

Performance Metrics of a Reconfigurable Fabric

Mua’ad Abu-Faraj1

 1 Department of Computer Information Systems, The University of Jordan
Aqaba, 77110, Jordan

Abstract

Performance metrics of reconfigurable systems have largely
focused on the relative performance of specific algorithms on the
fabric compared against the same algorithm on a general-purpose
processor or ASIC device. Here we introduce a number of
metrics, which relate purely to the act and cost of
reconfiguration, independent of implementation or algorithm. We
specifically introduce the notation of total and relative gate
efficiency, power, and granularity.
Keywords: Dynamic Reconfigurable Fabric (DRF),
Granularity, Power, complexity, and Efficiency.

1. Introduction

A Dynamically Reconfigurable Fabric (DRF) is a
hardware system capable of being reconfigured under
software control dynamically. Several reconfigurable
architectures have been proposed [1]-[4]. The number of
application fields in which reconfigurable computing has
been applied is massive, including embedded systems,
network security applications, and multimedia applications
[5]. Some studies have addressed analysis and exploration
of analytical models of reconfigurable architectures [6]-
[9].

Most performance analysis focuses on how well an
algorithm performs on a reconfigurable system. In this
paper a performance analysis for different reconfigurable
systems is explained. In [6], a unified area model for RP-
space has been studied. This model is used to estimate the
peak computational density as a function of granularity
and on-chip instruction store size, which is also used to
characterize the computational efficiency.

The Chimaera system was evaluated with several
benchmarks. In [1] , three different algorithms were used
for the system analysis: Compress/SPEC92, with a
speedup of 1.11; Eqntott/SPEC92, with a speedup of 1.8;
and Conway’s Game of Life with a speedup of 1.34. By
replacing the kernels with reconfigurable unit instructions,
it is possible to get a speedup of 2.06. A speed up of 160
times can be achieved using careful hand mapping of bit
parallel optimization opportunities. In [10], some
applications of MediaBench [11] were evaluated: MPEG
Encoder, G.721 encoder and decoder, ADPCM

compression and decompression, Pegwit (public key
encryption), as well as applications taken from the
Honeywell benchmark: image compression and
decompression. In [1], [12], DES (encryption/ decryption),
Simple Gaussian Blur, RGB-Scale Conversion were also
tested on Chimaera.

Simulations were performed in order to gather results for
Garp, since no actual hardware existed. It was compared
against a Sun Ultra-SPARC 1/170, a 4-way superscalar 64-
bit processor with 16 KB each of on-chip instruction and
data caches [13].

REMARC executes MPEG2 decoding, optimizing two
kernels: IDCT and MC. It also executes MPEG2 encoding
and DES. A high-level simulation of the system
demonstrated speedups ranging from a factor of 2.3 to 21.2
in the aforementioned applications [14].

The difficulty with such benchmarks is that they are
algorithm dependent rather than quantifying more general
aspects of the DRF. In this short paper our interest is to
start a conversation about the development of more
general performance metrics for DRFs, which are (for the
most part) algorithm-independent. We begin by examining
a simple case of a DRF by way of motivation.

2. Motivating Example

As a motivating example of a dynamically reconfigurable
system, we consider the SAXPY processor we introduced
in [15]. A Saxpy coprocessor can perform numerical
operation:

𝑍 = 𝛼𝑥 + 𝑦 (1)

where 𝛼 is a scalar and 𝑥 and 𝑦 real or complex vectors,
which we take here to be length-1 for simplicity. The
general Saxpy coprocessor is shown in Fig.1.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 222

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 1 Saxpy Coprocessor.

The quad Saxpy coprocessor shown in Fig. 2 can be used
(with N-fold replication) to perform a single N-way
complex single Saxpy operation or, using the same
hardware, 4N-way real single Saxpy operations.

Fig. 2 Quad Saxpy Processor.

The addition of multiplexers to the coprocessor in Fig. 2
results in the reconfigurable Saxpy coprocessor as shown
in Fig. 3, which can now easily switch between 4 real
SAXPY operations or 1 complex SAXPY operation.

