
 

 

Extended Breadth-First Search Algorithm 

Tamás Kádek1 and János Pánovics2 

 

 1 Department of Computer Science, Faculty of Informatics, University of Debrecen 

Debrecen, Hungary 

 

 
2 Department of Information Technology, Faculty of Informatics, University of Debrecen 

Debrecen, Hungary 

 
 

 

Abstract 
The task of artificial intelligence is to provide representation 

techniques for describing problems, as well as search algorithms 

that can be used to answer our questions. A widespread and 

elaborated model is state-space representation, which, however, 

has some shortcomings. Classical search algorithms are not 

applicable in practice when the state space contains even only a 

few tens of thousands of states. We can give remedy to this 

problem by defining some kind of heuristic knowledge. In case 

of classical state-space representation, heuristic must be defined 

so that it qualifies an arbitrary state based on its “goodness,” 

which is obviously not trivial. In our paper, we introduce an 

algorithm that gives us the ability to handle huge state spaces and 

to use a heuristic concept which is easier to embed into search 

algorithms. 

Keywords: Artificial Intelligence, State-Space Representation, 

Extended Model, Breadth-First Search. 

1. Introduction 

The most basic problem representation technique used by 

artificial intelligence is state-space representation. 

However, it can be used to describe only a certain small 

subset of problems conveniently. For example, even a 

simple chess puzzle may have too many ways to continue 

from a particular situation because each piece can move in 

quite a few directions and potentially more than one square. 

Of course, we do not have to deal with all the possible 

moves in a particular situation provided we have a means 

to mark the cases that are relevant regarding the solution's 

viewpoint. This can only be done only if we have some 

additional knowledge about the problem, which is usually 

represented by a heuristic function. In case we have this 

additional knowledge, however, it may still be difficult to 

describe it as a function. For example, in the 8-puzzle 

game, the heuristic function evaluates a situation as being 

more appealing if it has more pieces on their correct places, 

but this measure will fail in some cases. 

 

Before we propose a new algorithm that deals with the 

above-mentioned problems, we first have to define an 

extended state-space model, in which it is easier to 

represent the additional (heuristic) knowledge about the 

problems. After that, we show an extended breadth-first 

search (EBFS) algorithm that uses the extended model and 

is able to handle larger state spaces. Finally, we compare 

this algorithm with the standard breadth-first search via a 

particular problem. 

2. An Extended State-Space Model (ESSM) 

Using state-space representation, solutions to problems are 

obtained by executing a series of well-defined steps. 

During the execution of each step, newer and newer states 

are created, which form the state space. States are 

distinguished from one another based on their relevant 

properties. Relevant properties are defined by the sets of 

their possible values, so a state can be represented as an 

element of the Cartesian product of these sets. Let us 

denote this Cartesian product by S. Possible steps are then 

operations on the elements of S. Let us denote the set of 

operations by F. The state space is often illustrated as a 

graph, in which nodes represent states, and edges represent 

operations. This way, searching for a solution to a problem 

can be done actually using a path-finding algorithm. 

 

We keep the basic idea (i.e., the concepts of states and 

operations on states) also in the extended state-space 

model (ESSM). The goal of this generalization is to 

provide the ability to model as many systems not 

conforming to the classical interpretation as possible in a 

uniform manner. 

 

A state-space representation over state space S is defined 

as a 5-tuple of the form 

K, initial, goal, F, B, 

where 

 K is a nonempty set containing the initially known 

states. Of course, K ⊆ S. The set of initially known 

states is usually incomplete, nevertheless, only these 

states can be used as a starting point to explore the 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 78

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

 

state space by applying the operators. Note that by 

applying the operators on the elements of K an 

arbitrary number of times, S is not necessarily 

covered. 

 initial is a Boolean function that selects the initial 

states from the state space: 

initial : S  {true, false} 

 goal is a Boolean function that selects the goal states 

from the state space: 

goal : S  {true, false} 

 F = {f1, f2, …, fn} is a set of “forward” functions, 

which represent the operators in the classical sense. 

Operators can be used to create a new state (or even a 

set of new states in the extended model) from a given 

state. 

fi : S  2S 

 B = {b1, b2, …, bm} is a set of “backward” functions, 

which usually give the states from which a given state 

can be obtained by applying functions in F. 

bi : S  2S 

 

Some notes: 

 The number of initial and goal states is not necessarily 

known initially, as we may not be able to or may not 

intend to generate the whole set S before or during the 

search. 

