

A pA pA pA pattern based methodologyattern based methodologyattern based methodologyattern based methodology for for for for evolution managementevolution managementevolution managementevolution management

in business process in business process in business process in business process reusereusereusereuse

Hanae Sbai, Mounia Fredj and Laila Kjiri

 AlQualsadi team, ENSIAS, Mohammed V Souissi University
Rabat, Morocco

Abstract
Today, there are Process-Aware Information Systems
(PAIS) with a set of business process models which
vary over time to meet the new requirements. In a
competitive environment, the key challenge of
enterprises is to reduce the cost and time of process
design and application development. For this purpose,
research on reuse in business process management
have introduced the concept of configurable process
models which attempts to manage business process
variability, by integrating a set of process variants in a
single model. In this context, many research works
were interested in creating and elaborating
configurable process models. However, this has become
insufficient since the configurable process model should
itself evolve to add new variations. In turn, this
requires a comprehensive support for managing the
evolution of configurable process models. In this paper,
we present a complete pattern based methodology for
managing the evolution of configurable process models
in terms of activities, data and resources. Our objective
is to propose a process patterns system for guiding
designers in modeling and evolving configurable
process models. Furthermore, our process patterns
system will be used for an automated support so as to
manage the evolution of configurable process models.

Keywords: PAIS, business process variability, process
evolution, configurable process model, process pattern

1. Introduction

BPM (Business Process Management) is an approach
which suggests the alignment of information systems with
business processes through a process-oriented approach.
This increases the adoption of another kind of information
systems called “Process Aware Information Systems”
(PAIS) [1]. The main goal of BPM is to reduce the cost
and time of process design and application development.
However, there are process oriented software systems [2]
with a set of business process models which usually vary
over time to meet the new requirements. Therefore,

maintaining process models repositories with a set of
process variants becomes too costly, and implementing it
separately is too inefficient. In addition, the customization
of business process models is done manually, which both
time and cost is consuming. In this context, the reference
process modeling approach aims to allow reusing business
process management by introducing the concept of
Configurable Process Model (CPM). The main reason
behind using this concept of process model reuse is to
avoid designing process models which have been defined
and used by others [3]. A configurable process model
represents the concept of a reference process model which
identifies common practices and activities of organizations.
These models are intended to provide reusing variation
options which have been integrated within the model
beforehand [3]. For example, CPMs of an E-health-care
system capture common practices for handling medical
examination, and may contain a hundred of process
variants with hospital differences. So, the CPM can be
customized using possible variations integrated in the
model. Existing approaches on managing business process
variability [3] are motivated by creating configurable
process models and extending the business process
modeling language to support variability. However, if there
is a need to introduce new variation options, the CPM
should evolve to support new changes. Much attention has,
therefore, to be made on enhancing process model
configuration with adaptation mechanisms to add new
behavior to the configurable process models. This has
motivated the emergence of research works on
configurable process evolution. Thus, the concept of
business process evolution has been widely discussed in
the field of BPM [1] [4] [5] [6]. In this context, we
mention the work of change patterns [1] which attempts to
allow the creation and adaptation of a single process model.
These patterns are not sufficient to cope with configurable
process models evolution, which is a collection of related
process variants. Consequently, this requires the support of
the managing evolution of configurable process models.

For this reason, we propose a methodology for
evolving configurable process models. The proposed
approach is based on a system of process patterns [7] [8],
which capitalizes a set of processes and model solutions

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 1, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 211

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

that carry out every step of the evolution process. Thus, in
order to ensure quality design, an evolution meta-model
has been proposed in [8]. It allows to describe
configurable process model changes when applying the
proposed process patterns and enables evolution
traceability when implementing the proposed process
patterns. In this paper, we present the complete process
patterns based approach to design and evolve configurable
process models along the business process life cycle
through a reuse process.

The remainder of this paper is structured as follows.
Section 2 introduces configurable process models and
variability concepts upon which this work is based. Section
3 provides an overview of contemporary works on
business process variability and evolution. Section 4 is
presents our proposals for managing the evolution of
configurable process models. Section 5 concludes the
paper.

