

A Contractual Specification of Functional and Non-Functional

Requirements of Domain-Specific Components

Maryem Rhanoui1, Bouchra El Asri2

 1 IMS Team, SIME Laboratory, ENSIAS, Mohammed V Souissi University

Rabat, Morocco

2 IMS Team, SIME Laboratory, ENSIAS, Mohammed V Souissi University

Rabat, Morocco

Abstract
Unlike traditional software engineering that aims to satisfy the

requirements of a single system, domain-specific component-

based engineering focuses on providing reusable solution for a

family of systems. To be adopted in a safety-critical environment

it must handle quality requirements and offer mechanisms to

ensure the reliability level of the components and the system. For

this purpose, the contract-based approach is a lightweight formal

method for designing and specifying systems’ requirements, it

can be introduced in an early stage during the design phase.

In this paper, we present a multilevel contract model and a

domain-specific modeling language that aims to address

reliability and quality issues for component oriented systems by

expressing and specifying a set of its properties and constraints.

Keywords: Contract, Domain-Specific Components, Domain-

Specific Language, Feature-Oriented Domain Analysis.

1. Introduction

With the growing size and complexity of software systems,

reuse has emerged as a promising methodology for

system’s construction; it consists in creating and in

assembling systems with existing components. In order to

promote large-scale reuse and reduce development costs,

domain-specific components engineering aims at designing

and implementing a family of systems so as to produce

qualitative applications in a particular domain.

The software product line engineering is a novel approach

which allows developing a multitude of products or

software systems with a considerable gain in terms of cost,

time and quality; it consists in developing a line of

products rather than individual systems. Domain

engineering [1] is the foundation of the construction of a

system with reusable components and consists in defining

the commonality and the variability of the product line and

developing and building assets (reusable artefacts) which

will be reused for the construction of products.

Among the methods to develop a software product lines,

feature-oriented software development (FOSD) [2] is an

approach for the development and customization of large-

scale software systems, it implements features as first-class

element to model, design, and implement software. The

fundamental principle of FOSD is the modularization of

the system features in order to optimize scalability and

reusability.

In the context of a growing interest in reuse of business

components, the development of critical and complex

systems is confronted with dependability and reliability

limitations and challenges. As a matter of fact,

dependability [3], which is the property that allows placing

a justified confidence in the quality of the delivered service,

is becoming increasingly important in complex systems

design. To design a dependable and reliable system, it is

necessary to handle functional requirements and behavioral

relationships between components, and also take into

account the quality of service properties.

As an expanding approach, the development of feature-

oriented components still needs more formal models and

frameworks for modeling and verifying systems. We are

interested by the contract-based approach initiated by

Meyer [4], which is a lightweight formal method for

designing quality-driven systems by specifying its non-

functional and quality properties. Despite the fact that the

concept of component contracts was formerly proposed, it

still not commonly used in software development.

The present work is intended to contribute to the

specification and verification of systems’ requirements.

Our contribution is as follows: we propose a formal

contract model and a textual domain-specific language for

modeling and specifying functional and non-functional /

quality properties of domain-specific components, the

model covers different levels of the system, which is the

feature, component, and composition levels. Furthermore,

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 172

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

it allows the verification and validation of the constraints

outlined in the contract.

The remainder of this paper is organized as follows:

section 2 provides a general overview of the knowledge

base and motivation of our work, section 3 is dedicated to

the presentation of the multilevel contract model then

section 4 describes the contract specification language.

Section 5 explains the motivating example and highlights

our work problematic. Finally, section 6 positions our

approach with related works, while section 7 concludes the

paper.

2. Background and Motivations

Component-based software development is a major asset

for the construction of complex and large systems.

Components are reused for different products in the

software product line. To develop a product line, common

and variable components are identified and developed to

meet the requirements of a specific application in a

particular domain, the process of the development of these

components is called Domain Engineering. It consists in

developing and in building reusable artefacts that will be

reused for the construction of products. In this section we

present the main concepts of our work and the motivations

and interest of our approach.

2.1. Software Product Line

The software product lines is a recent approach that favors

systematic reuse throughout the software development

process and enables the development of a set of software

products with a considerable gain in terms of cost, time

and quality. A software product line is a set of software-

intensive systems sharing a common, managed set of

features that satisfy the specific needs of a particular

market segment or mission and that are developed from a

common set of core assets in a prescribed way [5].

