

A Heuristic Algorithm For QoS (Non-Functional) Based Service

Matching
Islam Harb1, M. Ezz2 and H. Farahat3

1 Informatics Research Department, Electronic Research Institute

2 Computers and systems Engineering Department, Faculty of Engineering, Al-Azhar University

3 Computers and systems Engineering Department, Faculty of Engineering, Al-Azhar University

Abstract
The problem of QoS-based selecting a web service dynamically

or composing a set of web services to conduct a business task has

been investigated in this paper. It outlines the discovery of either

atomic or composite services satisfying the request QoS

requirements. After, the functional requirements matching is

achieved where the request Inputs/Outputs syntactically and

semantically match services signature, there may exist more

than one matched service, then the QoS (nonfunctional)

attributes best fit service is chosen. The QoS may be set by the

service consumer or computed from past executions. If the

chore cannot be satisfied by atomic process, it should be bind

with a virtually composed service (set of atomic services).A

collection of services sets may be selected where each set has a

number of atomic services assembled together to result the

desired business requirements. The best fit set of services based

on QoS parameters is selected. This paper only concentrates on

QoS parameters based selection. The problem is formulated as an

optimization problem, so an optimization solving techniques

such as integer programming can be applied. A heuristic

technique is designed and evaluated.

Keywords: Semantic Web Services, Non-Functional

Requirements Matching, Quality of Service, Optimization.

1. Introduction

The discovery of services consists of a semantic matching

between the description of a service request and the

description of published services. The service/request

descriptions used for matching mainly include inputs,

outputs, preconditions, effects (IOPEs). The inputs and

outputs are the data channels where data flows between

processes. The service preconditions are the world facts

that must be asserted before its execution and the effects

are the world facts that become asserted after its execution.

The matching can also be based on goals to be achieved

and nonfunctional requirements of the services. The

degree of matching is based on some criteria. If more than

one service matches the request, one is chosen (selected)

based on non-functional attributes such as cost or quality.

Services are classified into two main subclasses: Atomic

and Composite service. An atomic service is a stateless

service that receives a set of inputs to commence its

execution and produces a set of outputs after it is executed.

A composite service is a stateful service composed of

atomic processes. In other words, it may accept inputs and

produce output messages at different stages during its

execution. A composite service model is a workflow

describing the composition or orchestration of a service in

terms of its constituent processes. A workflow expresses

the composition of atomic services by using appropriate

control constructs such as Sequence, Unordered, Choice,

If-then-else, Iterate, Repeat-until, Repeat-while, Split, and

Split+join. The problem of selecting a web service

dynamically or composing a set of web services to conduct

a requested service has been investigated by different

researchers. This paper outlines the problem of the

discovery of either atomic or composite processes where

the service has to meet the request requirements. Firstly,

the request Input/Output has to syntactically and

semantically match the service signature. More than one

matched process may exist, and then the QoS

(nonfunctional) attributes best fit process is chosen. The

QoS may be set by the service consumer or be computed

from past executions. If the chore cannot be satisfied by

atomic process, it should be bind with a virtually

composed service. This paper only concentrates on QoS

parameters, i.e. a Non-Functional Service Discovery.

The QoS properties may be End-to-end or Service-

centered properties. Service-centered QoS properties focus

only on the QoS properties of application services while

end-to-end QoS considers all the factors having impact on

the QoS delivered to users. The QoS concepts may be

given in syntactic or semantic descriptions. In case of

syntactic descriptions, users and service providers must

use the same syntax to define the required and offered QoS

while in case of semantically description they can use

different syntax. Semantic QoS descriptions (e.g., QoS

ontologies) explicitly define the semantics of QoS

concepts and the relationship between these concepts

allowing us to enable reasoning on QoS concepts and

inferring matches between requested and offered services

even at the run time. For this reason, semantic description

is more reliable. Quality-based service description (QSD)

is defined by embedding QoS specifications into the

description of services. This can be carried out according

to two approaches: the black-box approach where QoS

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 1, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 132

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

specifications (concern the whole service entity) are

associated to services wrapped as black boxes and the

white-box approach where QoS specifications are

associated to the functional behavior of services

(associated with elementary parts or operations). The

black-box approach is generally used when addressing

atomic services with simple behavior (i.e., a single

operation). However, the white-box approach is more

suitable for services with various operations, each

characterized with a different QoS.

