
Review of Software Reuse Processes

Ljupcho Antovski1 and Florinda Imeri2

 1 Faculty of Computer Sciences and Engineering, University Ss. Cyril and Methodius Department

Skopje, 1000, Macedonia

2 Department of Informatics, State University of Tetovo

Tetovo, 1200, Macedonia

Abstract

Clients expect that enterprise software systems, which are con-
tinually growing in complexity, are of high quality, with rea-
sonable price and have a short time to market. To find ways to
meet with the increasing demands of business, software engi-
neers are forced to find ways to streamline development process.
Software reuse is believed to be one such approach. Companies
that have adopted its techniques to their development process
have reported useful improvements in development productivity
and quality. The practices of reuse have proven not to be simple
and there are many misconceptions about how to implement and
gain benefits out of it. Effective reuse is not a simple addition to
existing software development processes; it puts strong de-
mands on development methods in order to be successful. Our
research, based on the literature and empirical results, presents
basic principles of software reuse. Driving factors that facilitates
reuse are also presented together with potential benefits and key
issues to consider in order to successfully adapting this ap-
proach.
Keywords: software reuse, software components, CBSE, reuse
principles, reuse metrics

1. Introduction

Software is the engine that makes run everyday life, such

as in business, industry, administration, research, etc. As

enterprise software systems are continually growing in

complexity IT industry is forced to find ways to stream-

line development process[1]. Software reuse is believed to

be one such approach as most effective way to signifi-

cantly improve the software process, shorten

time-to-market, improve software quality and application

consistency, and reduce development and maintenance

costs[2].

The concept of software reuse is the idea of building and

using "software preferred parts"[3]. Building systems

from pre-tested components, one will save the cost of de-

signing, writing and testing new code. Companies that

have adopted its techniques to their development process

have reported useful improvements in development

productivity and quality. The practice of reuse has not

proven to be simple however, and there are many mis-

conceptions about how to implement and gain benefit

from software reuse[4]. There are many technical, eco-

nomical and organizational issues to overcome.

In this paper we describe key characteristics of software

reuse and/or component based development. It is a com-

bination of literature survey and empirical results of soft-

ware reuse processes.

The paper is organized as follows. Section 2 provides

background on the concepts of software components and

software reuse; section 3 describes reuse principles; sec-

tion 4 describes the key factors that influence the success

and/or failure of software reuse in software development

and section 5 defines models and metrics which measure

software reusability.

2. Software Reuse Scope

According to Pareto-Diaz[5] reusability is as old as hu-

mans are. To solve a problem, we try to apply the solution

to similar new problems. If some elements of the solution

apply than we try to adapt it to fit to the new problem.

Solutions, used over and over to solve the same type of

problem, become accepted, generalized, and standardized.

McIllroy[4], at a NATO Software Engineering Conference

1968, predicted that mass-produced components would

end the software crisis. He proposed an industry of

off-the-shelf, standard source-code components and envi-

sioned the construction of complex systems from small

building blocks available through catalogs. The final ob-

jective was very clear: to make something once and to

reuse it several times.

The availability of reusable software has increased dra-

matically. The open source movement has meant that

there is a huge reusable code base available at low cost

either in the form of program libraries or entire applica-

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 83

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

tions. Some large companies provide a range of reusable

components for their customers. Standards, such as

webservice standards, have made it easier to develop gen-

eral services and reuse them across a range of applica-

tions[6]. What can be reused? The most common form of

reusable artifact is of course a source code in some pro-

gramming language, but it is not the only one. The idea

involves reusing experience, such as requirements speci-

fication, design, architecture, test data and documentation.

Studies into reuse have shown that 40% to 60% of code is

reusable from one application to another, 60% of design

and code are reusable in business applications, 75% of

program functions are common to more than one program,

and only 15% of the code found in most systems is unique

and new to a specific application[7]. According to Mili

et al.[8], rates of actual and potential reuse range from

15% to 85%.

2.1. CBSE and Software Components

Component-based Software Engineering (CBSE) is an

emerging discipline has the potential to bring the Software

Engineering on a new level. Its aim is to deliver Software

Engineering from a ‘cottage industry’ into an ‘industrial

age for Information Technology’[9] . The main idea of

CBSE is to build systems from pre-existing components

developed by different people, at different times, possibly

with different uses in mind when the system development

process starts.