Software product line engineering is based on two

fundamental principles, domain engineering and

application engineering as well as the management of

variability and commonality. The domain engineering is

the development of assets which will be used in the

product line, whereas the application engineering concerns

the construction of final products with specific

requirements.

2.2. Feature Oriented Domain Analysis

Feature-Oriented Software Development (FOSD) is a

methodology for the design and construction of software

product lines based on the separation of concern [6], each

concern is modularized in a separate component called

feature. Features are used as first-class entities to analyze,

design, implement, customize, debug or develop a software

system [2].

The commonalities and variabilities among products in the

same domain can be expressed in terms of features. A

feature is a prominent or distinctive and user visible aspect,

quality, or characteristic of a software system or systems

[7]. A feature is either [8]:

 Mandatory, it exists in all products,

 Optional, it is not present in all products

 Alternative (One Of), it specializes more general

feature; only one option can be chosen from a set of

features.

 Or : One or more features may be included in the

product

FODA is a domain analysis method that focuses on

providing a complete description of the features of the

domain, giving less attention to the phases of design and

implementation [7]. It combines the advantages of the

component-based approach and domain engineering by

providing generic components that improves components

reuse and optimization.

2.3. A Contract Specification Language

Dependability is the system's property that allows users to

place a justified confidence in the quality of the service it

delivers. The purpose of the research efforts in this field is

to specify, design, build and verify systems where the fault

is natural, expected and tolerable.

To satisfy quality requirements, we propose a contract

specification language to support the model-based

development of domain-specific component-based systems.

Indeed, within the component and service paradigms,

contracts have become an integral part of their definition

[9] “A software component is a unit of composition with

contractually specified interfaces and explicit context

dependencies only. A software component can be deployed

independently and is subject to composition by third

parties.” The contract approach allows considering the

qualitative aspects in all stages of the system development

cycle, it is used from early requirements capture, to system

design and implementation.

The contract language provides means for the specification

and verification of functional and non-functional properties

of component-based systems without requiring the full

formality of proof-directed and mathematical development.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 173

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

A domain-specific language DSL [10] is a programming

language restricted to a precise domain to solve problems

determined in a particular context. The use of a domain

specific language provides several benefits compared to

general languages such as improving productivity, data

quality and longevity, it provides mechanisms for

validation and verification and involves the intervention of

the domain experts [11]. Unlike General Purpose

Language, a DSL is more expressive in a particular domain

and provides the possibility of using notations and

constructions adapted to the field, which is a substantial

advantage in terms of expressiveness and ease of use.

3. Multilevel Contract Artifact

The development of a domain-specific modeling language

involves the following steps: domain analysis, design and

implementation [12]:

 Domain analysis: The analysis identifies the

domain and gathers domain knowledge. It defines

the scope and terminology of the domain,

describes the key concepts and provides a feature

model describing the commonalities and

variabilities of the domain.

 Design: The language design is essentially to

define its abstract and concrete syntax and

semantics.

 Implementation: The implementation of the

language is to develop a library that implements

the semantic concepts of the domain and a

compiler.

3.1. Contract Model

The first step in defining a specific language is the domain

analysis, the concept was introduced by Neighbors [13] to

describe the study of the problem domain of a family of

applications. It consists in the identification, acquisition

and development of reusable information about a problem

domain to be reused for the specification and construction

of software.

The domain analysis identifies the main language concepts

and the relationships between them. Feature Oriented

Domain Analysis (FODA) is a methodology for domain

analysis [12] where the concepts of the language are

represented as features in a feature model. It is particularly

adapted to the construction of reusable elements.

A contract is a mechanism that explicitly specifies

behavior, requirements and interaction between

components in order to improve the quality and

dependability of the system and facilitate its understanding.

The principle of design by contract dates back to the Hoare

logic [14], Hoare triples provides a mathematical notation

to express correction formulas. A correction formula is an

expression of the form:

{ φ }A{ ψ }

This means that "any execution of A, starting in a state

where φ is true, will end in a state where ψ holds". In the

field of software engineering, A denotes an operation or

software while φ and ψ define assertions, respectively

precondition and postcondition.