QoS-based service discovery determines service

candidates that may fulfill the user’s requirements. The

way the matching is carried out impacts the spectrum of

discovered services, notably the number of discovered

services and the extent to which they fit the user’s required

task. QoS-based service discovery approaches may be

either syntactic or semantic. Syntactic discovery

approaches requires the same syntax to describe the

required and offered QoS, so they constrain the number of

discovered services as they disregard services that fit the

user requirements but use a different QoS syntax.

Semantic discovery approaches infer matches between

heterogeneous QoS terms, hence determining all services

which fulfill the required QoS.

Like all the algorithms dealing with combinatorial

problems, QoS-based selection algorithms can be divided

into two broad classes: brute-force-like algorithms and

heuristic algorithms. The first class of algorithms (NP-hard

[1]) aims at determining the optimal service composition

(i.e., with the highest QoS) by exploring all possible

compositions of services. A second class of algorithms is

heuristic algorithms which do not explore all possible

compositions and they find near-optimal compositions,

i.e., compositions that meet global QoS constraints and

sub-optimize the QoS delivered to the user. The goal of

any QoS-based selection technique is to reduce the number

of service compositions to be investigated. Therefore, the

greedy technique is opted to be coupled with our selection

approach to reduce the number of service compositions

trials. Greedy selection is a technique that selects, for each

abstract activity in the user task, the service candidate with

the highest QoS. The selection is performed for each

abstract activity individually and it is generally used under

local QoS constraints.

2. Related Works

Recently, the QoS-based web service selection and

composition in service-oriented applications has gained

the attention of many researchers. Several selection

algorithms have been proposed to select service

compositions with different composition structures and

various QoS constraints. Taxonomy of these solutions may

be produced based on their objectives and the way they

proceed. Approaches aim at determining the optimal

service composition (i.e., composition with the highest

QoS utility) using brute-force-like algorithms (e.g., Global

Planning, BBLP, WS-IP [3]). These solutions have high

computational cost and they cannot provide a solution in a

satisfying amount of time, thus they are inappropriate to be

used in the context of dynamic service environments.

Other approaches propose heuristic-based solutions (e.g.,

WS-HEU [3] and DIST_HEU [11]), Genetic algorithm [4,

5, 6, 7, 8, 9] aiming to find near-optimal compositions, i.e.,

compositions that respect global QoS constraints and

maximize a QoS utility function. Yu et al. [3] present two

heuristics, WS-HEU and WFlow, for the service selection

problem. WS-HEU is specific heuristic applied to

sequential workflows (i.e., workflows structured as a

sequence of activities), whereas WFlow is designed for

general workflow structures (i.e., sequential, conditional,

parallel). The main idea of WFLow is to decompose

workflows into multiple execution routes. WFlow

considers a probability of every route to be executed.

Therefore, it focuses on the route with the highest

probability. Bin Mubarak [10] adapts this solution giving

feasible service compositions regardless of the way the

workflow will be executed.

More recently, Alrifai et al. [11] presented a novel

approach (DIST-HEU) that combines local and global

optimization techniques. This approach starts from the

global level and resolves the selection problem at the local

level. It proceeds by decomposing global QoS constraints

(i.e., imposed by the user on the whole composition) into a

set of local constraints (i.e., for individual sub-tasks, part

of the composition). To do so, it uses MILP (mixed integer

linear programming) techniques [1] to find the best

decomposition of QoS constraints. The main drawback of

this approach is that it represents a greedy selection

method, since it selects services at the local level and does

not ensure that the global QoS constraints are respected.

The work of Zeng at al. [12] focuses on dynamic and

quality-driven selection of services using global planning

to find the best service components for the composition.

They use (mixed) linear programming techniques [13] to

find the optimal selection of component services. Linear

programming methods suffer from poor scalability due to

the exponential time complexity of the applied search

algorithms [12].