Software components are artifacts clearly identified in our

software systems. They can be classes or frameworks;

objects that can be dynamically plugged at run-time;

high-level designs; specifications; patterns; extensions to

existing components; or even project plans[10]; they have

an interface, encapsulate their internal details and are

documented separately; may be any coherent unit of de-

sign effort that can be packaged, sold, kept in a library,

assigned to one person or team to develop and maintain,

and re-used[11].

The literature defines two main categories of components,

white box components and black box components known

as COTS (components-of-the-shelf).

White box components are components with source code,

directly changeable by the programmers that use them,

while black box components are typically in compiled or

in a binary form and cannot directly be changed[12]. All

the programmer knows about them is the documentation

that describes their functionality, and their published

"publicly known" interfaces including properties (or at-

tributes) that can be viewed. Even though in practice

white box components are more preferred by program-

mers, the benefits of using black box components out-

weigh those of white box components, since black box

components cannot directly be modified by a programmer,

their original functionality stays intact so that upgrades,

bug fixes, etc, made by the original developer can be im-

plemented. By changing the source of a white box com-

ponent you would have a new source stream, and old bugs

would not be fixed and propagated to new instances of

components.

CBSE distinguishes the process of “component develop-

ment” from that of “system development with compo-

nents”. System development with components’ focus is on

assembling software components that supply user services

driven by specific business requirements. It introduces

fundamental changes in the way systems are acquired,

integrated, deployed and evolved. The process of system

design involves the selection of components, together

with an analysis of which components can be acquire

from external sources, and which ones must be developed

from scratch. In this case systems are designed by exam-

ining existing components to see how they meet the sys-

tem requirements. The component development process

focuses on acquire, wrap and build reusable compo-

nents[13]. Figure 1 presents the basic processes of CBSE

with and for reuse[6].

Fig. 1. CBSE processes [6]

3. Software Reuse Principles

Software reuse can have major, and possibly unforeseen,

positive effects on the software development process.

Thinking of effective software reuse as a problem-solving

reuse provides a good general heuristic for judging a work

product’s reuse potential. For example, modules that solve

difficult or complex problems (like hardware driver mod-

ules in an operating system) are excellent reuse candi-

dates because they incorporate a high level of

problem-solving expertise that is very expensive

to replicate[9].

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 84

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Software reuse is categorized along six orthogonal ax-

es[14]:

Transformational vs. compositional reuse. Transforma-

tional systems are obtained via transformations of

high-level specification of the desired system whereas in

the second approach systems are obtained from combining

components by the choice of the developers.

Black box vs. white box reuse. In the first approach

products are reused as-is whereas in the second approach

products can be modified to the specific application.

Abstraction reuse. Reuse applied at the level of require-

ments, code, design, tests, etc.

Development of reusable assets vs. application reuse.

Vertical vs. horizontal reuse. The former takes place in

the same domain for example, financial object models,

algorithms, frameworks; the latter is related to the assets

which are created for on domain but are reused in differ-

ent one. Examples of them include GUI objects, database

access libraries, authentication service, and network

communication libraries.

Procedures reuse. It means reusing skills and know-how.

This has received significant attention from the ex-

pert-systems community while project managers tend to

reuse skills informally when they reassign personnel. To

encapsulate knowledge funds are needed.

Software development is divided into stages such as re-

quirements analysis and specification, design, coding,

testing and maintenance. To manage difficulties of the

development process different models are proposed. Re-

use methods can be divided in two groups[15]:

Generative methods. The idea is very similar to auto-

matic programming, however while automatic program-

ming tries to automate the whole process of software de-

velopment, the generative approach tries either to auto-

mate the sequences of transformations of the process de-

velopment or narrows the application domain.

Compositional methods. It is the most common form of

reuse and it is based on reusing components stored in li-

braries as potential assets for new software developments.

One of the most effective ways to significantly improve

the software process, shorten time-to-market, improve

software quality and application consistency, and reduce

development and maintenance costs is the systematic ap-

plication of software reuse. Software reuse can be oppor-

tunistic or ad-hoc and planned[5].

Most programmers use opportunistic reuse without even

being aware of it. Techniques are very simple but usually

require a lot of manual editing. In this case, reuse is con-

ducted at the individual level, not the project level. Pro-

cedures do not exist and the libraries in use contain com-

ponents which are not designed for reuse thus cataloging

and classifying reusable components remains a

time-consuming manual task[5].