Fig. 3 Reconfigurable Saxpy Coprocessor.

Note that only 4 bits are needed to control the
reconfiguration of this system, and that the
reconfigurability is driven by relatively simple
multiplexors. It is obvious that there is a loss in this system
due both to the area occupied by the reconfiguration
multiplexors and to the delay paths introduced by them,
and it would seem reasonable that 𝑇!"#$%!"#$ >
 𝑇!"#$%!"# (where T is total compute time for the SAXPY
on an ASIC or in the DRF). On the other hand, the simple
assertion that 𝐶!"#$%!"#$ < 𝐶!"#$%!"# , where C is some cost
metric, is not so obvious. Certainly, if C is (VLSI) area,
then the assertion would hold (providing constant
technology etc.). If C is power, the assertion also probably
holds. If C measures reuse potential, then more
likely 𝐶!"#$%!"# < 𝐶!"#$%!"#$.

What interests us here is not the computation
accomplished by the reconfigurable system above, but
rather the derivation of metrics which relate the cost of
reconfigurability to the compute power of the system, the
degree of complexity of the reconfigurable units
themselves, and the difficulty of using or defining the
reconfigurable system.

3. Efficiency

We have previously defined [15] an efficiency in terms of
the ratio of the gate counts of the gates used in the
functional part of the circuit (i.e., that part of the circuit
used for computation; in the case of the example in
Section 2, these would be the multipliers/adders) and the
gates used to control the reconfigurability of the system (in

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 223

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

our example in Section 2, the multiplexors). We call this
the relative efficiency ER, given by:

𝐸! =
!!

!!! !!
 (2)

where NF is the gate count associated with functional
components in the DRF and NR is the gate count associated
with components in the DRF whose only role is enabling
reconfiguration. Note that an equivalent definition using
area rather than gate count was given by [6], [16]-[17].

This definition of efficiency captures the relative cost of
the reconfigurability but, in a sense, downplays the power
of the reconfigurable system by ignoring the fact that
without reconfiguration, multiple circuits would have to be
built to accommodate the reconfigurable options. Our
second definition of efficiency captures this more
precisely, and is called the total efficiency ET given by:

𝐸! = 1 − !!!!!
!!
!

!
 (3)

where 𝑁!! is the number of functional gates needed to
compute computational option i and NF and NR are as
given above. Thus, if functions p and q can be computed
individually using NP and NQ gates (respectively) or as
options in a reconfigurable system using NF+NR gates (in
total), then ET would be given by 1 – (NF+NR)/(NP+NQ).
We expect:

 𝑁!! >! 𝑁! + 𝑁! (4)

and thus 0 ≤ 𝐸! ,𝐸! ≤ 1

4. Power

We define the power P of a DRF as the number of distinct
functions the DRF can compute. Sometimes power is
trivially computed (as in the example below) and
sometimes (as with an FPGA, for example) power may be
less easy to determine. One particularly simple class of
circuits with surprisingly wide applications are the cascade
circuits comprising of n-input functions 𝑓!(𝑥!, 𝑥!,… , 𝑥!!!)
cascaded in sequence and in parallel with the inputs to
each successive function multiplexed from the outputs of
the preceding level. Fig. 4 shows an example of such a
circuit.

Fig. 4 L2F2I2 Circuit.

We refer to such circuits in general as LpFqIr circuits,
where p is the number of levels in the circuit, q is the
number of distinct function blocks at each level, and r is
the number of inputs to each block at the first level. (Note
that at each stage the purely reconfiguration elements of
the circuit consists of two 2-1 n-bit multiplexors.)