2. Background and foundations

In this section, we begin by introducing business
process variability which is a prerequisite for
understanding the core concept of a configurable process
model.

A configurable process model deals with how to model
business processes that are similar to one another in many
ways, yet different in some other ways from one
organization, project or industry [9]. A configurable
process model is a combination of variability and business
process concepts. This combination allows to describe a
set of process variants by extending existing business
process modeling languages to support variability.

 Variability concepts were first introduced in the field
of software product line engineering [10]. Variability is
defined as the ability to change or customize a software
system [11]. It refers to the diversity of variations of the
manufacturing processes for producing product variants in
a product family [12].

For a given business process, the variability is
concerned by defining which parts of the process may vary
over time or within a domain space called « variation
point », and what are the different realizations of each
variation point called «variant ». For modeling variability,
the work of [11] defines types of variation points and
dependencies relationships.
There are three types of variation points:

� Optional: it corresponds to the choice of selecting
zero or one from one or more variants.

� Alternative: it corresponds to the choice of selecting
only one variant.

� Optional alternative: it is an optional variation
point with alternative variants.

 Concerning the relationships between variants, they
can be of two types:

� Inclusion: it specifies that the choice of a variable
element requires the presence of another variable
element.

� Exclusion: it specifies that the choice of a variable
element excludes the presence of another element.

In the literature, PESOA project [11] distinguishes two
variability mechanism categories, namely basic and
composite variability mechanisms. The first category is
composed of three types of mechanisms:

� Encapsulation of varying sub-processes: it allows
the insertion of different sub-processes variants
hidden by the invariant interface.

� Parameterization: behavioral variants are integrated
in the process and activated by configuring the
process with corresponding parameter values.

� Variability in data type: it represents the variations
of the data stored in the process.
As for the second category (i.e. composite

variability mechanisms) we find:
� Inheritance: it allows the replacement or addition of

model elements in the derived process diagram.
� Extension: it is the insertion of encapsulated

optional sub-processes at the extension point which
refers to the place where the process can be
extended.

In this section, we have dealt with the concept of
business process variability and its mechanisms. In what
follows, we present a state of the art of reuse in business
process management.

3. Related work

The aim of reuse in business process management is to
avoid designing process models which have already been
defined. This has led to the introduction of a reference
process model that defines the common practices of
organizations that can be reused. However, customizing
these models is done manually, which is a difficult and
time-consuming task. In this context, configurable process
models have been developed to ensure a systematic reuse
of reference process models with managing business
process variability [9] which is a key challenge in business
process reuse.

Solving the problem of business process variability
requires a business process variability modeling language,
an automated support for configuring business process and
a support for configurable process evolution. Therefore,
research studies that seem to be of utmost importance to
our work are those that are undertaken on i) business
process variability modeling languages, i)) configuring
business processes and iii) business process evolution.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 1, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 212

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

3.1 Business process variability modeling
languages
 Concerning the configurable node based approach, [13]
proposed the C-EPC (Configurable- Event Process Chain)
which is based on configurable nodes variability technique
This proposal extends the existing business process
modeling language EPC by adding configurable elements
for explicitly representing variability. To add configuration
opportunities for workflow models, Gottschalk et al.
introduce the “Configurable Yet A new Workflow
Language” (C-YAWL) which is an extended version of the
YAWL language [14]. La Rosa proposes C-iEPC
(Configurable-Integrated Event Process Chain) language
which is an enhancement of C-EPC to support roles and
objects configuration [9]. An automatic mechanism to
create configurable process models by merging business
process is introduced by [15]. For the annotation based
approach, [11] put forward Variant-Rich process models
that are based on extending the concept of UML stereotype
to represent variability in BPMN process models, and in
particular at the activity/control flow level. A hierarchical
method based on extending UML2 profile to represent
variability is presented by [16]. This work is interested in
control flow, dataflow and action variability. For the CVL
based approach, Ayora introduces a separate model for
modeling variability at the control flow and task related
elements level which is based on extending the Common
Variability Language (CVL) approach [17](a domain-
independent language for specifying and resolving
variability over any instance of any MOF-compliant meta-
model [18]).

All these approaches extend business process modeling
languages with variability techniques that enable the
creation of configurable process models.

