, J., and Kramer, J. “Concurrency: State Models and
Java Programs”. John Wiley and Sons, 2nd edition, 2006.

[10] Milner, R. “A Calculus of Communicating Systems”,
Springer Verlag, ISBN 0-387-10235-3, 1980.

[11] Oquendo, F. “π-ADL: an Architecture Description Language
based on the higher-order typed π-calculus for specifying
dynamic and mobile software architectures”, ACM
SIGSOFT Software Engineering Notes, v.29 n.3, May 2004.

[12] Van Eijk, P.H.J. et al. “The Formal Description Technique
LOTOS”, North-Holland, Amsterdam, 1989.

[13] Wooldridge, M., and Jennings, N. “Intelligent agents:
Theory and practice”. Knowledge Engineering Review,
10(2):115-152, 1995.

[14] Zambonelli, F., Jennings, N., and Wooldridge, M.
“Developing multiagent systems: The gaia methodology”.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 254

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

ACM Transactions on Software Engineering and
Methodology, 12(3):317-370, 2003.

Dr. Nadeem Akhtar is Assistant Professor at the Department of
Computer Science & IT, The Islamia University of Bahawalpur.
He completed his PhD from the research Lab. VALORIA of
Computer Science, University of South Brittany (UBS), France
in 2010. His research areas are formal specification, formal
architecture, and service-oriented architecture for robotics.

Dr. Malik M. Saad Missen is Assistant Professor at the Islamia
University of Bahawalpur. He completed his PhD from
University of Toulouse in 2011. His research interests include
text data mining, information retrieval, social network research.
He is currently exploring formal specification fronts.
	
	
	
	
	

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 255

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

