

Parallel GPU Implementation of Hough Transform for Circles

Meisam Askari1, Hossein Ebrahimpour2, Azam Asilian Bidgoli3 and Farahnaz Hosseini4

 1 Department of Computer Engineering, University of Kashan

Kashan, Iran

2Department of Computer Engineering, University of Kashan

Kashan, Iran

3 Faculty of Electronic and Computer Engineering, Pooyesh Higher Education Institute

Qom, Iran

4 Department of Computer Engineering, University of Kashan

Kashan, Iran

Abstract
Hough transform is one of the most widely used algorithms in

image processing. The major problems of Hough’s transform are

its time consuming and its abundant requirement of

computational resources. In this paper, we try to solve this

problem by paralleling this algorithm and implementing it on

GPUs(Graphic Process unit) using CUDA(Compute Unified

Device Architecture) . We have introduced two methods for

parallelization, each of which has been implemented on four

different graphic cards using CUDA. After executing the

proposed methods on GPUs, we have compared our results with

sequential algorithm execution on CPU and it is observable that

we have about 65 times more speedup toward the sequential

algorithm.

Keywords: CUDA, Hough Transform, Image Processing,

Parallel algorithm, GPU.

1. Introduction

Hough’s transform was presented by Pole Hough in 1962

[1]. This transform is a technique for determining the

position of shapes at images. The main advantage of this

conversion is that it can give the same results of template

matching algorithms but very faster. It is reachable by

changes to the formula of template matching based on

Evidence Gathering Approach (where the evidences are

counters in an accumulator array). The implementation of

HT(Hough Transform) is a mapping from the image points

into an accumulator space (Hough space). This technique

especially has been used to extract lines, circles and

ellipses. The present article discusses only extracting the

circles.

Although HT needs fewer computational resources than

template matching approach, it still requires significant

storage and has high computational requirements.

Therefore, a lot of efforts are being made to parallel HT. In

[2] Hough transform was implemented using DCOM

model, but its speedup is not still high and it has improved

only twice the speedup of than sequential algorithm.

Mr. Chan has used a new algorithm for circular Hough

Transform [3]. In that case, he has used two two-

dimensional Hough space instead of using a three-

dimensional Hough space and he has implemented this

algorithm on a multiprocessor MIMD which has eight

T800Transputer processors. Though, in this method, the

circle detection rate comes down to less than 3 seconds,

due to obsolescence Transputer processors, and because

this algorithm uses gradient operator for determining

circle’s center and since this operator is very sensitive to

noise, it is not used in practical applications. Mr. Rakvic

has used FPGAs to determine circles in iris images [4].

One of the problems of FPGAs is they should be

programmed with such hardware languages as VHDL,

making programming very complicated. In addition, the

number of ALUs used in FPGAs is a lot fewer than the

number of GPU’s cores, so its speedup is much less than

GPU’s speedup. In [5-7] other parallel platforms are used

to speed up the Hough Transform but because of using

special hardware, they are so costly and also their speedup

toward the sequential mode isn’t very high.

In [8] Wu has presented two implementation of Hough

transform on CUDA and TBB . He has reached 45 times

speedup more than sequential algorithm, by using CUDA

on a GPU with 196 cores. In this research we have

presented two new high performance parallel algorithms

that improve speedup until 65 times with use a GPU with

96 cores. Using CUDA in parallel processing is so much

useful because besides the availability of its hardware and

its low cost; its speedup is very higher than sequential

mode.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 215

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

https://plus.google.com/u/0/103720281048517962052?prsrc=4

1.1. Finding the circle by HT

The Eq.(1) defines a circle in explicit form.

2 2 2

0 0() ()x x y y r (1)

This equation represents the locus of points whose distance

from an assumed point (x0, y0), namely the circle center, is

a constant measure. This equation can be interpreted in two

ways: locus of points (x0, y0) centered (x, y) with radius r.