In the next section, we present works that have dealt
with the configuration of business process models.
3.2 Support for configuring business process
models

Concerning the works on behavioral model, Gottschalk
proposes a configuration support for C-EPC models and a
questionnaire based approach for controlling configuration
[3]. An enhancement of this work is introduced by La Rosa
et al. who propose a multi-perspective approach for
configuring configurable process models using C-iEPC
language [11]. To preserve configurable process models
correctness, Van der Aalst et al. suggest a set of syntactic
and semantic constraints to ensure sound configuration
process variants [20]. In order to support flexible process
variants management and retrieval, Lu et al. propose two
approaches, namely a process constraint based approach
and a query formalization approach [21]. Santos et al.
develop a non-functional based approach for managing

business process variability [22]. A mining technique
based approach used to create configurable process models
is introduced by Buijs et al. [23]. All these works have
served as a basis for implementing the process
configuration in different stages of the process lifecycle. In
this context, the first toolset called “SYNERGIA” has been
developed by La Rosa et al. [24]. It provides a
comprehensive support for the configurable process
modeling notations (C-EPC, C-iEPC and C-YAWL). In
order to manage a large set of process variants, the authors
provide the APROMORE tool which brings together a rich
set of features for the analysis, management and usage of
large sets of process models [25]. For structural model
works, Schnieders et al. define a set of variability
mechanisms and discuss their possible implementations for
process family systems in the context of PESOA research
project [26]. To design process families, Hallerbach et al.
develop the PROVOP framework for managing a family of
process variants with paying attention to the application
context [27]. It has been served as basis of configuration
process implementation by developing the PROVOP
prototype which is implemented in the ARIS business
architect. In addition, Rolland et al. propose a business
goal based approach for managing business process
variants [28]. A functional requirement based approach for
preserving process variants correctness is introduced by
Groner et al. [29].

 From the discussion above, it is quite clear that the
reviewed works are interested in configuring the
collection of process variants integrated into a configurable
process model. This becomes insufficient if one day the
organization needs to add a new variation point/variant that
is not defined in the model beforehand. To meet new
needs, the configurable process model should evolve to
integrate new variable elements. In the next section, we
present works on business process evolution.

3.2 Business process evolution

To evolve a business process model, change patterns
and change support features [1] provides a set of patterns
for a single process model adaptation. This work is
considered as a support of many implementations. We also
quote frameworks such us Adept2 [30] and AristaFlow
[31] for dynamic adaptation as well as[32] for ensuring
safety of workflow dynamic adaptation Gschwind et al.
propose a set of patterns based on workflow patterns to
support business process modeling [33]. To extend
configurable process model for supporting adaptation
techniques, [34] proposed a detailed definition of a set of
generic adaptation concepts for adapting EPC reference
process models Specialization of C-EPC configurable
process models to add new functions has been ensured by
ADOM-EPC formalism [35]. Lately, Ayora et al. discuss
the problem of dynamic evolution of process families [4]

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 1, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 213

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

and introduce a pattern based approach to manage
evolution of process families in terms of activity [5].

As is shown above, research studies on evolution in
BPM, and particularly on change patterns, are interested in
managing business process evolution. However, these
works are not sufficient to evolve configurable process
models because they do not support the variability concept
introduced by configurable process models. Furthermore,
works on extending configurable process model
adaptability do not establish a comprehensive process for
guiding configurable process model evolution. Hence, our
aim in the present paper is to provide a methodology based
on a process patterns system for guiding designers in
configurable process model evolution. This guide will
provide support for using process patterns that are
applicable in the designer context, and giving feedback if
the applications of some adaptation scenarios lead to a
modeling error. Thus, this support can allow us to trace the
sequence of operations applied using process patterns
during the evolution process. As our approach is based on
the process pattern concept, we present in the next section
the P-SIGMA [36] formalism used to define the proposed
process patterns system.