Planned reuse techniques are based on some software

system especially developed to support reuse[16]. In this

case, reuse is systematic and formal practices, guidelines

and procedures are defined. Planned reuse requires sub-

stantial up-front investment and commitment, a significant

change in the current practice of software development,

demands discipline and compromise from software practi-

tioners and yet it is difficult to predict the return on in-

vestment[5]. Systematic software reuse means: under-

standing how reuse can contribute toward the goals of the

whole business; defining a technical and managerial

strategy to achieve maximum value from reuse; integrat-

ing reuse into the total software process, and into the

software process improvement program; ensuring all

software staff have the necessary competence and motiva-

tion; establishing appropriate organizational, technical

budgetary support; and using appropriate measurements to

control reuse performance[2].

4. Factors That Facilitate Reuse

Reuse principles place high demands on the reusable

components. In order to cover different aspects of their

use components had to be sufficiently general but at the

same time they had to be concrete and simple enough to

serve to particular requirements in an efficient way. Ac-

cording to de Almeida et al.[2], developing a reusable

component requires three to four times more resources

than developing a component for particular use. The more

reusable a component is, the more demands are placed

upon from products using that component. In order to

determine if systematic reuse is feasible, organizations

must be able to work out a cost-benefit analysis. Accord-

ing to Poulin[17], to recover development costs, software

components-assets must be reused more than dozen times.

A successful program of software reuse provides benefits

in three areas: increased productivity and timeliness in the

software development process, improved quality of the

software product and an increase in the overall effective-

ness of the software development process [18].

The principles, methods, and skills required to develop

reusable software cannot be learned effectively by gener-

alities and platitudes. In order to succeed, reuse efforts

must address both technical and non-technical issues.

There is no agreement between authors which of these

factors affects more significantly reusability.

Non-technical factors include:

Economics. Investments in reuse are any of the costs in-

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 85

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

tended to make one or more work products easier to reuse,

for example, labor hours devoted specifically to classify-

ing and placing code components in a reuse library are a

reuse investment, since those hours are intended primarily

to benefit subsequent activities[19].

Organizational issues. To distribute, search and sell/buy

reusable assets requires a deep understanding of applica-

tion developer needs and business requirements. As the

number of developers and projects employing reusable

assets increases, it becomes hard to structure an organiza-

tion to provide effective feedback loops between these

constituencies[20].

Management. It may require years of investment before it

pays off; and it involves changes in the organizational

funding and management structures. It can only be im-

plemented with upper management support and guidance,

without which none of the reuse activities is likely to be

successful.

Educational issues. Different surveys have concluded

that education is crucial to systematic reuse. To build re-

usable software can not only be taught in school but it

requires appropriate training with developers.

Psychological issues. To make the best of reuse, develop-

ers must trust in reusable assets created from third parties.

The most common psychological barrier for not accepting

reuse is the syndrome “Not Invented Here”.

Legal issues. As regarding to legal issues, many of which

are still to be resolved, are also important, like, what are

the rights and responsibilities of providers and consumers

of reusable assets? If a purchased component fails in a

critical application should the provider of reusable assets

be able to recover damages?

Measurement. As with any engineering activity, meas-

urement is vital for systematic reuse. In general, reuse

benefits (improved productivity and quality) are a func-

tion of the reuse level- the ratio of reused to total compo-

nents- which, in turn, is a function of reuse factors, the set

of issues that can be manipulated to increase reuse, either

of managerial, legal, economic as technical background

[21].

Repositories. Once an organization acquires reusable

assets, it must have a way to store, search, and retrieve

them– a reuse library. Although libraries are a critical fac-

tor in systematic software reuse, they are not a necessary

condition for success with reuse. An example to this is

Agora, a software prototype being developed by the

Commercial Off-the-Shelf (COTS)-Based Systems Initia-

tive at the Software Engineering Institute (SEI). The ob-

ject is to create an automatically generated and indexed

worldwide database of software products classified by

component model. It combines introspection with Web

search engines to reduce the costs of bringing software

components to, and finding components in the software

marketplace [22]. Technical factors for software reuse

include issues related to search and recovery components,

legacy components and aspects involving adaptation [11]:

Difficulty of finding reusable software. To reuse soft-

ware components there should exist efficient ways to

search and recovery them. It is very important to have a

well-organized repository which will contain components

with means to access it.

Non-reusability of found software. Easy access to exist-

ing software does not necessarily increase software reuse

since reusable assets should be carefully specified, de-

signed, implemented, and documented, thus, sometimes,

modifying and adapting software can be more expensive

than programming the needed functionality from scratch;

Legacy components not suitable for reuse. A known

approach for software reuse is to use legacy software.