We choose this kind of circuit as an example for
computing power here because it leads naturally to an
interpretation of power that is not obvious at first glance;
that is, we believe there are circumstances where it is
appropriate to distinguish the computation f(x=a,y=b)
from 𝑓 (𝑥 = 𝑎, 𝑦 = 𝑏) from 𝑓 (𝑥 = 𝑎, 𝑦 = 𝑎) even when
𝑓 itself is not changing. (This odd way of counting arises
in part due to our definition of total efficiency ET). This is
tantamount to arguing that 2𝑎 , 𝑎 + 𝑏 and 2𝑏 in an adder
constitute different computations no matter what values are
actually assigned to a and b. There are circumstances for
such circuits where we assume that an input set (here
{a,b}) arrives at the input to the cascade and (for the
example shown) we would like the output of the first
function pair to be any of possible outputs of 𝑓 and 𝑔
given the inputs (multiplexed), and equivalently thereafter
throughout the cascade. Then if 𝑓! 𝑥, 𝑦 =
𝑓! 𝑦, 𝑥 throughout the cascade the power of this circuit
(assuming no equivalent results and counted in this
admittedly controversial way) is 42, and when carried out
to n levels, in general by the recurrence:

𝑃 𝑛 = 𝑃 𝑛 − 1 × 𝑃 𝑛 − 1 + 1 (5)

Power, used alone, is a weak measure of the compute
power of the DRF (at least in the usual algorithmic
complexity sense), since it does not convey what is being
computed. Assessing the degree of complexity of the DRF
relates to the individual complexity of the elements, which
constitute the DRF, encapsulated by granularity.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 224

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

5. Granularity

In [6], the granularity is defined as the number of
resources controlled by each instruction. In this paper we
define the granularity as the number of gates in a
reconfigurable unit against the number in the entire
system. If we call the smallest reconfigurable unit the
Least Reconfigurable Unit (LRU), then we can define the
relative granularity GR as follows:

𝐺! =
!!"#
!!"!

 (6)

where NLRU is the number of functional gates in the LRU,
and NSYS is the total number of gates in the system
(including gates in the reconfigurable path i.e., those only
used in reconfiguration). If we assume the die area of a
reconfigurable system is given by AD (in cm2) then the
gate density DG is:

𝐷! =
!!"!
!!

 (7)

We need a normalizing constant NMAX, which we take to

be the maximum gate density (for a given technology) in
any unit area. Then the relative gate density DR is:

𝐷! =
!!

!!"#
 (8)

Then we define the absolute granularity GA as:

𝐺! =
!!"#
!!"!

 × !!"!
!!"#×!!

= !!"#
!!"#×!!

 (9)

The general granularity G is used to capture both the
fraction of the available (functional/system) gates used by
the LRU and the relationship of that fraction to the
maximum number of gates that could have been on the die
area. The general granularity is defined as follows:

𝐺 = 𝐺!×𝐺! =
!!"#
!

!!"#×!!"!×!!
 (10)

Fig. 5 shows an example of the behavior of the
granularities (GR → red, GA → blue and G → green) as
NLRU varies from 0 to NSYS/2 for NSYS = NMAX/2 and AD =
4.

Fig. 5 Granularities

6. Complexity

Complexity is a more difficult metric to capture; while
granularity (above) captures complexity in the sense of
gate count, it does not capture complexity in any
functional sense. One approach to building a complexity
metric which might also capture some sense of difficulty

of design (in addition to the more usual notion of
algorithmic complexity) might relate eventually to the
underpinning complexity of the VHDL [see [18]] used to
define the DRF LRUs, combined with the complexity of
the VHDL which dynamically reconfigures the LRUs into
functional systems.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 225

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

6. Conclusions

In this paper we have taken some initial steps in defining
some basic general metrics, which quantify DRFs in terms
of reconfigurability rather than in terms of any specific
algorithm. In particular, we have offered two variants of
efficiency, three of granularity and one of power as an
initial step in quantifying this important area.

References

[1] S. Hauck, et al., "The Chimaera reconfigurable
functional unit," in IEEE Symposium on FPGA-
Based Custom Computing Machines, 1997, pp. 87-96.

[2] J. R. Hauser and J. Wawrzynek, "Garp: A MIPS
Processor with a Reconfigurable Coprocessor," in
IEEE Symposium on FPGAs for Custom Computing
Machines, 1997, pp. 12 - 21.