5. Our proposal for managing configurable
process models evolution

The proposed process patterns system provides an
effective guidance for evolving configurable process
model evolution in terms of activity, resource and data.
Each configurable process model elements (activity,
resource, and data) may be a variation point with a set of
variants. We describe below our process patterns system
(cf. Figure 1). It has been defined by analyzing various
types of evolution that can be applied to a configurable
process model. So, if there is a need to evolve configurable
process model occurs, we can have the following basic
evolution types for each process element (activity, data or
resource): Insertion/substitution/Deletion of a variation
point/variant. The process patterns system can be divided
into three sub-systems, namely activity process patterns,
resource process patterns and data process patterns sub
systems.

For the activity process patterns sub-system we define:
Activity Insertion (AI) which is refined by Variation Point
Activity Insertion (VPAI), and Variant Activity Insertion
(VAI). The Activity Substitution (AS) which is refined by
Variation Point Substitution (VPAS), and Variant Activity
Substitution (VAS). Activity Deletion (AD) which is
refined by Variation Point Deletion (VPD), and Variant
Activity deletion (VAD). By the same way, we have
defined resource and data process patterns sub- systems.

Figure 1: The process patterns system [8]

To guide the designer to evolve a given configurable
process model, we define the following evolution
constraints:
� Insertion of a variation point requires the insertion of

at least one variant
� Insertion of a variant requires the presence of a

variation point or the transformation of an existing
process element to a variation point.

� Substitution of a variation point includes the
substitution of related variants or/and preserving
existing variants.

� Deletion of a variation point includes the deletion of
the related variants.

� Deletion of a variant requires to check the
constraints of the other one to be sure that this variant
is not required by another variant.
In addition, the proposed process patterns use the

following parameters:
Process
patterns
parameters

Definitions

Type Type of a variation point allows to determine if a
variation point is alternative or optional

Req_f_VPA Required functionalities of a Variation Point Activity
represent all needed functions of an activity to be
performed by a resource.

R_f

Resource functionalities represent all functions ensured
by the resource to perform an activity.

VSC Variant Selection Condition represents the condition
under which a variant can be selected.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 1, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 214

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

VCC Variant Configuration Constraint specifies if the choice
of a variant requires or excludes the presence of other
variants.

Table 1 : Process patterns parameters

To describe each process pattern, we use the P-Sigma
formalism and in particular, the realization part that gives
the solution in terms of Process Solution and Application
of the process Solution. In our case:

� The Process Solution is described by an algorithm.
� The Application represents the configurable process

model solution after applying the process pattern by
using the Rich Variant BPMN process model [16].

In the next section, we present some process patterns of
the proposed system, namely the Variation Point Activity
Insertion and the Variation Point Activity Substitution. We
explain in the next section, how to insert a variation point
activity by using the VPAI process pattern.
5.2 Variation Point Activity Insertion (VPAI)
process pattern

When there is a need to add a new variation point
activity, a set of process patterns must collaborate to lead
this evolution.

Parts Fields Values

Interface Identification Variation Point Activity Insertion (VPAI)
Classification Variant activity, configurable process model
Context {Variant Activity Insertion (VAI), Data Insertion (DI), Resource Insertion (RI)}
Problem Insertion of an activity as a variation point in the configurable process model
Force Allows verifying a set of constraints before inserting a variation point activity.

Realization Process
Solution

Needed parameters :
Req_f_VPA: Required functionalities of a variant activity
R_f: Resource functionalities
C_nbr_A: Current number of activities
Max_nbr_A : Maximum number of activities
Type_VP: the type of a variation point(it may be optional or alternative)
Design choices: (a) add a new variation point or (b) transform an existing activity to a
variation point
If the activity is a new added variation point then

Determine the position of the insertion of the added variation point in the sequence
flow
Insert the type of the added variation point activity // it can be optional or alternative
Apply Variant Activity Insertion process pattern // To insert variant activities
Insert the required functionalities of the added variation point activity
Determine the resource to assign

If Rq_f_VPA belongs to f_R then assign resource
If the assigned resource is a variation point then

Apply Variant Resource Insertion process pattern// the required resource
variant must be added

Else transform (Resource to a variation point Resource)
End if

 Else Apply Insertion Resource process pattern // Insert resource
 End if

Insert the flow sequence condition//If needed insert the condition which to performs the
added variation point activity
Apply the Data Insertion process pattern// Insert data