Fig 1 describes these two different interpretations. Each

point on circle’s edge in the left figure has been defined as

a circle in the accumulator space, a circle with the same

center and all possible radiuses. In the right representation,

circles have plotted for only an assumed radius [9]. Since

circles with different radiuses should be drawn for each

edge point, accumulator space must be three-dimensional.

Therefore, each edge point is mapped to a cone of storage

space. This mapping is shown in Fig 2 [10].

After drawing all coins for all edge points, the point by

most votes in accumulator space represents the circle’s

parameters in the main image. For the first time Kimme

and Ballard showed how Hough transform can be used to

detect circles and they used it in medical image processing

[11]. One of the most widely usages of Hough Transform

is in iris recognition. To identify iris, first the region

containing the iris must be extracted from images. As seen

in Fig 3, this area is located between two circles and using

HT we can identify circles and consequently the area of the

iris [12]. In addition to the above cases, Hough transform

has many applications that Mr. Kittler has introduced them

at [13].

1.2. Using CUDA in parallel processing

The future of computing science is parallelism, because on

the one side increasing the number of transistors inside the

CPU and then CPU speedup have been very hard, while

the need to real-time and three-dimensional graphics

capabilities, is, on the other hand, increasing daily. Using

multi-core processors is an attempt to parallelism [14].

However, these processors are very expensive and their

maximum increased efficiency is equal to the number of

their cores. GPUs that have recently been receiving

attention in most applications are useful tools for

implementing parallel algorithms. The advantage of GPUs

is their high performance and their availability. In Fig 4,

below, a comparison between different models of GPUs

and CPUs for floating–point operations has been presented

[15].

Each GPU includes a large number of cores, parallel

cooperation of which enables GPU to perform an array of

operations much faster than CPU.

Fig. 1 (a) Image containing a circle, (b) Accumulator space for

especial radius.

a b

Fig. 2 Accumulator space in three dimensions.

Fig. 3 Extract the region containing the iris.

Fig. 4 Floating point operations per second for the CPU and GPU.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 216

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig 5 shows an internal architecture of a GPU with 48

cores [16]. As seen in this figure, GPU has its own

memory and there is no shared memory between GPU and

CPU.

Thus, at the program’s launch, data is transferred from

RAM to GPU memory and finally, results are transferred

from GPU memory to RAM [15,17].

 In 2006, NVIDIA Company introduced CUDA platform

for implementing massive parallel computing with high

performance on its GPUs. A software environment was

presented along with CUDA that allows developers to

write the programs to C language and run them on GPUs.

Each CUDA program is composed of two parts, Host and

Device. Host is a program that is executed sequentially on

the CPU and Device is a program running parallel on the

cores of GPU.

In terms of software, each parallel program can include a

number of threads. Threads are light weight processes that

do an independent operation each. A number of threads

make a Block and a number of Blocks create a grid. There

are different types of memory in GPUs. Each thread has its

own local memory. Each Block has a shared memory to

which its threads have access. There is a global memory

that is accessible to all threads. Moreover, there is another

type of memory called texture memory that like global

memory is accessible to all threads, but its addressing

mode is different and it is used only for specific data like

images.

In the Host part the number of threads, or in other words

the number of lightweight processes that will run on GPU

cores, should be determined. The code of Device runs for

the number of defined threads in Host. Each thread can

find its own situation by initial functions in CUDA, for

example when we bind pixels of images to threads; each

thread can know which pixel it is bound to and operates

accordingly. Finally, the calculated results should be

returned to main memory.

GPUs are suitable tools for implementing image

processing algorithms. Because many of image operators

are local, by allocating each pixel to a thread (of course, if

required threads can be defined) the calculation time can

be reduced to O(1). Olmedo and his coworkers

implemented the number of typical image operators by

CUDA in [18]. Similarly, in our previous work CUDA is

used for space image processing [19] or Gray CUDA has

been used for motion tracking [20].

In the following section, the program of finding circles by

Hough transform has been implemented in two different

methods on GPUs and finally the results obtained from

each case are compared with sequential method.

