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Abstract 

Performance metrics of reconfigurable systems have largely 
focused on the relative performance of specific algorithms on the 
fabric compared against the same algorithm on a general-purpose 
processor or ASIC device.  Here we introduce a number of 
metrics, which relate purely to the act and cost of 
reconfiguration, independent of implementation or algorithm. We 
specifically introduce the notation of total and relative gate 
efficiency, power, and granularity. 
Keywords: Dynamic Reconfigurable Fabric (DRF), 
Granularity, Power, complexity, and Efficiency.  

1. Introduction 

A Dynamically Reconfigurable Fabric (DRF) is a 
hardware system capable of being reconfigured under 
software control dynamically. Several reconfigurable 
architectures have been proposed [1]-[4]. The number of 
application fields in which reconfigurable computing has 
been applied is massive, including embedded systems, 
network security applications, and multimedia applications 
[5].  Some studies have addressed analysis and exploration 
of analytical models of reconfigurable architectures [6]-
[9].  
 
Most performance analysis focuses on how well an 
algorithm performs on a reconfigurable system. In this 
paper a performance analysis for different reconfigurable 
systems is explained. In [6], a unified area model for RP-
space has been studied. This model is used to estimate the 
peak computational density as a function of granularity 
and on-chip instruction store size, which is also used to 
characterize the computational efficiency.  
 
The Chimaera system was evaluated with several 
benchmarks. In [1] , three different algorithms were used 
for the system analysis: Compress/SPEC92, with a 
speedup of 1.11; Eqntott/SPEC92, with  a speedup of 1.8; 
and Conway’s Game of Life with a speedup of 1.34. By 
replacing the kernels with reconfigurable unit instructions, 
it is possible to get a speedup of 2.06. A speed up of 160 
times can be achieved using careful hand mapping of bit 
parallel optimization opportunities. In [10], some 
applications of MediaBench  [11] were evaluated: MPEG 
Encoder, G.721 encoder and decoder, ADPCM 

compression and decompression, Pegwit (public key 
encryption), as well as applications taken from the 
Honeywell benchmark: image compression and 
decompression. In [1], [12], DES (encryption/ decryption), 
Simple Gaussian Blur, RGB-Scale Conversion were also 
tested on Chimaera.  
 
Simulations were performed in order to gather results for 
Garp, since no actual hardware existed. It was compared 
against a Sun Ultra-SPARC 1/170, a 4-way superscalar 64-
bit processor with 16 KB each of on-chip instruction and 
data caches [13].  
 
REMARC executes MPEG2 decoding, optimizing two 
kernels: IDCT and MC. It also executes MPEG2 encoding 
and DES. A high-level simulation of the system 
demonstrated speedups ranging from a factor of 2.3 to 21.2 
in the aforementioned applications [14]. 
 
The difficulty with such benchmarks is that they are 
algorithm dependent rather than quantifying more general 
aspects of the DRF. In this short paper our interest is to 
start a conversation about the development of more 
general performance metrics for DRFs, which are (for the 
most part) algorithm-independent. We begin by examining 
a simple case of a DRF by way of motivation. 
 

2. Motivating Example  

As a motivating example of a dynamically reconfigurable 
system, we consider the SAXPY processor we introduced 
in [15]. A Saxpy coprocessor can perform numerical 
operation:  

𝑍 = 𝛼𝑥 + 𝑦                                      (1)                                                                 

where 𝛼 is a scalar and 𝑥 and 𝑦  real or complex vectors, 
which we take here to be length-1 for simplicity. The 
general Saxpy coprocessor is shown in Fig.1.  
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Fig. 1 Saxpy Coprocessor.  

The quad Saxpy coprocessor shown in Fig. 2 can be used 
(with N-fold replication) to perform a single N-way 
complex single Saxpy operation or, using the same 
hardware, 4N-way real single Saxpy operations.  

 
 

 
Fig. 2 Quad Saxpy Processor. 

The addition of multiplexers to the coprocessor in Fig. 2 
results in the reconfigurable Saxpy coprocessor as shown 
in Fig. 3, which can now easily switch between 4 real 
SAXPY operations or 1 complex SAXPY operation. 