Else if we transform an existing activity to a variation point then
Repeat the same steps as those of the insertion of a new added variation point
activity

End if
Application For example, we apply the process solution for (a):

1. We suppose that the designer inserts a new variation point (VP) activity “B” (1)
2. We suppose that the designer inserts the variation point activity”B” between “A” and

“D “. So:
� The sequence flow {A�D} is deleted (2.1)

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 1, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 215

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

� The VP activity B is inserted and the sequence flows {A�B} and {B�D} are
inserted (2.2)

3. Insert the flow sequence condition “condition= cond1” (3)
4. The designer chooses for “B” the type= “alternative”. In this case, the VP activity “B”

should be annotated with «VarPoint ». If he chooses type=”optional”, the activity VP
should be annotated “Null”.(4)

5. The designer inserts required functionalities of “B”: RF1,RF2,RF3 (5)
6. The designer should insert variant activities which depend on “B”. In this case, the

variant activity insertion process pattern is applied repeatedly to insert variant activities
“B1” and “B2”. (6)

7. To insert data, the data insertion process pattern is applied to insert in this example
“dataobjet (7)

8. The designer chooses the resource R1 to be assigned to the VP activity “B”. In this case
we can have two scenarios (8):
� Scenario1 :{ RF1, RF2, RF3} belong to {FR1, FR2, and FR3}: the resource R1 is

assigned. As the resource R1 is a variation point, o the designer should insert a
variant resource VR which will be assigned to the variant activities B1 and B2. In
this case the variant resource insertion process pattern is applied. (8.1)

� Scenario2 :{ RF1, RF2, RF3} do not belong to {FR1, FR2, FR3}. The designer
should insert the new resource R2 which is an alternative variation point. In this
case, the variation point resource insertion process pattern is applied. (8.2)

In our case, we apply the scenario 1 (8.2)

Relations Refines Insertion Activity process pattern (IA)

Uses {Variant Activity Insertion (VAI), Data Insertion (DI), Resource Insertion (RI)}

Table 2 : The VPAI process pattern

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 1, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 216

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

For this process pattern, we obtain the following
relations:

� {VPAI} refines {AI}: the process pattern VPAI is
a specialization of the process pattern AI.

� {VPAI} uses {DI}: to insert a new variation point
activity we have to insert a related data.

� {VPAI} uses {RI}: To insert a new variation point
activity, we have to assign a resource.

� {VPAI} uses {VAI}: To insert a new variation
point activity, we have to insert at least a default
variant activity.
In the next section, we present the Variation point

Activity Substitution process pattern which provides all

steps that we should apply to substitute a variation point
activity by another.

5.4 Variation Point Activity Substitution (VPAS)
process pattern

The application of the variation point activity
substitution can invoke substitution of data (variation
point/variant), substitution of a resource (variation
point/variant), deletion of a variant activity, or insertion of
a new variant activity. We obtain the following relations:

Parts Fields Values

In
te

rf
ac

e

Identification Variation Point Activity Substitution
Classification Variation point activity, substitution, configurable process model
Context {Data substitution (DS), Resource substitution (RS), Variant activity substitution (VAS), variant

activity insertion (VAI), variant activity deletion (VAD)}
Problem Substituting of an activity as a variation point in the configurable process model.
Force Allows verifying a set of constraints before substituting an activity variation point

R
ea

liz
at

io
n

Process
Solution

Needed parameters:
Req_f_VPA: Required functionalities of a variation point activity
Req_f_OVA: Required functionalities of an old variant activity
Req_f_NVPA: Required functionalities of a new variation point activity
F_R: Functionalities of resource
Design choices :

a) Substitution by a new variation point activity
b) Substitution of the variation point activity by an existing activity which will be

transformed to a variation point
If the activity is a new substitute variation point then

Identify the old variation point activity to substitute
Insert type of the new substitute variation point activity // optional or alternative
Check variants activity compatibility

If(Req_f_OVA) belongs to (Req_f_NVPA) then
Apply Variant Activity insertion process pattern // if it is necessary to insert new
variants of the new variation point activity

Else Apply Variant Activity deletion process pattern // to delete variants
And apply Variant Activity Substitution process pattern // to substitute uncompatible
variants
End if