 The n + m = 0 case is excluded because in that case, 

nothing would represent the relationship between the 

states. 

 Although the elements of the sets F and B are formally 

similar functions, their semantics are quite different. 

The real set-valued functions in F are used to 

represent nondeterministic operators, while there may 

be real set-valued functions in set B even in case of 

deterministic operators. 

 

Let us now introduce a couple of concepts: 

 Initial state: a state s for which s  S and 

initial(s) = true. 

 Goal state: a state s for which s  S and goal(s) = true. 

 Known initial state: an initial state in K. 

 Known goal state: a goal state in K. 

 Edge: an s, s', o  S × S × (F  B) triple where if 

o  F, then s'  o(s), and if o  B, then s  o(s'). 

 Path: an ordered sequence of edges in the form 

s1, s2, o1, s2, s3, o2, …, sk – 1, sk, ok – 1, 

where k ≥ 2. 

 

General objective: determine a path from s0 to s*, where s0 

is an initial state, and s* is a goal state. 

2.1 A Few Properties of ESSM Representations 

For classifying state-space representations, let us define 

some important properties. Let p = K, initial, goal, F, B a 

state-space representation over S. p is said to be 

 deterministic if for all s  S and f  F, |f(s)| ≤ 1. If 

|f(s)| = 0, then we say that the operator represented by 

the forward function f is not applicable to state s. If 

for some s  S and f  F, |f(s)| > 1 (i.e., f is set-

valued), then the representation is called 

nondeterministic. In this case, the operator represented 

by f may generate any state in the result set, even 

different states on different applications. In this paper, 

we will only focus on deterministic cases. 

 symmetric if ss' (k (s'  fk(s))  l (s  bl(s'))). 

This means that for each path P, there exists a path P’ 

that contains the same state pairs in the same order 

and contains only functions in F or functions in B. 

 antisymmetric if 

ss' ((k (s'  fk(s))  l (s  bl(s')))  

 (l (s  bl(s'))  k (s'  fk(s)))). 

In this case, each edge is given in one way only. 

 strictly symmetric if 

F = {f1, f2, …, fn}, B = {b1, b2, …, bn}, and 

ss'k (s'  fk(s)  s  bk(s')). 

The definition implies that a strictly symmetric 

representation is also symmetric. 

 one-way forward if B = . 

 one-way backward if F = . 

 set up with a single initial state if there exists one and 

only one s0  S for which initial(s0) = true. 

 set up with multiple initial states if there exists more 

than one s  S for which initial(s) = true. 

 

In the extended model, the classical state-space 

representation is a deterministic, antisymmetric 

representation set up with a single initial state in the 

following form: 

{s0}, s → (s = s0), goal, {f1, f2, …, fn},  










otherwise,

),(dom if)}({
)( iossio

sif  

where oi is an operator in the traditional sense, for which 

oi : D → S and D ⊆ S (i = 1, 2, …, n). 

3. Model Restrictions for EBFS 

Before describing the EBFS algorithm, we first give the 

model serving as an adequate representation technique for 

problems suffering from the above-mentioned drawbacks, 

i.e., the large number of states and nontrivial heuristic 

functions. We can now make use of the advantage of 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 79

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

 

ESSM that more than one state (set K) may be defined as 

the input of the search. The basic idea is that the given 

states should be relevant. This means that the heuristic 

function is replaced with the enumeration of the states that 

are considered (potentially) useful. In other words, the 

given states are predictably a part of one of the solutions. 

Similarly to using a heuristic function, this prediction is not 

necessarily perfect. There is only one limitation: at least 

one of the given states should be on a path representing a 

solution. Whenever an initial state is included in K, this 

condition is satisfied. 

 

We can also keep the following properties of the extended 

model: 

 it is allowed to have more than one initial and goal 

states, 

 we are able to use both forward and backward 

functions, so the representation can be symmetric, 

antisymmetric, or strictly symmetric. 

As mentioned above, we set aside nondeterministic 

representations for now. 

 

Let us now consider a state-space representation that 

suffers from the presented problems, i.e., a representation 

whose state space is big enough and for which it is hard to 

define heuristic as a function. Such a representation exists 

for the well-known n-queens problem. In this 

representation, a state is defined by an n  n Boolean 

matrix, the cells of which represent the squares of a 

chessboard. An element of the matrix is true if there is a 

queen on that square and false if it is empty. We have as 

many operators as many squares on the chessboard. Note 

that this representation is far from the best choice when it 

is about solving this problem. We only chose this because 

it has the drawbacks described earlier. 