3. The QoS Model

Web service may be evaluated based on many

generic quality criteria such as: price, execution

duration, reputation, reliability, availability,

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 1, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 133

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

documentation, and relevance ration. QoS attributes

can be classified into four basic classes [14] as

visualized in Figure 1. Only five QoS attributes are

considered in this research: execution price,

execution time (response time), reliability,

availability, and reputation.

Fig. 1 The QoS taxonomy

3.1. The Composition model

Our QoS-aware service composition approach is initialized

by taking an input as a user request R which is defined as a

quadruple R = (T, C, Q, W), where T refers to the required

task and C = <c1, .., cn> refers to global QoS constraints

(e.g. cost doesn’t exceed certain limit) imposed by the user

on a set of QoS properties Q = <q1, .., qn >. The user has to

specify the relative importance of its associated QoS

property by giving a set of weights W = <w1, ..,wz >,

where wi is the weight of QoS property pi. It is worth

noting that the sum of all the weights must be equal to 1,

i.e. ∑ ()
 , where 0 <= wi <= 1 and (z) is the

number of QoS properties.

For a user task T, its structure is specified as a set of

activities T = <A1 … Am > coordinated by composition

patterns (Sequence, AND, XOR and Loop). There is an

associated set of atomic service candidates S = {si,1, si,2, ..,

si,n} for each activity Ai in the user task T. Each candidate

service si,k (1 <= k <= n) in this set is able to

realize/accomplish Ai and it is represented by its QoS

vector QoSsi,k = <q1, … , qz >, where qj is the advertised

value of QoS property qj (1 <= j <= z). Only one atomic

service si,k is enacted for each activity Ai, thus forming a

candidate service composition CS = <s1,k , ..., sm,k >

realizing the user’s task T, where 0 < k <= n. Figure 2

shows an example on “reserving the cheapest flight from

Cairo to Austin” task with its associated activities and their

candidate services.

The question to be asked is then which service should be

enacted for each activity in the user task so that the overall

composition meets the user’s QoS requirements. The

problem becomes even more complicated when we aim at

selecting several alternative service compositions (CS1, …

, CSv) in order to support dynamic binding of services.

The first step to address this problem is to determine how

to evaluate the QoS of a service composition QoSC = <Q1,

... , Qn > based on the structure of the composition (i.e., its

composition patterns) and the QoS of its constituent

services.

Fig. 2 Example on Task, activities and candidate services for each

activity

3.2 The QoS Aggregation

Global service selection requires evaluating QoS of service

compositions prior to their execution. The service

composition is unforeseen during service selection, so the

overall QoS of a composition cannot be assessed in an

accurate manner. It is rather estimated with respect to

possible execution scenarios of the composition. QoSCi =

<QoSs1, ..,QoSsm> = <Q1, ..,Qm > is determined by

aggregating QoS values of its constituent services. Each

QoSsi,k = Qi,k = <q1, .., qz>, where 0 < k <= m corresponds

to one of these atomic/constituent services from each

activity, while taking into account the composition

patterns which are the structuring elements used to build

the composition. There is a set of common composition

patterns such as sequence (sequential execution of

activities), AND (parallel execution of activities), XOR

(conditional execution of activities), and Loop (iterative

execution of activities).Three QoS aggregation approaches

may be considered: optimistic approach (i.e., considering

the best QoS value), pessimistic approach (i.e., considering

the worst QoS value), and mean-value approach (i.e.,

considering the average of services’ QoS values). For

instance, the response time of two services composed in

exclusive choice (XOR) or AND can be pessimistically

estimated considering the worst-case QoS values of the

two services (the longest response time). A history-based

estimation that considers the maximum number of loops

may also be adapted for Loop.

In our model we assume that we have a universe of web

services U which is defined as a union of abstract

activities. Each abstract activity Aj Є U is used to describe

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 1, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 134

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

a set of candidate functionally-equivalent web services. A

composite service (corresponds to the user task T) can be

represented as CS = (A1, … , Am) where Aj refers to a

requested task activity j. The si,j is an atomic candidate

service (i) as one of available atomic services which can

be chosen of abstract activity j (assuming there are ni

concrete services for abstract activity j), Si,j Є Aj. A QoS

of the composition for each property is aggregation of the

same QoS property for all constituent services. The QoS

vector for a composite service C is defined as QoSc = {

Qrt(C), Qpr(C), Qrep(C), Qrel (C), Qav(C) }, where Qi

represents the aggregated i
th

 QoS property value which can

be aggregated from the expected QoS values of its (n)

component services (n = no. of all the atomic candidate

services that constitute a solution/composite service = no.

of activities) as given in Table 1. For example, the services

“Lufthansa_Check_Flights()”, “List_Cheap_First()”,

“Orbitz_booking()” and “Send_Word_Format()” in figure

2 are considered the component services for the solution of

the user requirement/query “reserve cheapest flight from

Cairo to Austin”.