 Apply Data Substitution process pattern
 Apply Data Insertion process pattern// for inserting additional data

 Check required flow sequence condition
 If incompatible then

 Substitute (Old_condition,New_condition)
 Else Insert new condition

End if
Apply Resource Substitution process pattern

Else If we transform an existing activity to a substitute variation point then
Repeat the same steps as those of the substitution of a variation point activity by a new
substitute variation point activity

 End if

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 1, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 217

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Application Design choices :
a) Substitute by the new variation point activity “B”
b) Substitute the variation point activity by the existing activity “C” which will be

transformed to a variation point
For (a):
1. We suppose that the designer chooses the variation point activity “A” with A1 and A2

variants to substitute by the new variation point “B” with variant “B1” (1). Insert of
type=”Null” of “B” (2)

2. We have two cases :
� {R4, R5, R6} of A1 and {R7, R8, R9} of A2 belongs to {R1, R2, R3} of B: Apply

variant insertion process pattern to insert B1 and conserve A1 and A2 (2.1)
� {R4, R5, R6} of A1 and {R7, R8, R9} of A2 does not belongs to {R1, R2, R3} of B :

• Apply variant activity deletion process pattern to delete A2 (2.2)
• Apply substitution activity process pattern to substitute A1 by B1 with a new feature

=Z and a new configuration constrain= B1 excludes D2. (2.3)
For example we apply in our case (2.2) and (2.3)

3. Apply data substitution process pattern to substitute the old dataobject1 by the new
dataobject2 (3)

4. Insert new condition=cond2 (4)
5. Apply resource substitution process pattern to assign the existing resource to “B” and to

insert the variant resource R3 which will perfom “B1” (5)
For (b):
1. We suppose that the designer chooses to substitute the variation point activity “A” by the

existing activity “C”:
� The sequence flow {A�C} is substituted by the sequence flow {A�D}
� The “A” is deleted

2. Insert type of ” C” =Null
� We suppose that {R4, R5, R6} of A1 and {R7, R8, R9} of A2 belongs to {R1, R2, R3}

of C: Apply variant insertion process pattern to insert C1 and conserve A1 and A2 (2)
6. Apply data substitution process pattern to substitute the old dataobject1 by the new

dataobject2 (3)
7. Insert new condition=cond2 (4)
8. Apply resource substitution process pattern to assign the existing resource to “C” and to

insert the variant resource R3 which will perfom “C1” (5)

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 1, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 218

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

R
el

at
io

ns

Refines Activity Substitution (AS)
Uses {Data Substitution (DS), Resource substitution (RS), Variant Activity Substitution (VAS), Variant

Activity Insertion (VAI), Variant Activity deletion (VAD)}

Table 3 : The VPAS process pattern

We explain below the Relations part described in Table
6:

� {VPAS} refines {AS}: the variation point activity
substitution process pattern (VPAS) is a
specialization of the activity substitution (AS).

� {VPAS} uses {VAS}: to substitute a variation
point activity, we have to check if there is a need to
substitute related variants or no.

� {VPAS} uses {RS}: to substitute a variation point
activity, we have to check if there is a need to
substitute the resource or no.

� {VPAS} uses {DS}: to substitute a variation point
activity, we have to check if there is a need to
substitute data or no.
In this section, we have described in detail process

patterns for evolving a configurable process model in
terms of activity (variant/variation point). By the same
way, we have developed the other process patterns
(relative to resource and data) to conduct the different
evolution types applied by designers.

5. Conclusion and perspectives

In this paper, we have proposed a process patterns

system for guiding evolution of configurable process
models. Existing approaches for variability management
focus on the modeling and configuration of process
variants. However, case studies have shown that the
evolution of process variants is essential [32]. For this, we
have conducted a development methodology to develop a
set of reusable process patterns which collaborate in order
to model and evolve configurable process models in terms
of activity, data and resource. Our proposed process
patterns system capitalizes a set of processes and models

solutions that perform each step of the evolution process
through a reuse process.

We are currently developing a prototype which enables
the automation of the proposed approach.