However, simply recovering existing assets from legacy

system and trying to reuse them for new developments is

not sufficient for systematic reuse. Reengineering can

help in extracting reusable components from legacy sys-

tem, but the efforts needed for understanding and extrac-

tion should be considered; and

Modification. It is not always easy to find a component

that works exactly as we want. Thus, modifications are

necessary and for that ways to determine their effects on

the component and its previous verification results should

exist.

Table 1 presents a general summary of facilitators related

to software reuse

Table 1. Software reuse facilitators [2]

5. Software Reuse Metrics

A very critical question, while trying hard to adopt reuse

methods and technologies, is how much can be saved by

using existing software components when developing new

software systems? What is known is that a direct track of

cost savings due to reuse is difficult. The easiest way to

measure savings would be by analyzing the code for reuse

of components. A metric is a quantitative indicator of an

attribute of a thing while a model specifies relationships

among metrics[23].

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 86

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

According to Frakes[23], reuse models and metrics are

categorized as following: (1) reuse cost benefits models,

(2) maturity assessment, (3) amount of reuse, (4) failure

modes, (5) reusability, and (6) reuse library metrics, fig. 2.

In order to justify time and cost involved in systematic

reuse, organizations should be able to estimate costs and

benefits. Cost-benefits models include economic

cost/benefit analysis as well as quality and productivity

payoff. The simplest model, the cost/productivity model,

shows the cost of reusing software components, builds

upon the simple model by representing the cost of devel-

oping reusable components. According to Matsumura[24]

results of a reuse program implemented at Toshiba

showed a 60 percent ratio of reused components and a

decrease in errors by 20 to 30 percent. Managers felt that

the reuse program would be profitable if a component

were reused at least three times

Maturity assessment models categorize reuse programs by

how advanced they are in implementing systematic reuse

using an ordinal scale of reuse phases and is similar o the

Capability Maturity Model. A maturity model is at the

core of planned reuse, helping organizations understand

their past, current, and future goals for reuse activities.

Several reuse maturity models have been developed and

used, though they have not been validated.

Figure 1. Reuse metrics and models[23]

Amount of reuse metrics are used to assess and monitor a

reuse improvement effort by tracking percentages of reuse

for life cycle objects. In general, the metric is:

amount of life cycle object reused

total size of life cycle object

A common form of this metric is based on lines of code as

follows:

lines of reused code in system or module

total lines of code in system or module

To implement systematic reuse is by no doubt very diffi-

cult since it involves both technical and nontechnical fac-

tors. Failure modes analysis provides an approach to

measure and improve a reuse process based on a model

that shows ways a reuse process can fail. Thus failure

modes analysis can be used to evaluate the quality of a

systematic reuse program, to determine reuse impedi-

ments in an organization and to devise an improvement

strategy for a systematic reuse program[25].

Each failure mode has failure causes associated with it.

The failure modes are:

No Attempt to Reuse

Part Does Not Exist

Part Is Not Available

Part Is Not Found

Part Is Not Understood

Part Is Not Valid

Part Can Not Be Integrated

Reusability metrics indicate the likelihood that an artifact

is reusable. These metrics are useful in two areas of reuse:

reuse design and reengineering for reuse. We want to

know whether there are any measurable attributes of a

component that can indicate its potential reusability. If

there are, will these attributes be goals for reuse design

and reengineering. A difficulty in this area is that attrib-

utes of reusability are often specific to given types of re-

usable components, and to the languages in which they

are implemented[26].

Library assets can be obtained from existing systems

through reengineering, designed and built from scratch, or

purchased. Reuse library metrics are used to manage and

track usage of a reuse repository. Organizations often en-

counter the need for these metrics. To incorporate reusable

components into systems, programmers must be able to

find and understand them. If this process fails, then re-

use cannot happen. Thus, how to index and represent

these components so that they can be found and under-

stood are two important issues in creating a reuse program.

The evaluation criteria for indexing schemes of reuse li-

braries are: costs, searching effectiveness, support for un-

derstanding, and efficiency[27].

6. Conclusions

Software is starting to be noticed as the core of most of

the industrial, economic and social situations in our eve-

ryday life. It is likely that, in the near future, all forms of

organized human life we come across will be, somehow,

mediated by software. Anyway, software has been facing

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 87

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

a crisis since there is not enough educated human capital

to produce all the software the economy and society need.