The contract models the relationship between an entity and

its clients as a formal agreement, expressing and precisely

defining the rights and obligations of each party in order to

achieve a high degree of confidence in large software

systems [15].

3.2. Multilevel Contract

The multilevel contract model specifies both functional

and non-functional requirements for component. We

distinguish several types of contracts; a contract can

express the syntactical specifications as well as the

functional and nonfunctional requirements of

components. A requirement is a condition or a necessary

capacity to solve a problem or reach a goal.

 Syntactic contract: basic contract that expresses

principally syntactic specifications and potentially

information about the operations provided by the

component input ports and output.

 Functional contract: specifies the behavior of a

component in terms of preconditions,

postconditions and invariants. Behavioral contract

guarantees that the component behaves according

to its specification but does not guarantee its

accuracy.

 Nonfunctional contract: specifies quality of

service requirements of the component.

A contract consists of a set of constraints expressed in the

form of assertions; a constraint is alternately a

precondition, postcondition or invariant. A precondition

expresses requirements that the element must meet to

function properly, a postcondition expresses properties that

are provided in return for the execution of the element. An

invariant is a property that applies to all instances of the

element beyond the specific routines.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 174

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Figure 1 - Contract Levels

The multilevel contract model specifies both functional

and non-functional requirements for feature, component

and composite levels. We have defined three levels of

component contracts as shown in Fig. 1:

Feature Contract: verifies the compliance and the

absence of errors in the feature. The main errors are dead

and false variables features caused by contradictions in the

relations between features [16] [17]. An example of a

contradiction: a feature A requires a feature B, and B

excludes feature A feature, this leads to an error in the

resulting feature model.

Textual constraints are used to represent certain

dependencies between features. The most common

constraints are:

 require: to express the presence of feature

requires the presence of another

 mutex (mutually exclusive with) to indicate that

the two features cannot be present simultaneously

 conflicting: is a lightweight version of mutual

exclusion and refers primarily to quality attributes.

If the conflict cannot be dissolved, this

relationship conflict can also be treated as

mutually exclusive.

Component Contract: for the proper activity of the

component and the respect of its functional and quality

requirements. Component contract checks the conformity

of the component and whether the implementation

complies with all specifications and requirements defined

for this component. The contract verifies the internal

functional and non-functional compliance of the

component, it provides behavioral specifications on

different ports (or interfaces) of the component.

The contract is expressed in terms of precondition,

postcondition and invariants as shown in figure 2.

Figure 2 - Contract structure

 Precondition: A precondition expresses the

requirements to be met by the component to run

properly. An exception occurs when an operation

is called with an unverified precondition.

 Postcondition: A postcondition expresses

properties that are provided in return for the

execution of the component. An exception occurs

when an operation is called with a satisfied

precondition and it returns with an unverified

postcondition.

 Invariant: An invariant is an assertion that is

always true during the execution of the

component.

Configuration Contract: ensure safe composition and

assembly of trustworthy components. The verification of

composition of a component-based system S consists in

proving that the composite system satisfies its specification

if all its components satisfy their specifications [18]. So to

prove that S guarantees a property M in an environment of

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 175

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

hypothesis E, supposing that every component meets a

property Mi according to the environment of hypothesis Ei.

Figure 3 - Composition contract

To our knowledge, there is still no research work for the

specification and validation of contractual requirement in

the feature, component and composite level.

In the next section, we present our proposition of a

domain-specific modeling language for contract

specification, its abstract and concrete syntax as well as its

implementation for requirements specification.

4. CCSL Language

The Component Contract Specification Language - CCSL

is a declarative and descriptive domain-specific language,

its objective is to allow the specification of different levels

of contracts and the description of its elements.

Figure 4 presents the development roadmap of the main

components of our language. In the following chapter, we

detail the domain analysis phase and the definition of the

abstract and concrete syntax. We define CCSL as a

metamodel enriched with notations and corresponding

tools to support it. The metamodel is the concept model of

DSL; it defines the elements of a language allowing to

express the models. The metamodel describes the concept,

nature, association between language elements, the model

hierarchy and rules of correctness of the model.

Figure 4 - CCSL Developement Steps

The contract feature model produced from the domain

analysis presented in the previous section is drawn in

figure 5 following the FODA method.