References
[1] Weber, B., Reichert, M., Rinderle-Ma, S., “Change patterns
and change support features - enhancing flexibility in process-
aware information system”, Data and Knoweldge Engineering
66(3), 2008.
[2] Schnieders, A., Puhlmann, F., “Variability Mechanisms in E-
Business Process Families”, Proc. International Conference on
Business Information Systems, Klagenfurt, Austria, 2006.
[3] Gottschalk, F., “Configurable Process Models”, PhD thesis,
Eindhoven University of Technology, Netherlands, 2009.
[4] Ayora, C., Torres, V., Reichert, M., Weber, B., Pelechano, V.:
Towards run-time flexibility for process families: open issues and
research challenges, BPM Workshops, pp: 477– 488, 2013.
[5] Ayora, C., Victoria Torres, Barbara Weber, Manfred
Reichert, Vicente Pelechano: Enhancing Modeling and Change
Patterns. BMMDS/EMMSAD, pp: 246-260, 2013.
[6] Sbai, H., Fredj, M., .Kjiri, L., “A process pattern for
managing evolution of configurable process models”,
International IEEE CIST’12, Fez, Morocco, 22-24 October,
2012.
[7] Sbai, H., Fredj, M., .Kjiri, L., “To trace and guide evolution
in configurable process models”, The 10th ACS/IEEE
International Conference on Computer Systems and Applications
(AICCSA’13), May 27-30, Fez/Ifrane, Morocco, 2013.
[8] Sbai, H., Fredj, M., .Kjiri, L., “Towards a process patterns
based approach for promoting adaptability in configurable
process models”, the 15th International Conference on Enterprise
Information Systems (ICEIS’13), July 4-7, ESOE, Angers Loire
Valley, France, 2013.
[9] La Rosa. M., “Managing Variability in Process-Aware
Information Systems”, PhD Thesis, Queensland University of
Technology, Brisbane, Austria, 2009.
[10] Krueger, C.W., “Variation Management for Software
Production Lines”. SPLC, Springer, 2002.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 1, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 219

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

[11]VanderMaßen, T., Lichter, H., “Modeling variability by
UML use case diagram”, REPL, AVAYA, 2002.
 [12] Puhlmann, F., Schnieders, A., Weiland, J., Weske, M.,
“Variability Mechanisms for Process Models”, PESOA Report,
Germany, 2005.
[13] Rosemann, M., Van der Aalst, W.M.P., “A Configurable
Reference Modeling Language”, Information Systems Volume
32 (1), 2007.
[14] Gottschalk, F., W. M. P. van der Aalst, M. Jansen-Vullers
H., La. Rosa, M., “Configurable workflow models”, Int. J.
Cooperative Information System. Volume 17 (2) 2008.
[15] La Rosa, M., Dumas, M., Uba, R., Dijkman, R. M., merging
business process models, in: Proc. CoopIS'10, vol. 6426 of
LNCS, Springer, 2010.
[16] Razavian, M., Khosravi, R.,“Modeling Variability in
Business Process Models using UML”, In S. Lati, editor,
Proceedings of the 5th International Conference on Information
Technology, pages 82-87, IEEE Computer Society, 2008.
[17] Ayora, C., “Modelling and Managing Variability in
Business Process Models”, Master’s Thesis, Polytechnic
university, Valencia, Spain, 2011.
[18] Ayora, C., Torres, V., Pelchano, V., Alférez, G.H.”
Applying CVL to business process variability management”, The
ACM VARiability for You Workshop (VARY’12), NewYork,
USA, pp: 26-31, 2012.
[19] Torres V., Zugal S., Weber, B. , Reichert, M., Ayora C.,
Pelechano, V., “Understandability Issues of Approaches
Supporting Business Process Variability” 2012.
[20] Van der Aalst, W.M.P., Dumas, M., Gottschalk, F., ter
Hofstede, A.H.M., La Rosa, M., and J. Mendling, “Correctness-
Preserving Configuration of Business Process Models”, FASE'08,
Held as Part of ETAPS'08, pp 46-61, 2009.
[21] Lu, R., Sadiq, S., Governatori, G., “On managing business
processes variants”, Data & Knowledge Engineering, 68(7): 642-
664, 2009.
[22] Santos, E., Pimentel, J., Dermeval, D., Castro, J., & Pastor,
O “Using NFR and Context to Deal with Adaptability in
Business Process Models”. The 2nd International Workshop on
Requirements at Runtime RRT, 2011.
[23] Buijs, J. C. A. M., Van Dogen, B. F., Van Der Aalst, W. M.
P. “ Mining configurable process models from collections of
event logs”, the 11th International Conference on Business
Process Management (BPM). Lecture Notes in Computer
Science Series, volume 8094, pp: 33–48, Springer-Verlag, Berlin,
2013.
[24] La Rosa, M. , Gottschalk, F., “Synergia - Comprehensive
Tool Support for Configurable Process Models”, Proceedings of
the Demo Track of the 7th International Conference on Business
Process Management (BPM’09), volume 489, CEUR, 2009.
[25] La Rosa, M., Reijers, H. A., van der Aalst, W. M.P. ,
Dijkman, R. M. Mendling, J.,. Dumas, M, Garcia, L.,
“APROMORE: An Advanced Process Model Repository”,
Expert Systems with Applications, 2011.
[26] Schnieders, A., Puhlmann, F., “Variability Mechanisms in
E-Business Process Families”, International Conference on
Business Information Systems, Klagenfurt, Austria, 2006.
[27] Hallerbach, A., Bauer, T., Reichert, M., “Correct
Configuration of Process Variants in Provop”, Technical Report,
university of Ulm, Germany, 2009.