2. Semi-parallel Hough transform

In this section, we have tried to make the Hough’s

transform parallel using MIMD architecture. For this

purpose, we define a Block for each edge pixel in the main

Fig. 5 NVIDIA GeForce 8800 architecture with 48 cores.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 217

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

image. Each of these Blocks has R threads that R value is

obtained from the Eq. (2).

max minR r r (2)

In this equation, r max& r min are the largest and smallest

radiuses for searching in the image, respectively. In fact,

the three-dimensional Hough space is divided to R two-

dimensional spaces that each thread has the duty of

updating one of these R spaces for a particular edge pixel.

Fig 6 shows that how the Blocks and threads are defined in

this method. P is the Number of edge pixels in this figure.

Therefore, R threads update all of the R two-dimensional

spaces for every edge pixel or put differently, for each

Block, simultaneously. The pseudo code of each thread is

given in Table 1.

In this pseudo code, result is a three-dimensional matrix

that makes up our Hough’s space. After running this

program, the Hough space is built for all pixels, and then

we only need to find the maximum in this space to find the

target circle. Also for searching in accumulator to find the

maximum, we can use CUDA for speedup.

Table 1. Pseudo code of threads in SPHD.

min

max

, :

/ /

:

,

,

(, ,) (, ,pixel pixel pixel

Begin

x y cordinates of the edge pixel

calculate the radius for search

r the thread Id r

For all pixels in radius r around the x y

If Euclidean distance between this pixel and x y r

result r x y result r x

) 1pixely

End

For this purpose we defined a Block with R threads, each

of which should find the maximum of one of the two-

dimensional spaces in the accumulator. Pseudo code of

these R threads is given in Table 2.

Max in the above table is a vector of R elements. After

running the above program, we only need to find the

maximum between the max elements to find the final result.

 If we assume that the original image dimensions are W*H,

the cost of building accumulator space is in order O(WHR)

that using the presented algorithm in this section, the cost

cuts to order O(P). Since P<<W*H, the cost of calculation

will be reduced significantly. The results of the program by

this algorithm are given in the results section.

3. Fully-parallel Hough transforms

As we observed in the previous section, we only could

parallel operations done to build accumulator space for one

pixel, but the operations corresponding to different pixels

were done sequentially because we couldn’t change a value

in accumulator space simultaneously.

Here, we want to parallel the whole operation. To achieve

this end, we should design an algorithm in which each

value in accumulator space is obtained independently from

other pixels. So instead of defining R threads for each edge

pixel in main image, we should define a thread for each

value in accumulator space.

To do so, we need to define R Blocks so that in every

Block there are threads as many as image pixels. But since

each Block cannot be defined with more than 512 threads,

we should use a set of Blocks to accommodate all threads

related to one image.

Suppose that the original image’s dimensions are H*W

pixels, then as many as m*n Blocks are needed for

Blocking the whole of image, with m and n as Eq. (3).

 25 20

W H
m n

(3)

In Fig 7, a method for blocking the image is shown. We

defined Block size in 20*25 for simplicity; therefore, each

Block contains 500 threads in two-dimensions. Therefore

nm blocks should be defined for each value of R. So we

used a two-dimensional grid with R*n*m Blocks.

Fig. 6 Grid’s structure in SPHD(Semi Parallel Hough Transform).

Table 2. Pseudo code for find maximum

:

max[] 0

, (,:,:)

(, ,) max

max[] (, ,)

Begin

i the thread Id

i

For all x y in result i

If result i x y Then

i result i x y

End

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 218

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

As seen in Fig 8, there are R rows, each of which contains

n*m Blocks and their job is building accumulator space for

a specific radius.

In this grid, each thread has the role of searching around a

specific image pixel for special radius and setting its

accumulator space entry with the number of corresponding

edge pixels in this radius. Pseudo code of threads is

brought in Table 3. In this pseudo code m and n are values

that were defined in equations 3 and x, y are corresponding

pixel coordinates.