Table 1: The Criterion Aggregation Formula for Sequence Composition

Criteria Aggregate Function

Price Qpr(C) = ∑ (())

Response Time Qrt(C) = ∑ (())

Reputation Qrep(C) = ∑ (())

Reliability Qrel(C) = ∏ (
())

Availability Qav(CS) = ∏ (
())

 4. The Non-functional Matching Problem

Formulation

This section formulates the problem as an objective

function to be optimized and constraints to be

satisfied. Optimization solving techniques can then

be applied. As mentioned earlier, individual Web

services are federated into composite one whose

business logic is expressed as a process model. The

selection of component services considers multiple

QoS criteria taking into consideration global

constraints and preferences set by the consumer

(e.g., response time and budget constraints). The

process model of a composite service can be

specified as a state chart where the execution path is

viewed as a sequence of states [t1, t2, … , tm] with an

initial and final states. Each state represents an

atomic process/service. A whole path as a Directed

Acyclic Graph corresponds to a composite service c

composing of a set of pairs { <t1,q1> , <t2,q2> , … ,

<tm,qm> } where m is the total number of

states/activities (its constituent atomic processes)

and qk is the vector of QoS parameters for an atomic

process k of the composite c. A path which

optimizes the QoS and satisfies the constraints is

chosen.

Once user requirements are specified, we proceed by

automatically building executable service compositions

with respect to user requirements and the dynamics of the

service environment. Building executable compositions

consists of selecting, and composing services at runtime.

For every activity in the composition, there should be a

preceded discovery phase that gives the set of service

candidates, which are able to fulfill the activity (i.e.,

functional aspect) and to satisfy user QoS requirements

(non-functional aspect). The non-functional service

discovery uses advertised QoS of services to perform a

preliminary filtering to ensure that QoS requirements are

satisfied at the global level (i.e., for the whole

composition) and at the level of individual service.

Further, selection phase is done, so that we use the QoS

attributes to determine the utility of service candidates

regarding our objective, i.e., selecting optimal

compositions. Once the global selection is fulfilled, the

composition phase uses the selected services to define an

executable service composition.

The problem can be treated as a single objective

optimization problem to be solved by an

optimization technique such as integer

programming. By accumulating all the execution

plans' quality vectors, we obtain matrix Q, where

each column represents the quality vectors of all the

atomic candidate services that achieve/correspond to

one of the activity of the User task. On the other

hand, each row represents an execution plan quality

vector corresponds to a candidate solution (five

services for the five activities) that constitutes the

composite service which meets the user

requirement/query. The “n” in the Q matrix denotes

all the execution plans’ quality vectors. In other

words, “n” represents all the possible solution for the

user query.

Q = [

]

Then Q matrix may be normalized by applying a scaling

operation getting V to handle a variance in quality

parameters values. The parameters/qualities that are

needed to be maximized will take a positive value. On the

other hands, qualities to be minimized will take negative

values. In the scaling process each QoS attribute value is

transformed into a value between 0 and 1, by comparing it

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 1, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 135

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

with the minimum and maximum possible values.

Therefore, min and max aggregated values should be

determined in each quality (i.e. price, time…etc.) in

universe of web services U.

- Vi,j = (Qi,j – Qmin) / (Qmax – Qmin), for

reliability, availability, and reputation

qualities to be maximized.

- Vi,j = (Qmax – Qi,j) / (Qmax – Qmin), for price

and execution time to be minimized.