4. The EBFS Algorithm 

The EBFS algorithm extends the BFS algorithm with the 

ability to run more than one breadth-first search starting 

from more than one state (the inititally known states). It is 

particularly useful if the subtrees explored reach one 

another as illustrated by Figure 1. The dashed line denotes 

the subtree that is discovered by the standard BFS 

algorithm starting from i1 if the nearest goal state is g1. 

However, in case we give also the states k1, k2, k3 besides i1 

as potentially useful states, then the discovered part of the 

graph is smaller, even if k1 did not prove to be useful for 

finding the solution as the illustration shows. 

 
Fig. 1:  Subtrees reaching one another. 

 

The EBFS algorithm stores a subgraph of the 

representation graph during the search. For each node, it 

stores the state represented by the node as usual. If we 

have forward functions, we also need to store the forward 

status (open, closed, or not relevant), forward parents, 

forward children of the node, as well as the forward 

distance from each of the initially known states. Note that 

the forward functions represent the operators in the 

classical sense. The main difference from BFS at this point 

is that in case of EBFS, the relationship between the nodes 

and each initially known state is stored. Because of the 

ESSM model, we are able to use backward functions as 

well. If B is not an empty set, then we store the above 

information also for the backward functions. In this case, 

we need the status of “not relevant”. For example, the 

forward status of a node should be not relevant if it is only 

discovered using backward functions (because this node is 

not yet relevant for forward searches). For the sake of 

simplicity, we now consider B an empty set and keep only 

the B-DISTANCE property so that we can check the 

termination condition as if we had some backward 

functions. 

 

4.1 The Pseudocode of the Algorithm 

function NEW-NODE(state) 
begin 
  STATE[node]  state 
  F-STATUS  nil 
  F-PARENTS[node]   
  F-CHILDREN[node]   
  F-DISTANCE[node]  (∞,∞,…,∞) 
  B-DISTANCE[node]  (∞,∞,…,∞) 
  return node 
end function 
 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 80

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

 

procedure EBFS 
begin 
  nodes   
  i  1 
  for all k in K do 
    new  NEWNODE(k) 
    F-STATUS[new]  open 
    F-DISTANCE[new]i  0 
    B-DISTANCE[new]i  0 
    nodes  nodes  new 
    i  i+1 
  end for 

 

  while true do 
    if { n | n  nodes  

      F-STATUS[n] = open } =  then 
      terminate unsuccessfully 
    end if 
    curr  SELECT(nodes) 
    EXPAND(curr, nodes) 
    if GOAL-CONDITION(nodes) then 
      terminate successfully 
    end if 
  end while 
end procedure 

 

The main algorithm is very similar to BFS: it is a series of 

expansions and termination condition checks. 

 
function SELECT(nodes) 
begin 
  for all n in nodes do 
    if n  { m | m  nodes  
      min(F-DISTANCE(m)) <= 

      min({ min(F-DISTANCE(o)) | 

      o  nodes }) } then 
      return n 
    end if 
  end for 
  return nil 
end function 

 

procedure EXPAND(curr, nodes) 
begin 
  for all f in F do 
    newstate  f(state(curr)) 
    node  SEARCH(nodes, newstate) 
    if node = nil or 

      F-STATUS[node] = not-relevant then 
      if node = nil then 
        node  NEWNODE(newstate) 
      end if 
      f-status[node] = open 
    end if 
    F-CHILDREN[curr]  

      F-CHILDREN[curr]  node 
    F-PARENT[node]  F-PARENT[node]  curr 
    F-UPDATE(node, F-DISTANCE[curr]) 
  end for 
end procedure 

 

During expansion, we apply all the operators as usual. In 

the general algorithm, both the forward and backward 

functions would need to be considered inside the SELECT 

and EXPAND functions. The SEARCH function checks 

whether the new state is already in the database. 

 
procedure F-UPDATE(node, parent-distance) 
begin 
  new-distance  (∞,∞,…,∞) 
  for all i in {1, 2, …, count(K)} do 
    new-distancei  min(F-DISTANCE[node]i, 

      1 + parent-distancei) 
  end for 
  if F-DISTANCE[node] <> new-distance then 
    F-DISTANCE[node]  new-distance 
    if F-STATUS[node] = closed then 
      for all n in F-CHILDREN[node] do 
        F-UPDATE(n, new-distance) 
      end for 
    end if 
  end if 
end procedure 