 

 

Fig. 3 Reconfigurable Saxpy Coprocessor. 

Note that only 4 bits are needed to control the 
reconfiguration of this system, and that the 
reconfigurability is driven by relatively simple 
multiplexors. It is obvious that there is a loss in this system 
due both to the area occupied by the reconfiguration 
multiplexors and to the delay paths introduced by them, 
and it would seem reasonable that 𝑇!"#$%!"#$ >
  𝑇!"#$%!"#         (where T is total compute time for the SAXPY 
on an ASIC or in the DRF). On the other hand, the simple 
assertion that 𝐶!"#$%!"#$ <   𝐶!"#$%!"# , where C is some cost 
metric, is not so obvious. Certainly, if C is (VLSI) area, 
then the assertion would hold (providing constant 
technology etc.). If C is power, the assertion also probably 
holds. If C measures reuse potential, then more 
likely  𝐶!"#$%!"# <   𝐶!"#$%!"#$ . 
 
What interests us here is not the computation 
accomplished by the reconfigurable system above, but 
rather the derivation of metrics which relate the cost of 
reconfigurability to the compute power of the system, the 
degree of complexity of the reconfigurable units 
themselves, and the difficulty of using or defining the 
reconfigurable system. 
 

3. Efficiency  

We have previously defined [15] an efficiency in terms of 
the ratio of the gate counts of the gates used in the 
functional part of the circuit (i.e., that part of the circuit 
used for computation; in the case of the example in 
Section 2, these would be the multipliers/adders) and the 
gates used to control the reconfigurability of the system (in 
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our example in Section 2, the multiplexors). We call this 
the relative efficiency ER, given by: 
 

𝐸! =
!!

!!!  !!
                                (2) 

 
where NF is the gate count associated with functional 
components in the DRF and NR is the gate count associated 
with components in the DRF whose only role is enabling 
reconfiguration. Note that an equivalent definition using 
area rather than gate count was given by [6], [16]-[17].  
 
This definition of efficiency captures the relative cost of 
the reconfigurability but, in a sense, downplays the power 
of the reconfigurable system by ignoring the fact that 
without reconfiguration, multiple circuits would have to be 
built to accommodate the reconfigurable options. Our 
second definition of efficiency captures this more 
precisely, and is called the total efficiency ET given by: 
 

𝐸! = 1 − !!!!!
!!
!

!
                                  (3) 

where 𝑁!!  is the number of functional gates needed to 
compute computational option i and NF and NR are as 
given above. Thus, if functions p and q can be computed 
individually using NP and NQ gates (respectively) or as 
options in a reconfigurable system using NF+NR gates (in 
total), then ET would be given by 1 – (NF+NR)/(NP+NQ). 
We expect: 

 𝑁!!   >! 𝑁! +   𝑁!                              (4)  

and thus 0 ≤ 𝐸! ,𝐸! ≤ 1    

4. Power  

We define the power P of a DRF as the number of distinct 
functions the DRF can compute. Sometimes power is 
trivially computed (as in the example below) and 
sometimes (as with an FPGA, for example) power may be 
less easy to determine. One particularly simple class of 
circuits with surprisingly wide applications are the cascade 
circuits comprising of n-input functions 𝑓!(𝑥!, 𝑥!,… , 𝑥!!!) 
cascaded in sequence and in parallel with the inputs to 
each successive function multiplexed from the outputs of 
the preceding level. Fig. 4 shows an example of such a 
circuit. 

 
Fig. 4 L2F2I2 Circuit. 

 
We refer to such circuits in general as LpFqIr circuits, 
where p is the number of levels in the circuit, q is the 
number of distinct function blocks at each level, and r is 
the number of inputs to each block at the first level. (Note 
that at each stage the purely reconfiguration elements of 
the circuit consists of two 2-1 n-bit multiplexors.)  
 