Where Qi,j is the quality vector of the service in the

Matrix Q located in row i and column j,

- Qi,j = < qpr, qrt, qrel, qrep,qav > for each atomic

service

- Qmin = Min Quality Vector = <min(qpr),

min(qrt), … min(qav)>

- Qmax = Max Quality Vector = <max(qpr),

max(qrt), … max(qav)>

V = [

]

A weighting factor for each quality parameter is

applied to get a path score. For example, the

composite service score is given in equation 2.

Score (CSi) = ∑ ()

 …………..… (2),

where Wj is the weight of criterion j, 0 <= Wj <= 1, and

∑ ()

 = 1

The problem of finding the best service composition is an

optimization problem, in which the overall objective

function has to be optimized while satisfying all global

constraints. Finding the solution by enumerating all

possible combinations is NP-hard problem. Formally, the

optimization problem can be stated as it follows.

For a given composite service CS, find an implementation

<S1, . . . , S5 > by bounding it to set of QoS global

constraints such that:

1. The overall objective function (given in 3) is

optimized, and

2. The aggregated QoS values satisfy the following

constraints:

 Qpr (CS) <= Cprice

 Qrt (CS) <= CresponseTime

 Qrep (CS) >= Creputation

 Qrel (CS) >= Creliability

 Qav (CS) >= Cavailability

Note: Where Cj is the limit of the QoS property set by the

requester.

The objective function to be optimized, is given in

(3), if (Qjmax – Qjmin) is not equal to 0, otherwise it is

given as 1.

Objective Function:

Max {∑ (() ()

) +

∑ (() ()

) ……………………. (3)

The qjmax (qjmin) is the maximum (minimum) value of

QoS property j. We only consider five QoS criteria.

The five QoS criteria are enumerated in which

“Price”, “Response/Execution Time”, Reliability“,

“Reputation” and “Availability” are assigned

numbers starting from j=1 to j=5 respectively. A

service class (i.e. abstract activity) is a set of services

with same functionality (the same IOPEs), but

different QoS. This leads to the optimization

problem to select the best one in each class. In

composite services, the objective function is used to

evaluate a given set of alternative service

compositions (alternative solutions). However,

finding the best composition/solution requires

enumerating all possible combinations of service

candidates. For a composition request with m

activities and n service candidates per activity, there

are (n
m
) possible combinations to be examined.

Performing exhaustive search can be very expensive

in terms of computation time and, therefore,

inappropriate for applications with many services

and dynamic needs, so a heuristic solution is

necessary.

5. The Genetic Heuristic (G_HEU) algorithm

The linear programming solving methods suffer poor

scalability, so their applicability is restricted to

small-size problems [11]. These methods are also

inappropriate for dynamic applications with run-time

requirements since the selection problem to be

optimized is NP-hard. In this research, we propose a

heuristic algorithm, which is mainly based on greedy

technique and genetic. This heuristic algorithm tries

to find the best atomic service within each activity

list. There is an assumption that all the atomic

services are independent. So, the algorithm runs

regardless of relations of a service in a certain

activity with other services in other activities. It

might be prone and stuck with local peaks/solutions.

On the other, hand this sub-optimal solution could be

reasonable and good enough with respect to the time

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 1, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 136

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

taken and complexity of the algorithm. Brute-force

algorithms run in very long time especially when we

have big number of services and activities to check

for. Therefore, it can be considered as a good and

sufficient alternative for the Brute-force algorithm

when the problem size is really big.

The algorithm runs in two stages. The first stage is

done by applying Eq. (3) on each entry/quality

vector Vi,j in each column in Matrix V. Then apply

Merge Sort on every column, so that all the services

in each activity are sorted in a descending order

based on the objective function value. The second

stage starts with calculating the aggregated QoS

values (as shown in table 1) for each row/solution

(i.e. all the atomic services that represents all the

activities of the Composite Service requested by the

user). Iterate on each solution Aggregated QoS

vector and check if meets all the global constraints;

Stop when observing first solution that meets all the

constraints. Keep it as the default solution to be

returned. Discard all the below rows/solutions. For

further improvement, a genetic cross over is applied

on the accepted/kept rows/solutions. Number of

cross over operations that are done might be set by

the user. This genetic processing will produce new

solutions that might have better QoS that abide by

the constraints than the default one. Therefore,

Apply on the new population equation (3) again, sort

them descending and then check the constraints

again. Select the best if solution with the highest

QoS and abides by the constraints.