[28] Rolland, C., Nurcan, S., “Business Process Lines to deal
with the Variability”, International Conference on System
Sciences (HICSS), Hawaii, USA, 2010.
[29] Groner, G., Wende, C., Boskovic, M., Parreiras, F.S.,
T.Walter, F. Heidenreich, Dragan Gasevic, Steen Staab,
“Validation of Families of Business Processes”, Springer, 2011.
[30] Dadam, P., Reichert, M. , “The ADEPT project: A decade of
research and development for robust and flexible process support
- challenges and achievements”, Computer Science - Research
and Development, 23 (2) :81-97, 2009.
[31] Muller, M. , Reichert, J. , and Herbst, J. , “A new paradigm
for the enactment and dynamic adaptation of data-driven process
structures”, CAiSE'08, Springer, 2008.
[32] Van der Aalst, W.M.P., Ter Hofstede, A.H.M. ,
Kiepuszewski, B. , and Barros, A. P. , “Workflow patterns”,
Distributed and Parallel Databases, volume 14(1):51, 2003.
[33] Gschwind, T. , Koehler, J. , Wong, J. , Applying patterns
during business process modeling, in: M. Dumas, M. Reichert,
M.-C. Shan (Eds.), BPM 2008, LNCS, vol. 5240, Springer-
Verlag, Berlin, Heidelberg, 2008.
[34] Becker, J., Delfmann, P., Knackstedt, R. “Adaptive
Reference Modelling: Integrating Configurative and Generic
Adaptation Techniques for Information Models”, Efficient
Information Systems Design Through Reuse of Information
Models, Springer, pp: 27–58, 2007.
[35] Reinhartz-Berger, I., Soffer, P., Sturm, A., “Extending the
Adaptability of Reference Models”, IEEE Transactions on
Systems, Man and Cybernetics - Part A: Systems and Humans,
2011.
 [36] Conte, A., Fredj, M., Hassine, I., Giraudin, J-P., Rieu, D.,
"A tool and a formalism to design and apply patterns", IEEE
OOIS’02, published in Lecture Notes in Computer Science, 2002.
[37] Ambler, S. W., Process Patterns: Building Large-Scale
Systems Using Object Technology. New York/Cambridge
University Press, 1998.
[38] Hagen, M., Gruhn, V., “Process Patterns - a Means to
Describe Processes in a Flexible Way” . ProSim ‘04, Edinburgh,
United Kingdom, LNI, Vol. P-45, Köllen, pp.203-218. 2004.
[39]Dittmann, T., Gruhn, V., Hagen, M., “Improved Support for
the definition and usage of process patterns”. 1st Work-shop on
Process Patterns, OOPSLA, Seattle, 2002.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 1, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 220

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