We choose this kind of circuit as an example for 
computing power here because it leads naturally to an 
interpretation of power that is not obvious at first glance; 
that is, we believe there are circumstances where it is 
appropriate to distinguish the computation f(x=a,y=b) 
from 𝑓  (𝑥 = 𝑎, 𝑦 = 𝑏)  from 𝑓  (𝑥 = 𝑎, 𝑦 = 𝑎)  even when 
𝑓 itself is not changing. (This odd way of counting arises 
in part due to our definition of total efficiency ET). This is 
tantamount to arguing that 2𝑎 , 𝑎 + 𝑏 and  2𝑏 in an adder 
constitute different computations no matter what values are 
actually assigned to a and b. There are circumstances for 
such circuits where we assume that an input set (here 
{a,b}) arrives at the input to the cascade and (for the 
example shown) we would like the output of the first 
function pair to be any of possible outputs of 𝑓 and 𝑔 
given the inputs (multiplexed), and equivalently thereafter 
throughout the cascade. Then if 𝑓! 𝑥, 𝑦 =
𝑓! 𝑦, 𝑥   throughout the cascade the power of this circuit 
(assuming no equivalent results and counted in this 
admittedly controversial way) is 42, and when carried out 
to n levels, in general by the recurrence:  
 

𝑃 𝑛 = 𝑃 𝑛 − 1 × 𝑃 𝑛 − 1 + 1                               (5)                                               

Power, used alone, is a weak measure of the compute 
power of the DRF (at least in the usual algorithmic 
complexity sense), since it does not convey what is being 
computed. Assessing the degree of complexity of the DRF 
relates to the individual complexity of the elements, which 
constitute the DRF, encapsulated by granularity.  
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5. Granularity  

In [6], the granularity is defined as the number of 
resources controlled by each instruction. In this paper we 
define the granularity as the number of gates in a 
reconfigurable unit against the number in the entire 
system. If we call the smallest reconfigurable unit the 
Least Reconfigurable Unit (LRU), then we can define the 
relative granularity GR as follows:  
 

𝐺! =
!!"#
!!"!

                                   (6)  
 
where NLRU is the number of functional gates in the LRU, 
and NSYS is the total number of gates in the system 
(including gates in the reconfigurable path i.e., those only 
used in reconfiguration). If we assume the die area of a 
reconfigurable system is given by AD (in cm2) then the 
gate density DG is:  
 

𝐷! =
!!"!
!!

                                   (7) 
 
We need a normalizing constant NMAX, which we take to 

be the maximum gate density (for a given technology) in 
any unit area. Then the relative gate density DR is: 
 

𝐷! =
!!

!!"#
                                  (8) 

Then we define the absolute granularity GA as: 

𝐺! =
!!"#
!!"!

  × !!"!
!!"#×!!

= !!"#
!!"#×!!

                (9)                                                     

 
The general granularity G is used to capture both the 
fraction of the available (functional/system) gates used by 
the LRU and the relationship of that fraction to the 
maximum number of gates that could have been on the die 
area. The general granularity is defined as follows: 
  

𝐺 = 𝐺!×𝐺! =
!!"#
!

!!"#×!!"!×!!
                  (10) 

 
Fig. 5 shows an example of the behavior of the 
granularities (GR → red, GA → blue and G → green) as 
NLRU varies from 0 to NSYS/2 for NSYS = NMAX/2 and AD = 
4. 

 

 
Fig. 5 Granularities

6. Complexity  

Complexity is a more difficult metric to capture; while 
granularity (above) captures complexity in the sense of 
gate count, it does not capture complexity in any 
functional sense. One approach to building a complexity 
metric which might also capture some sense of difficulty 

of design (in addition to the more usual notion of 
algorithmic complexity) might relate eventually to the 
underpinning complexity of the VHDL [see [18]] used to 
define the DRF LRUs, combined with the complexity of 
the VHDL which dynamically reconfigures the LRUs into 
functional systems. 
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6. Conclusions  

In this paper we have taken some initial steps in defining 
some basic general metrics, which quantify DRFs in terms 
of reconfigurability rather than in terms of any specific 
algorithm. In particular, we have offered two variants of 
efficiency, three of granularity and one of power as an 
initial step in quantifying this important area. 
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