6. The Algorithm Analysis and Evaluation

Our algorithm is contrasted against the Linear

Programming (LP) Brute-force and two other heuristic

algorithms to be evaluated. We picked two famous

heuristic algorithms which are WS HEU [3], and Alrifai

Heuristic DIST HEU [11]. A simulation has been

conducted to evaluate the proposed heuristic. The

evaluation considers two criteria to be experimented

amongst our algorithm and the other three. It considers the

algorithm time taken to find the Optimal/Suboptimal

solution and the optimality degree in case of suboptimal

solution. This simulation runs many times while changing

the size of the problem in terms of the number of activities

(m) and the number of services per activity (n). For LP, the

open source Linear Programming system lpsolve version

5.5 [18] was used. LP was experimented with varying the

number of activities (m) and the number of service

candidates per activity (n). Each unique combination of

these parameters represents one instance of the

composition problem. There is an available QoS real

dataset QWS [19], but it only includes measurements of 3

QoS attributes for 364 real web services. To get a bigger

dataset, we randomly generate activities and randomly

generate component services (candidate services) per each

activity. We also randomly generate input data between

the minimum and maximum values of the QoS metrics

associated with each component service.

Figure 3 shows the result of the experiments on the four

algorithms. The graph on the top shows the Algorithms

consumption time on y-axis meanwhile the x-axis

represents the number of service candidates (n) is varied

from 100 to 1000 per class. The number of activities is

fixed to 20. Each experiment is executed 20 times and the

mean value of the obtained results is computed. The

obtained measurements also show that the execution time

of our algorithm increases along with the number of

services per activity and it also increases along with the

number of QoS constraints. The results in both graphs

show that our proposed heuristic has better computation

time compared to all the others.

To evaluate the quality of the results of our approach, we

measure the closeness of the returned results to the optimal

results obtained by the LP method by calculating the

optimality ration R = Uh / Uopt as shown in the bottom

graph in Figure 3. Uh is the objective value of the best

composition returned by our approach according to Eq. (3)

and Uopt is the optimal value of the composition returned

by the LP method. The optimality of our algorithm

increases along with the number of services per activity

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 1, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 137

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

which means that the more feasible compositions, the

more probable to have a better utility as shown in Figure 3.

It also indicates that our approach achieves good results

with average 97.792% optimality. The biggest optimality

degree difference between DIST_HEU and our approach is

1.7% and in average our approach is just 0.65% below the

DIST_HEU. It is noticed that as the number of services

increases per each activity, our approach shows better

optimality that gets closer to that of the DIST_HEU.

Fig. 3 Experiment the algorithm’s time consumption and Optimality VS.

Atomic Services Number

7. Conclusion

This paper has addressed the problem of the best fit

discovery of either atomic or composite processes

considering the request QoS requirements. After, the

request Inputs/Outputs semantically match the service

signature (functional requirements discovery), there may

exist more than one matched service, then the QoS

(nonfunctional) attributes best fit service is chosen.

Usually, several component services are able to execute a

given task, although with different levels of pricing and

quality. In this paper, we advocated that the selection of

component services should be carried out during the

execution of a composite service, rather than at design-

time. QoS-based service selection aims at finding the best

component services that satisfy the end-to-end quality

requirements.

 The QoS may be set by the service consumer or computed

from past experiments. The service registry has been

checked for all services, so a collection of service sets

may be selected where each set has a number of atomic

services assembled together to result the desired business

requirements. The best fit set of services based on QoS

parameters is selected. This paper only concentrates on

QoS parameters, i.e. a Non-Functional Service best

matching. The problem is formulated as an optimization

problem, so an optimization solving technique such as

integer programming can be applied. Since it is a NP-hard

problem, a heuristic technique is designed for shorter

selection time (polynomial complexity) and suboptimal

performance. Overall our approach showed a good

optimality within very optimized and reduced time

consumption.