4.1. Abstract Syntax: CCSL Metamodel

A domain-specific language has the following properties

[19]:

 Abstract syntax: An abstract syntax is a set of

rules that defines a set of structures without

prescription of a specific outside world. The

abstract syntax specifies the basics of the

language and their relationship through a

metamodel.

Figure 5 - Contract Feature Model

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 176

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Figure 6 - CCSL Abstract Syntax Metamodel

 Concrete syntax: a concrete syntax specifies

structures of real and representable computing

data. The concrete syntax specifies the real aspect

of the language by attributing a visual symbol or a

textual description to the elements of languages

according to the structure defined by the abstract

syntax.

 Semantic: A semantic implicitly or explicitly

describes the meaning of the language constructs.

The abstract syntax of the CCSL language is defined via a

metamodel. The construction of the metamodel of a

domain-specific can be based on two main approaches: the

creation from scratch that despite a great design effort

allows a better flexibility and scalability, or the extension

of an existing metamodel to take profits from the existing

and minimize the development effort.

The metamodel of the CCSL (Fig. 6) language is modeled

with the Ecore metamodel of the Eclipse Modeling

Framework (EMF) [20]. EMF is an Eclipse modeling tool

based on engineering model driven approach which

provides mechanisms for persistence, editing and

processing models and definitions of abstract syntax.

The Ecore metametamodel follows the eMOF standard

(Meta Object Facility) defined by the OMG [21]. The

metametamodel defines named classes (EClass). A class

has zero or more attributes (EAttribute) named and typed

(EDataType) and zero or more references (EReferences).

The contract is the central element of language. A contract

(Contract metaclass) is based on a pair of assertions

(Assertion metaclass) and expresses a set of syntactic,

functional and non-functional requirements (Requirement

metaclass). An assertion consists of an assumption and a

guarantee. There are three types of assertions:

preconditions (Precondition metaclass), postconditions

(Postcondition metaclass) and invariant (Invariant

metaclass).

The requirements are described by Boolean expressions

structure and may consist of a set of other requirements.

These requirements are defined at different levels (Level

metaclass) of the system:

 Syntactic: A syntactic requirement (Syntactic

metaclass) provides the syntactic description of

the signature of the component.

 Functional: A functional requirement

(Functional metaclass) is a property related to the

functionality of the component.

 NonFunctional: A non-functional requirement

(NonFunctional metaclass) is the quality or

characteristics of the component that determines

how and under what conditions the service will be

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 177

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

delivered. These requirements are not directly

related to the functionality provided by the

component.

The contract is defined at different levels of the system:

 Component: The component level for the

efficient operation of the component and

compliance with its requirements.

 Composition: the composition level ensures the

reliability of the composition of the components

 Feature: the feature level specifies constraints

compliance features of the model.

4.2. Concrete Syntax

While abstract syntax specifies the concepts that are

presented in the language and the relationships between

these concepts, the concrete syntax defines a mapping

between the meta-elements and their textual or graphical

representations.

The CCSL concrete syntax allows domain-specific

component-based systems designers to specify textually

and precisely the contracts of individual system

components. EMFText defines the CS language (Concrete

Syntax Specification Language) for specifying concrete

syntaxes. The generator automatically creates a CS syntax

conforms to the HUTN specification standard (Human

Usable Textual Notation) metamodel of language. HUTN

is an OMG standard [22] to store the templates in a

humanly understandable format.

Figure 7 shows a contract specification with the CCSL

language.

4.3. Code Generation

Domain-specific languages create models that express the

structure and behavior of the system in an efficient,

rigorous and domain-specific way. These models are

afterward transformed into a code by a suite of model

transformation. Figure 8 shows how the contract

specification written in the DSL is transformed into a Java

Modeling Language (JML) code.

Figure 8 - CCSL to JML

JML [23] is a formal specification language of the

behavioral interfaces. It allows to specify the syntactic

interface of the Java source code and as well as its

behavior. The specifications are added to the code

comments surrounded of /*@ and @*/or after //@. It

means that the final program is compiled with the standard

Java compiler.

5. Case Study

In this section we present a motivating example showing

the problem of requirement’s specification and verification

of a safety-critical component-based system through an e-

health system. Health is a major issue for a country’s

economic and social development that requires both

reducing costs and ensuring reliability and quality of

service. The unprecedented development of mobile

technologies - offering higher data transmission speeds and

intelligent terminals - has improved the way services and

health information can be accessed, delivered and managed.