In Table 3, result is a 3-dimentional matrix that is

composed of the accumulator space. As can be seen, there

is a thread for each cell of the result matrix, so with this

grid configuration all accumulator space entries are

calculated in a transaction time. Thus, the cost of filling the

accumulator space is reduced to O(1). At the end, we

should find the maximum according to Table 2 pseudo

code to find the circle. The results of running the program

on four different models of GPUs are given in the next

section.

4. Results

As previously mentioned, one of the most popular

applications of circular Hough’s transform is circle

detection in iris images, which helps to extract the region

of the iris tissue from the iris image. We have used CASIA

database images [21] to test our programs. Fig 9(a) shows

an iris image from this database. First, we applied the

canny filter [22] on iris image for extracting the circle.

Before applying the Hough transform, some pre-processing

such as Gaussian filter to minimize noise, according to the

method mentioned in Masek’s work [23], were done on the

image. In Fig 9(b) the sample of pre-processed image is

seen. Finally, two circles were identified applying Hough

algorithm based on the previous methods and finding the

first and second maximum, like Fig 9(c). We used four

types of graphic CPU enabled card for implementing the

intended methods. Their specifications together with the

methods execution time are presented in Table 4.

Table 3. Pseudo code of threads in FPHT

min

: ;

: ;

: ;

: ;

(,)*25 ;

(,)*20 ;

;

,

(

Begin

Bx Block Id at X cordinate

By Block Id at Y cordinate

Tx Thread Id at X cordinate

Ty Thread Id at Y cordinate

x mod Bx m Tx

y div Bx n Ty

r By r

For all pixels in radius r around the x y

If Euclidean distance be

,,) (1)

(, ,) (, ,) 1;

tween the pixel and x y r and pixel s amount is

result r x y result r x y

End

Fig. 7 Binding image's pixels to threads.

Fig. 8 Grid’s structure in FPHT (Fully Parallel Hough Transform).

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 219

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Table 4. Parallel Hough transform execution time on difference graphic cards.

FPHT1 SPHT2
Sequential(ms) GPU Cores Model

Speed Up Time(ms) Speed Up Time(ms)

11 4808 9.5 5613 53606 8 GeForce 9300M GS

23.4 2285 9.4 5697 “ 16 GeForce 9400 GT

57.6 930 8.1 6609 “ 48 GeForce GT 220

65.4 819 9.8 5447 “ 96 GT 430

1
 Fully Parallel Hough Transform

2
Semi Parallel Hough Transform

Time of the sequential mode is calculated using an Intel

core i3 processor, which its cores processing at 2.8 GH

speed. The chart of the speedup depending on the number

of cores in GPUs is shown in Fig 10. As seen in Fig. 10,

through increasing the number of cores, FPHT execution

speedup increases linearly. Because, as mentioned the cost

of this algorithm is of O(1), if we can define sufficient

threads; cost time of this method can be equal to one

transaction cost time. Since the number of threads required

is much more than the number of cores in GPUs, by using

a GPU with more cores we can define more threads and

our speedup will increase. But from one place to the next,

by increasing the GPU cores the speed does not change

gradually because we cannot eliminate data transform time

between CPU and GPU.

In SPHT we only need R threads and all the four graphic

cards used, have the ability to define such numbers of

threads. Thus, by increasing the GPU cores, only managing

threads and allocating them to the cores becomes harder

and the speed approximately remains unchanged.

5. Conclusions and further research

Using CUDA in image processing is rising every day. In

addition to low prices and high availability, they have high

performance in image processing applications. As seen in

this study, Hough’s transform, which is one of the time-

consuming algorithms in image processing, was done in a

fraction of a second. One of the problems of GPUs is their

low memory; we cannot put the databases in GPU memory

due to this problem. To solve it, we can use a cluster of

CUDA enabled computers and share database on its nodes.

This way each node can load a part of database on its

GUP’s memory and we can have maximum parallelism

with a low cost, which can be useful in real time

applications.