[3] T. Miyamori and K. Olukotun, "REMARC:
Reconfigurable Multimedia Array Coprocessor," IEICE
Transactions on Information and Systems E82-D, 1998,
pp. 389-397.

[4] H. Singh, et al., "MorphoSys: An Integrated
Reconfigurable System for Data-Parallel and
Computation-Intensive Applications," IEEE Trans.
Comput., vol. 49, 2000, pp. 465-481.

[5] P.-A. Hsiung, et al., Reconfigurable System Design and
Verification: CRC Press, 2009.

[6] A. DeHon, "Reconfigurable Architectures for General-
Purpose Computing," MIT 1996.

[7] W. W. C. Chu, "Reconfigurable Computing Systems
Cost/Benefit Analysis Model," University of Waterloo,
2005.

[8] F. Lotfifar and H.S.Shahhoseini, "Performance
modeling of partially reconfigurable computing
systems " IEEE/ACS International Conference on
Computer Systems and Applications, 2008, pp. 94-99.

[9] M. F. Nadeem, et al., "Modeling and Simulation of
Reconfigurable Processors in Grid Networks "
International Conference on Reconfigurable
Computing and FPGAs (ReConFig) ,2010, pp. 226 -
231.

[10] R. D. Wittig, "OneChip: An FPGA Processor With
Reconfigurable Logic," in IEEE Symposium on FPGAs
for Custom Computing Machines, 1995, pp. 126-135.

[11] C. Lee, et al., "MediaBench: a tool for evaluating and
synthesizing multimedia and communicatons systems,"
presented at the Proceedings of the 30th annual
ACM/IEEE international symposium on
Microarchitecture, Research Triangle Park, North
Carolina, United States, 1997.

[12] S. Hauck, et al., "The chimaera reconfigurable
functional unit," IEEE Trans. Very Large Scale Integr.
Syst., vol. 12, 2004, pp. 206-217.

[13] T. J. Callahan, et al., "The Garp Architecture and C
Compiler," Computer, vol. 33, 2000, pp. 62-69.

[14] T. Miyamori and K. Olukotun, "REMARC (abstract):
reconfigurable multimedia array coprocessor,"

presented at the Proceedings of the 1998 ACM/SIGDA
sixth international symposium on Field programmable
gate arrays, Monterey, California, United States,
1998.

[15] M. Abu-Faraj and I. Greenshields, "Architectural
Considerations for an Out-Of-Core Dynamically
Reconfigurable Fabric," in 1st International
Conference on Advanced Computing and
Communications, 2010, pp. 52- 57.

[16] M. C. Smith, "Analytical Modeling of High
Performance Reconfigurable Computers: Prediction
and Analysis of System Performance," The University
of Tennessee, Knoxville, 2003.

[17] M. Mollajafari, et al., "A Repair-less Genetic
Algorithm for Scheduling Tasks onto Dynamically
Reconfigurable Hardware," International Journal on
Numerical and Analytical Methods in Engineering
(IRENA), Vol. 6 N. 2, 2011, pp. 206-212.

[18] M. Mastretti, et al., "VHDL quality: synthesizability,
complexity and efficiency evaluation" in Design
Automation Conference, with EURO-VHDL, 1995, pp.
482 – 487.

Mua’ad M. Abu-Faraj received the B.Eng. degree in computer
engineering from Mu’tah University, Mu’tah, Jordan, in 2004, the
M.Sc. degree in computer and network engineering from Sheffield
Hallam University, Sheffield, UK, in 2005, and the M.Sc. and Ph.D.
degrees in computer science and engineering from the University
of Connecticut, Storrs, Connecticut, USA, in 2012. He is, at
present, assistant professor at the University of Jordan, Aqaba,
Jordan. He is currently serving as reviewer for the IEEE Micro,
IEEE Transactions on Computers, Journal of Supercomputing, and
International Journal of Computers and Their Applications (IJCA).
His research interests include computer architecture,
reconfigurable hardware, cryptography, and wireless networking.
Dr. Abu-Faraj is a member of the IEEE, ISCA (International Society
of Computers and their Applications), and JEA (Jordan Engineers
Association).

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 226

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