This has led to the expansion of e-health systems.

The DiabetesSM (Diabetes Self-Management) application

is an e-health application that allows patients and clinicians

to track and monitor the status and evolution of diabetes

patients across different indicators. Alerts are sent when

these indicators reach a critical level that may affect the

patient's health. The application is organized into several

main features:

Medical Record: The medical record containing the main

information of the patient and the complete history of

health problems and diseases and treatments related to

medication received for these problems.

Figure 7 - A Component Contract Specification with CCSL

component contract ct {
@Functional
requires precondition pre expression exp1
ensures postcondition post expression exp2
holds invariant inv expression exp3

@NonFunctional
….
}

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 178

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Health Record: A record where the patient records the

results of the various daily checks, the observations of the

condition of the eyes and feet, and the activities performed

during the day or week in terms of diet and physical

activity.

Patient Preferences: the preferences of the patient where

he indicates his objectives in terms of diet, physical

activity, control and blood test (glycaemia, cholesterol,

blood pressure) and the possible obstacles. Based on these

informations the system proposes a set of suitable

strategies organized in an action plan.

Patient Coaching: assistance supplied by the system in the

form of on-line or email reminders reminding the patient to

take a medicine, to do sport and to inform the results of his

daily controls.

5.1. DiabetesSM Feature Model

We represent the DiabetesSM system with the following

Feature Model (Fig. 10). Feature Model is a way to

represent the information of all possible configurations for

a specific product that can be built. The features are

organized hierarchically in a form of a tree diagram, the

diagram contains a root element, and any feature can have

sub-features as well as constraints, generally of inclusion

or exclusion.

The Feature Model is generated using FeatureIDE tool

[24]. Functional requirements of the DiabetesSM system

are expressed in terms of features that are required,

optional, alternative or exclusive.

5.2. Requirements

A non-functional requirement [25] is a requirement that

characterizes a desired quality property of the system as

performance, robustness, usability, maintainability, etc.

For instance, we implement two non-functional

requirements:

NFR1 Response Time: It is important to have real-time

access to patient medical data, especially in emergency

situations. Therefore, the response time of the feature

profile Patient must not exceed 2s.

NFR2 Reliability: The attribute daily amount of

carbohydrates should be accurate and reliable for this, the

feature Health records shall, before its execution, calculate

the rate several times, if they have the same value, then it

can run normally.

A functional requirement is a requirement defining a

function of the system to be developed. What the system

has to make.

FR1 Diet: the diet must be adapted to the profile (sex,

weight cuts and age) of the patient. In the patient’s

objectives, the contract should calculate the minimal and

maximal value of daily calories to be consumed according

to the profile of the patient. The patient can then specify

his desired diet. The contract verifies afterward that the

specified value is conform to the calculated margin.

The e-health application has high reliability requirement,

moreover, it should be adapted to the different specificities

of the patients’ profiles and healthcare needs. To meet

these requirements, we use domain-specific components

engineering enhanced with quality contracts.

We implement the DiabetesSM system’s requirement with

our CCSL language.

Also, it is important, especially for patients identified with

insulin resistance, pre-diabetes and diabetes to monitor the

glycemic load. Glycemic Load is a measure that uses the

Glycemic Index and combines it with the amount of the

eaten food.

Figure 10 - DiabetesSM Feature Model

component contract medicalRecord {
@NonFunctional
holds invariant inv1 expression
response_time < 2s
}

Figure 9 - Non Functional Contract

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 179

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

The formula for Glycemic Load is:

It is recommended to keep the total Glycemic Load under

100 per day.

6. Related Works

We propose a contract specification language to handle

functional and non-functional properties of feature-

oriented component-based systems. In this section we

discuss proposed works related to the main concepts of our

approach which are: design by contract, functional and

non-functional specification and reliable feature-oriented

component-based systems.

Several research works have focused on the design by

contract, they carried on static verification and operate

contracts for statically predict program errors [26]. Then

Findler [27] introduced the notion of higher order contract

values, concept which has been taken and expanded

thereafter [28]. Polikarpova [29] proposed a model-based

formal contractual specification for the Eiffel language.