 

The F-UPDATE function recursively updates the stored 

information about the nodes whenever an initially known 

state becomes reachable from another one during the 

search. 

 
function GOAL-CONDITION(nodes) 
begin 
  for all s in { n | n ∊ nodes  
    initial(STATE(n)) } do 
    for all g in { n | n ∊ nodes  
      goal(STATE(n)) } do 
      for all i in {1,2,…,count(K)} do 
        if B-DISTANCE(s)i <> ∞ and 

          F-DISTANCE(g)i <> ∞ then 
          return true 
        end if 
      end for 
    end for 
  end for 
  return false 
end function 

 

This function checks whether there is an initial state and a 

goal state such that the goal state can be reached from the 

initial state via an initially known state. Note that in the 

simplified case, initial states must also be initially known 

states. 

5. Results 

The state-space representation described in Section 3 

illustrates when the EBFS algorithm can be useful. We ran 

the EBFS and the classical BFS algorithms with the 

n-queens problem with different values of n and 

summarized the results in the following table: 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 81

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

 

Table 1: Comparison results 

Problem BFS 
EBFS with 2 

known states 

EBFS with 3 

known states 

5-queens 453 216 220 

6-queens 2 632 1 409 1 417 

7-queens 16 831 4 434 4 439 

8-queens 118 878 46 286 46 319 

 

The table clearly shows that even with only two initially 

known states, the number of states explored during the 

EBFS search until the successful termination is much less 

than that of the BFS, which is the same as in the case of 

EBFS with only one initially known state: the initial state 

(when the board is empty). When we had two initially 

known states, then for all values of n, one of them was the 

initial state of the problem (which is a sufficient condition 

for finding a solution if one exists), and the other was a 

state on a path that represents one of the solutions. The last 

column shows the case when we added a third state to the 

two described above with the intention to give a false 

heuristic: the two states other than the initial state were not 

reachable from each other. Note that even with including 

states that are later found to be useless during the search, 

the number of states explored are still much less than with 

BFS (of course, this figure highly depends on the selected 

initially known states). 

6. Conclusions and Future Work 

As you can see from the comparison table, EBFS 

outperforms the classical BFS algorithm in cases when the 

state space is large, but we can give a couple of states 

which we think to form a part of a solution. Introducing the 

EBFS algorithm was only enabled by creating an extended 

state-space model first. The EBFS algorithm itself is an 

extension of the classical BFS algorithm. The question that 

arises now is how it is possible to extend other graph 

search algorithms such as uniform-cost search. 

Acknowledgments 

The publication was supported by the TÁMOP-4.2.2.C-

11/1/KONV-2012-0001 project. The project has been 

supported by the European Union, co-financed by the 

European Social Fund. 

 

References 
[1]  T. Kádek and J. Pánovics, “General State Space Model”, in 

23rd International Conference on Computers and Education 

(SzámOkt 2013), 2013, pp. 214–218. 

[2]  S. Beamer, K. Asanović, D. Patterson: “Direction-

Optimizing Breadth-First Search”, in International 

Conference on High Performance Computing, Networking, 

Storage and Analysis (SC ’12), 2012, Article No. 12. 

[3] J. Pineau, “Tractable Planning Under Uncertainty: Exploiting 

Structure”, Ph.D. thesis, Carnegie Mellon University, 

Pittsburgh, Pennsylvania, USA, 2004. 

 
Tamás Kádek is an assistant lecturer at the University of 
Debrecen, Hungary, where he received his master’s degree in 
Computer Science (IT) in 2007. His general research interests 
include mathematical logic, programming paradigms (imperative, 
object-oriented, functional, and logic), and artificial intelligence. He 
has had teaching experience in various fields of IT, including 
subjects like Logic in Computer Science, Artificial Intelligence, and 
High-Level Programming Languages. 
 
János Pánovics is an assistant lecturer at the University of 
Debrecen, Hungary, where he received his master’s degree in 
Computer Science (IT) in 1999. His general research interests 
include programming languages (both low-level and high-level), 
programming paradigms (imperative, object-oriented, functional, 
and logic), artificial intelligence, database technologies, and IT 
education. He has had teaching experience in various fields of IT, 
including subjects like Assembly Languages, Computer 
Architectures, High-Level Programming Languages, Data 
Structures and Algorithms, Database Systems, and Artificial 
Intelligence. 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 82

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.




