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Abstract
Permutation polynomials have been studied for over 140 years
and have important applications in many areas. However, the
constructions of permutation polynomials is still a difficult
problem. This note presents permutation binomials of the form

f(x)=x"+03x overthe finite field F'," and F" .
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1. Introduction

Let pbe a prime, n be a positive integer, and F p" be the
finite field with p"elements. A polynomial f(x) in /[ x]
is said to be a permutation polynomial (PP) over F p” Jif it
induces a permutation from F p” to F p" . Permutation

polynomials have been studied extensively, see [1-4] for
surveys of known results on PPs. Permutation Polynomials
have important applications in many areas such as coding
theory, cryptography, and combinatorial designs[1-7].

The constructions of permutation polynomials is a
difficult problem. Recently, the permutation polynomials
of ring be constructed by Qijiao Wei and Qifan Zhang|[8],
the concept of reversed Dickson polynomial D, (a,x) was

first defined by Xiangdong Hou, G.L. Mullen, J.A.. Sellers,
J.L. Yucas in[9] by reversing the roles of the variable and
the parameter in the Dickson polynomial D, (a,x) .When
a#0,D,(a,x)is a PP over F;, ifand only if D, (1,x) is a
PP over F,, and the latter is Characterized by the

functional equation D (1,y(1-y))=y"+(-y)" , and

Xiangdong Hou found two new classes of PPs[10],
Xiwang Cao also studied Dickson polynomials[11,12].

In[13,14], the permutation behavior of polynomials having
the form (x* +x+68) +x over F ,' are investigated.
These works are motivated by a paper by Helleseth and
Zinoviev [15], who applied the polynomials defined to

derive new Kloosterman sum identities. Jin Yuan,
Chunsheng Ding and Qing Xiang [13] described several
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permutation polynomials having the form. A continued
work [14] further presented many classes of permutation
polynomials of such form, and the authors also extended

their research to the PPs over F." .

In some paper[16], Luyan Wang constructed some
permutation binomials of the form x“(x" +1) over

finite fields by Hermiter dicriminating methods and
portfolio  theory, and Amir Akbang, Qiang
Wang[17]extended his research and constructed some
permutation binomials.Mohamed ayadal, Kacem Belghaba
and Omar Kihel [18] show as well how to obtain in certain
cases a permutation binomial over a subfield of F, from a

permutation binomial over F, . And Some Permutation

2"-1
Binomials of the Form x(x ¥ +¢J)over F)" be found by

Sumanta Sarkarl, Srimanta Bhattacharya, and Ayca
Cesmelioglu[19].Some trinomial permutation polynomials

of the form x”(ax >’ + bx * + ¢) over F, have been
studied by June Bok Lee, Young Ho Park [20] if and only
if 3]g—tand g=971.

3

In this note, we construct some permutation binomials of
the form f(x) =x" +Jx.

2. Preliminaries

A polynomial f(x)e F[x] is called a permutation

polynomial of F, can be expressed in various other ways.

Lemma 1 [3]: The polynomial £(x)e F[x] is permutation
polynomial of F, if and only if one of the following

conditions holds:

(1) the function f:c— f(c) is onto;
(2) the function f:c— f(c) is one-to-one;
(3) f(x) =« has asolution in F, foreach aeF,;
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(4) f(x)=a has a unique solution solution in F, for each

aqu.

Lemma 2 [3]: Let E, be of characteristic p . Then
f(x)€ F,[x] is permutation polynomial of £ if and only
if the following two conditions hold:

(1) equation f(x) =0 has exactly one rootin F ;

(2) for each integer ¢ with 1<¢t<g—2and ¢=0modp ,the

reduction of f#(x)' modx? —x has degree <g-2.

We denote by C, the cyclothymic coset modulo p" —1
containing k,0<k<p”"-2.i.e.

C, =k, pk, -+, p"'k}modp” —1.
Recall that if | C, [=/,then {x*:xe F}c F,and F is the
smallest subfield of F.

Let @ is a primitive element of E, then the element of

F can be express {0,1,0,0",--,0" 1.

3. General construction

Proposition 1: Let =n is even and JeF" ,

if6¢ E", m|n,i|n, then the function

f)=x" +& M
is a permutation polynomial of £'.
Proof: The function f(x) is a permutation if and only if
the equation
¥ +0x=y" +6y
has one solutionx =y .
Which is equivalent to the
(x+y)” =8(x+)
When x = y, there is other solution of this equation, so
(x+y)"=5

since j|n, there is 2' —1|2" —1, so

2"-1 2"-1

(CESOMPERE

since e K", and5¢ E", m|n,
1=0%121.
The equation has only one solution which is x=y , so

f(x)is a permutation polynomial of F".
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If §=1, f(x)=x* +x is a linear function, there are many
known linear functions which are permutation.