As Feature-Oriented Programming is an expanding new

approach, research in the area of quality and dependability

are still in a preliminary phase. Among the approaches to

ensure the security of systems, design by contract is a

formal and efficient method systems' of design and

construction to improve reliability and attest the absence of

errors. In this context, Thum [30] presented five ways to

integrate Design by Contract in the Feature-Oriented

Programming.

As for non-functional properties specification, number of

QoS specification language were proposed to specify

quality aspects, QML [31] is a quality constraints

specification language that separates the QoS specification

from the specification of the functional aspects.

Component Quality Modeling Language (CQML) [32] is

a generic language for defining non-functional properties

of component-based systems; it is platform-independent

and annotates both the interface and the component.

However CQML does not allow the specification of all

types of quality of services (e.g. security aspects cannot be

specified) nor the specification of resources.

It is interesting to notice that the main aspects discussed

separately in the previous proposals are considered in our

approach.

7. Conclusions

Contract-based design is a rigorous and effective approach

for modeling and verifying quality-driven systems, it is

particularly suitable for component-based systems. In this

work we propose a multilevel contract model and a

domain-specific language for expressing and verifying

functional and non-functional properties in all levels of

component based systems.

The main advantages of our approach are as drawn:

 Large Coverage: Quality is considered at all

stages of the development cycle of the system.

Indeed, we can define the functional and non-

functional requirements, implement, and then

verify them in the feature, component, and

composition levels.

 Reduced Complexity: Most existing approaches

have a heavy and complex formality, to be

understood and adopted in industrial projects, our

approach provide evidence of non-functional

properties without requiring the complete

formality of mathematical development.

 Tooling Environment: A framework and an

environment that take profits of the MDA

advantage enables better use and support the

approach.

One limitation of our approach is the wide variety of non-

functional requirements [25] that are affected by a large

number of subjective factors. To overcome this limitation,

we intend to extend the model-driven engineering benefits

to requirements management by integrating and using the

various proposed requirements models.

References

[1] K. Czarnecki and U. Eisenecker, Generative Programming:

Methods, Tools, and Applications: ACM Press/Addison-

Wesley Publishing Co., 2000.

[2] S. Apel and C. Kästner, "An Overview of Feature-Oriented

Software Development," Journal of Object Technology

(JOT), vol. 8, pp. 49-84, 2009.

[3] J.-C. Laprie, Guide de la Sûreté de Fonctionnement:

Cépaduès, 1995.

component contract dietJournal {
@Functional
ensures postcondition ps expression
glycemic_index < 100
}

Figure 11 - Functional Contract

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 180

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

[4] B. Meyer, "Applying Design By Contract," Computer, vol.

25, pp. 40-51, 1992.

[5] P. Clements and L. Northrop, Software Product Lines:

Practices and Patterns: Addison-Wesley Longman

Publishing Co., Inc., 2001.

[6] D. L. Parnas, "On The Criteria To be Used In

Decomposing Systems Into Modules," in Software

pioneers, B. Manfred and D. Ernst, Eds., ed: Springer-

Verlag New York, Inc., 2002, pp. 411-427.

[7] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A.

S. Peterson, "Feature-Oriented Domain Analysis (FODA)

Feasibility Study," DTIC Document1990.

[8] J. V. Gurp, J. Bosch, and M. Svahnberg, "On the Notion of

Variability in Software Product Lines," in Proceedings of

the Working IEEE/IFIP Conference on Software

Architecture, 2001, p. 45.

[9] C. Szyperski, D. Gruntz, and S. Murer, Component

Software: Beyond Object-Oriented Programming:

Addison-Wesley, 2002.

[10] A. van Deursen, P. Klint, and J. Visser, "Domain-Specific

Languages: An Annotated Bibliography," ACM SIGPLAN

Notices, vol. 35, pp. 26-36, 2000.

[11] M. Voelter, DSL Engineering: Designing, Implementing

and Using Domain-Specific Languages: CreateSpace

Independent Publishing Platform, 2013.

[12] M. Mernik, J. Heering, and A. M. Sloane, "When and How

to Develop Domain-Specific Languages," ACM Computing

Surveys, vol. 37, pp. 316-344, 2005.