Software reuse, in the form of principles, processes which

are reuse centered, focused or influenced, component

based development, metrics, certification, repositories,

search and retrieval, as we presented and discussed over

this research, is in some sense old hat. Almost fifty years

have passed since the NATO 1968 conference where the

problem of mass production of such complex knowledge

artifacts as software was discussed at large. Clearly it is

seen that software reuse is an inevitable solution that has

potential to improve time–to-market and man power/cost

trends that have been ongoing. Currently seem to be one

of the most active and creative research areas in Computer

Science. Software reuse has a significant impact on soft-

ware industry. It helps organize large-scale development

and what is more important; it makes system building less

expensive.

6. Reference

[1] Syed Raza Kirk Knoernschild, “Software reuse for business
success,” developerFusion. 2010.

[2] Eduardo Santana de Almeida, A. Alvaro, V. C. Garcia, J. C.
C. P. Mascena, V. A. de A. Burégio, L. M. Nascimento, D.
Lucrédio, and S. L. Meira, Component Reuse in Software
Engineering. 2006.

[3] K. Wentzel, “Software reuse-facts and myths,” Software
Engineering, 1994. Proceedings. ICSE-, 1994.

[4] R. Prieto-Diaz, W. Schafer, and M. Matsumoto, “Status
report: Software reusability,” Software, IEEE, vol. 10, no. 3,
pp. 61–66, 1993.

[5] I. Sommerville, Software Engineering 9e, vol. 9. Addi-
son-Wesley, 2011, p. 790.

[6] M. Ezran, M. Morisio, and C. Tully, Practical software
reuse. 2002.

[7] H. Mili, F. Mili, and A. Mili, “Reusing software- Issues and
research directions,” IEEE Transactions on Software En-
gineering, no. 6, pp. 528 – 562, 1995.

[8] A. Cechich and M. Piattini, Component-based software
quality: methods and techniques. 2003.

[9] J. Sametinger, Software Engineering with Reusable Com-

ponents. 1997.
[10] A. C. Wills, D. D. Souza, and I. Computing, “Rigorous

Component-Based Development,” Components, pp. 1–28,
1997.

[11] A. W. Brown and K. C. Wallnau, “Engineering of Compo-
nent-Based Systems,” pp. 414–422, 1996.

[12] E. Dusink, “Reuse is not done in a Vacuum,” WISR, 1992.
[13] M. Smolárová and P. Návrat, “Software reuse: Principles,

patterns, prospects,” CIT. Journal of computing and infor-
mation …, 1997.

[14] M. Ramachandran, “Software reuse guidelines,” IRI -2005
IEEE International Conference on Information Reuse and
Integration, vol. 30, no. 3, pp. 1–8, 2005.

[15] J. S. Poulin, “The Business Case for Software Reuse: Reuse
Metrics, Economic Models, Organizational Issues, and
Case Studies,” 9th International Conference on Software
Reuse, pp. 471–516, 2006.

[16] Y. Kim, “Software reuse: survey and research directions,”
Journal of Management Information Systems, 1998.

[17] B. Bollinger and B. Barnes, “Making Reuse Cost
-Effective,” IEEE Software, 1991.

[18] D. Schmidt, “Why software reuse has failed and how to
make it work for you,” C++ Report, 1999.

[19] S. Isoda and W. Frakes, “Success factors of systematic
reuse,” IEEE Software, vol. 11, no. 5, pp. 14–19, Sep. 1994.

[20] R. C. Seacord, S. A. Hissam, and K. C. Wallnau, “Agora : A
Search Engine for Software Components Agora : A Search
Engine for Software Components,” no. August, 1998.

[21] M. L. Griss, “Software reuse: From library to factory,” IBM
Systems Journal, vol. 32, no. 4, pp. 548–566, 1993.

[22] J. Tirso, “The IBM reuse program,” of the 4th Annual
Workshop on Software Reuse, 1991.

[23] R. Martin and G. Jackoway, “Software Reuse Across Con-
tinents,” Workshop in Reuse, pp. 1–6, 1991.

[24] J. Tirso, “Championing the cause: making reuse stick,” …
of the 5th Annual Workshop on Software Reuse, no. 914, pp.
1–6, 1992.

[25] R. Joos, “Software reuse at Motorola,” IEEE Software, vol.
11, no. 5, pp. 42–47, Sep. 1994.

[26] J. Faget and J. Morel, “The REBOOT approach to the
concept of a reusable component,” 5th Workshop Institu-
tionalizing, 1992.

[27] M. Aoyama, “CBSE in Japan and Asia,” Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, 2001, pp.
213–225.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 88

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