Proposition 2: Letd =4 +2°a, + 2" o, +++ 2",

2

3j+m=0y+a, +a;++a,,m=0,12,a =00r 1,i=1,2,---,g,
2
and § ¢ F; . Then the function
21 2(2"-1)
fX)=x(x3 +98) and g(x)=x(x * +0)
are permutation polynomials of F , if one of the

following conditions holds:
k-1
(Dif n=6k,k>1, when 225" =0;

J=01+3j
k-1
(2)if n=6k+2,k>1, when 225" =0;
J=02+3
k
(3)ifn=6k+4,k>1, when 225" =0.
Jj=03j

2"-1
Proof: By lemma 2, if the function f(x)=x(x * +J5)isa
permutation polynomial of F' , then the equation
2"-1
x(x 3 +8)=0 has only one solution. There x=0 is one
2’

solution of the equation, then x 3> +5=0 has no solution in
F.

2"-1
The equation x 3 +8§=0 is equivalent to
x2"—1 — 53 ,
there 5 ¢ Fz2 , then &° =1, the equation has no solution, the
21
equation x(x * +¢&)=0 has only one solution.

We consider the degree of £(x)' modx® +x,
2] ‘ 2m_]

O =x'(x 3 +8) =x'YCl(x 3 )

+¢, when f(x) modx® +x

We have deg(f(x)') = @

has degree 2" -1, then r2' -1
3

+t:(2n —1)11161\]x s and
s2"-1)

~
b}

we can get = ,s=12-

When t:ﬂzl+22+24+...+25, andd=a'1 +220{2
3
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+2'a+ 42", @ =00rl,i=12,--2, then
, e @ ;
2

2"-1 271 21 21
fE)7 =x (48
2"-1 271 21 2"-1
=x 3 (x ° 40)(x * +0)% (x * +0)
- xz’ e vox T T botx S
2"-1 2"

T 3 .3
+-+0°x +40 P x
2”—1(u_d +1)
=25 x 3 .

d

We consider only the parts of f(x)" whose degree is

2"-1,
less than (2" -1)

the rest parts which mod x* +x have degree
We can see, the degree of

2"-] 2"-1
sy 3 3 2

is /(2" —1) only and if only 3‘ ) —d+1-
3

3

When n=6k , 9|z"_1, and 3‘(2 =1 then 3Jd -1, the

| on_
DR

SO s 12—y,

degree of §x
Thered =0y +2’c, +2'a,+ - +2x,, and 2¥ =1mods3,
2
L osowhenay +a, +ay ++a, =3j+],
2 2
0<j<2k-1, we have 3|d—1.

So the parts of function f(x)’ which have degree

/(2" -1)are
A K , '
Z dolx 3 =YY 8 "mod(x” +x),
J=01+3; J=01+3;

there 3j+l=+a, +-+a,, &, =Oorl,i=1,2,-~,g .

2

Since
2k-1
zz(gd =0, We can get
J=0 143
2" 1ﬂ —d+1) .
225d =0mod(x* +x).

Jj=01+3;
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Hence we have the degree of f(x)' modx® +x has less

than 2"-1 . When = 22°-D) ) we can get same
3
conclusion.
2
By lemma 2, the function f(x)=x(x 3 +6) is a

permutation polynomial of F)'with n=6k.

When n=6k+2 and n=6k+4, we also get the function
2
f(x)=x(x * +0) is a permutation polynomial of F'.

The same results can be obtained on the function
2(2"-1)

gx)=x(x * +9).

This is completes the proof.

21
The permutation binomials of the form f(x)=x(x * +6)

be found in the paper[19], but we found some different ¢.

Example: 1.When pn=6,reC,t=7 , the function

f(x)=x(x"'+0") and f(x)=x(x"+0'") are permutation
polynomials;

2. When n =8,re C,,t =37,41,61,63
F(x)=x(x*+0'") and f(x)=x(x""+e") are permutation
polynomials;

3.Whenn =10, C,,r =19,33,45,57,115,117,119,127,165,

187, 253, 379, the function f(x)=x(x*""+e') and

f(x)= x(x** +@') are permutation polynomials .

, the function

Proposition 3: Letd = o, +3a, + 3, +--+3""r, .
2j+m=a+a, +oy + - +a, ,,m=0Lc, =00rl,i=12,---,n-1,
and 5% #1.Then the function

F@)=x(x * +0)

is a permutation polynomial of £ , if one of the

following conditions holds:

k=1
(Dif n=2k,k >1, when 225" =0;

J=01+2j
k
2)if n=2k+1,k>1, when 225‘1 =0-
=0 2j
The proof of the proposition 3 can be given in accordance
with the proof of the proposition 2.

Example: 4 When n=4,/eC,,1=4,5,7,10,11,1517,20.23,25,
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the function f(x)=x(x"+0') is
polynomial ;

a permutation

5.When n=3,reC,t=1,78, the function f(x)=x(x"+a')
is a permutation polynomial ;

6.Whenn=5reC,,r=1,2,57.813,14,16,17,19,22,23,32,41,
50,61,62,68,77 , the function f(x)=x(x"'+e") is a
permutation polynomial .

4. Conclusions

2" _1 is
3(22-1)
a permutation polynomial of £ , with Tr(0")=1
when n=6,10 , but if #>10, we do not know the
polynomial should be a permutation polynomial. For some
time, we kept working in this field.

We found the polynomial F(x)=x(x*+8) a=
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