[13] J. M. Neighbors, "Software Construction Using

Components," University of California, Irvine, 1980.

[14] C. A. R. Hoare, "An Axiomatic Basis for Computer

Programming," Communications of the ACM, vol. 12, pp.

576-580, 1969.

[15] B. Meyer, Object-Oriented Software Construction (2nd

ed.): Prentice-Hall, Inc., 1997.

[16] T. von der Maßen and H. Lichter, "Deficiencies in Feature

Models," in Workshop on Software Variability

Management for Product Derivation-Towards Tool

Support, 2004.

[17] A. Hemakumar, "Finding Contradictions in Feature

Models," in Workshop on the Analysis of Software Product

Lines, 2008, pp. 183-190.

[18] M. Abadi and L. Lamport, "Composing Specifications,"

ACM Transactions on Programming Languages and

Systems, vol. 15, pp. 73-132, 1993.

[19] A. Kleppe, Software Language Engineering: Creating

Domain-Specific Languages Using Metamodels: Addison-

Wesley Professional, 2008.

[20] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro,

EMF: Eclipse Modeling Framework: Pearson Education,

2008.

[21] OMG, "Meta Object Facility (MOF) 2.0 Core

Specification", 2011.

[22] OMG, "Human-Usable Textual Notation v1.0", 2004.

[23] G. T. Leavens and Y. Cheon, "Design by Contract with

JML," 2006.

[24] C. Kastner, T. Thum, G. Saake, J. Feigenspan, T. Leich, F.

Wielgorz, et al., "FeatureIDE: A Tool Framework for

Feature-Oriented Software Development," in Proceedings

of the 31st International Conference on Software

Engineering, 2009, pp. 611-614.

[25] L. Chung and J. C. P. Leite, "On Non-Functional

Requirements in Software Engineering," in Conceptual

Modeling: Foundations and Applications, T. B. Alexander,

K. C. Vinay, G. Paolo, and S. Y. Eric, Eds., ed: Springer-

Verlag, 2009, pp. 363-379.

[26] D. L. Detlefs, K. Rustan, M. Leino, G. Nelson, and J. B.

Saxe, "Extended Static Checking," in SRC Research Report

159, Compaq Systems Research Center, 1998.

[27] R. B. Findler and M. Felleisen, "Contracts for Higher-

Order Functions," SIGPLAN Not., vol. 37, pp. 48-59, 2002.

[28] C. Dimoulas and M. Felleisen, "On Contract Satisfaction in

a Higher-Order World," ACM Transactions on

Programming Languages and Systems, vol. 33, pp. 1-29,

2011.

[29] N. Polikarpova, C. A. Furia, Y. Pei, Y. Wei, and B. Meyer,

"What Good Are Strong Specifications?," in Proceedings

of the 2013 International Conference on Software

Engineering, San Francisco, CA, USA, 2013, pp. 262-271.

[30] T. Thum, I. Schaefer, M. Kuhlemann, S. Apel, and G.

Saake, "Applying Design by Contract to Feature-Oriented

Programming," in Proceedings of the 15th international

conference on Fundamental Approaches to Software

Engineering, Tallinn, Estonia, 2012, pp. 255-269.

[31] S. Frølund and J. Koistinen, "Quality-of-Service

Specification in Distributed Object Systems," in

Proceedings of the 4th conference on USENIX Conference

on Object-Oriented Technologies and Systems - Volume 4,

Santa Fe, New Mexico, 1998, pp. 1-1.

[32] J. Ø. Aagedal, "Quality of Service Support in Development

of Distributed Systems," University of Oslo, 2001.

Maryem Rhanoui received the Engineer of state degree in
Software Engineering from National High School of Computer
Science and Systems Analysis (ENSIAS) in 2008. She is currently
a PhD student in the IMS (Models and Systems Engineering)
Team of SIME Laboratory at ENSIAS. Her research interests are
Domain-Specific Engineering, Component-Based Systems, and
Model-Driven Engineering.

Bouchra El Asri is a Professor in the Software engineering
Department and a member of the IMS (Models and Systems
Engineering) Team of SIME Laboratory at National Higher School
for Computer Science and Systems Analysis (ENSIAS), Rabat.
Her research interests are Service-Oriented Computing,
Component Based Engineering, and Software Product Line
Engineering

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 181

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