References

[1] P. V. C. Hough, "METHOD AND MEANS FOR

RECOGNIZING COMPLEX PATTERNS," US

3069654 United StatesFri Dec 11 15:05:56 EST

2009DTIE; NSA-17-008572English, 1962.

[2] S. KOSE, et al., "PARALLEL HOUGH

TRANSFORM ON DCOM ARCHITECTURE,"

presented at the Information Systems Analysis and

Synthesis (ISAS’99),, Orlando, U.S.A, 1999.

[3] R. Chan, "New parallel Hough transform for circles,"

Computers and Digital Techniques, vol. 135, pp. 335 -

344 1991.

[4] R. N. Rakvic, et al., "Parallelizing Iris Recognition "

IEEE TRANSACTIONS ON INFORMATION

FORENSICS AND SECURITY, vol. 4, DECEMBER

2009.

Fig. 9 (a) Iris image, (b) Edge image, (c) Identified circles by HT.

a b c

Fig. 10 Speed up depend on number of GPU cores for FPHT and

SPHT

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 220

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

[5] Y.-K. Chen, et al., "Novel parallel Hough Transform

on multi-core processors " presented at the Acoustics,

Speech and Signal Processing, 2008.

[6] M. Meribout, et al., "Hough Transform Algorithm for

Three-Dimensional Segment Extraction and its Parallel

Hardware Implementation," Computer Vision and

Image Understanding, vol. 78, 2000,pp. 177-205.

[7] C. Ming-Yang, "Design and Integration of Parallel

Hough-Transform Chips for High-speed Line

Detection," 2005, pp. 42-46.

[8] Suping Wu and X. Liu, "Parallelization Research of

Circle Detection Based on Hough Transform," IJCSI

International Journal of Computer Science, vol. 9,

2012,pp. 6.

[9] M. S. Nixon and A. S. Aguada, Eds., Feature

Extraction and Image Processing. Academic Press is

an imprint of Elsevier, 2008.

[10] R. O. Duda and P. E. Hart, "Use of the Hough

transformation to detect lines and curves in pictures,"

Commun. ACM, vol. 15, 1972, pp. 11-15.

[11] C. Kimme, et al., "Finding circles by an array of

accumulators," Commun. ACM, vol. 18, 1975,pp. 120-

122.

[12] C.-. Loc, et al., "Person Identification Technique Using

Human Iris Recognition," 2002,pp. 294-299.

[13] J. Illingworth and J. Kittler, "A survey of the hough

transform," Computer Vision, Graphics, and Image

Processing, vol. 44, 1988, pp. 87-116.

[14] J. D. Owens, et al., "GPU Computing " in Proceedings

of the IEEE 2008, pp. 879 - 899

[15] Nvidia Cuda C Programming Guid v.4, 2011.

[16] R. F. Anderson, et al., "Applying Parallel Design

Techniques to Template Matching with GPUs," 2009.

[17] "ATI Stream Computing user guide rev1.4.0a," 2009.

[18] Eric Olmedo, et al., "Point to point processing of

digital images using parallel computing," IJCSI

International Journal of Computer Science, vol. 9,

2012,pp. 10.

[19] M.Askari, et al., "Performance Improvement of Lucy-

Richardson Algorithm using GPU " presented at the

Machine Vision and Image Processing (MVIP),

2010,Esfahan.

[20] S. Grauer-Gray, et al., "GPU implementation of belief

propagation using CUDA for cloud tracking and

reconstruction," presented at the Pattern Recognition in

Remote Sensing (PRRS 2008), 2008.

[21] S. Mozaffari and H. Soltanizadeh, "ICDAR 2009

Handwritten Farsi/Arabic Character Recognition

Competition," 2009, pp. 1413-1417.

[22] J. Canny, "A Computational Approach to Edge

Detection," PATTERN ANALYSIS AND MACHINE

INTELLIGENCE, 1986, vol. PAMI-8.

[23] L. Masek, "Recognition of Human Iris Patterns for

Biometric Identification," The University of Western

Australia, 2003.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 221

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