References
[1] Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial

Optimization. Wiley-Interscience, New York, NY, USA

(1988)

[2] D. Pisinger. Algorithms for Knapsack Problems. PhD thesis,

University of Copenhagen, Dept. of Computer Science,

February 1995

[3] Yu, T., Zhang, Y., Lin, K.J.: Efficient algorithms for web

services selection with end-to-end qos constraints. ACM

Transactions on the Web (TWEB), Volume 1 Issue 1, May

2007

[4] Gerardo Canfora, Massimiliano Di Penta, Ra_aele Esposito,

and Maria Luisa Villani. An approach for qos-aware service

composition based on genetic algorithms. In GECCO '05:

Proceedings of the 2005 conference on Genetic and

evolutionary computation, pages 1069-1075, New York,

NY, USA, 2005. ACM.

[5] Chengwen Zhang, Sen Su, and Junliang Chen. A Novel

Genetic Algorithm for QoS-Aware Web Services Selection.

In Springer Berlin/Heidelberg, editor, Data Engineering

Issues in E-Commerce and Services, pages 224-235, 2006.

[6] Michael C. Jaeger and Gero M• uhl. QoS-based Selection

of Services: The Implementation of a Genetic Algorithm. In

Torsten Braun, Georg Carle, and Burkhard Stiller, editors,

Kommunikation in Verteilten Systemen (KiVS 2007)

Industriebetr• age, Kurzbeitr• age und Workshops, pages

359{350, Bern, Switzerland, March 2007. VDE Verlag,

Berlin und O_enbach.

[7] Ziad Kobti andWang Zhiyang. An Adaptive Approach for

QoS-Aware Web Service Composition Using Cultural

Algorithms. In Mehmet A. Orgun and John Thornton,

editors, Australian Conference on Arti_cial Intelligence,

volume 4830 of Lecture Notes in Computer Science, pages

140-149. Springer, 2007.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 1, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 138

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

[8] Lei Cao, Minglu Li, and Jian Cao, “Using genetic algorithm

to implement cost-driven web service selection “,

Multiagent and Grid Systems - Special Issue on Nature

inspired systems for parallel, asynchronous and

decentralised environments, Volume 3 Issue 1, January

2007, Pages 9-17, 2007.

[9] Chunming Gao, Meiling Cai, and Huowang Chen. QoS-

aware Service Composition Based on Tree-Coded Genetic

Algorithm. In COMPSAC '07: Proceedings of the 31st

Annual International Computer Software and Applications

Conference, pages 361-367, Washington, DC, USA, 2007.

IEEE Computer Society.

[10] Nebil BEN MABROUK, QoS-aware Service-Oriented

Middleware for Pervasive Environments ,PhD thesis,

UNIVERSITÉ PARIS 6, École doctorale informatique,

télécommunications, électronique, 2012

[11] Mohammad Alrifai, Thomas Risse, Peter Dolog and

Wolfgang Nejdl. A Scalable Approach for QoS-based Web

Service Selection. Service-Oriented Computing – ICSOC

2008 Workshops. Lecture Notes in Computer Science,

2009, Volume 5472/2009, pages 190-199, DOI:

10.1007/978-3-642-01247-1_20

[12] Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J.,

Sheng, Q.Z.: Quality driven web services composition. In:

WWW. (2003) 411–421

[13] Maros, I.: Computational Techniques of the Simplex

Method. Springer (2003)

[14] Florian Rosenberg, QoS-Aware Composition of Adaptive

Service-Oriented, PhD thesis, Technische Universität Wien,

Austria, 2009

[15] W. Iverson. Real World Web Services. O’Reilly, 1. edition,

2005

[16] Boonserm Kulvatunyou , et. al. Integrated product and

process data for business to business collaboration,

Artificial Intelligence for Engineering Design, Analysis and

Manufacturing, v.17 n.3, p.253-270, June 2003

[17] OASIS: Web services business process execution language

(April 2007) http://docs.oasis-open.org/wsbpel/2.0/wsbpel-

v2.0.pdf

[18] Michel Berkelaar, Kjell Eikland, P.N.: Open source (mixed-

integer) linear programming system. Sourceforge

http://lpsolve.sourceforge.net/.

[19] Al-Masri, E.,Mahmoud, Q.H.: Investigating web services on

the world wide web. In:WWW. (2008)

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 1, November 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 139

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

