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Abstract 
The problem of QoS-based selecting a web service dynamically 

or composing a set of web services to conduct a business task has 

been investigated in this paper. It outlines the discovery of either 

atomic or composite services satisfying the request QoS 

requirements. After, the functional requirements matching is 

achieved where the request Inputs/Outputs  syntactically and 

semantically match services signature,  there  may exist more 

than one matched service,  then the QoS (nonfunctional) 

attributes best fit service  is chosen.  The QoS may be set by the 

service consumer or computed from past executions.   If the 

chore cannot be satisfied by atomic process, it should be bind 

with a virtually composed service (set of atomic services).A 

collection of services sets may be selected  where each set has a 

number of atomic services assembled together to result the 

desired business requirements. The best fit set of services based 

on QoS parameters is selected. This paper only concentrates on 

QoS parameters based selection. The problem is formulated as an 

optimization problem, so an optimization solving techniques 

such as integer programming can be applied. A heuristic 

technique is designed and evaluated. 

Keywords: Semantic Web Services, Non-Functional 

Requirements Matching, Quality of Service, Optimization. 

1. Introduction 

The discovery of services consists of a semantic matching 

between the description of a service request and the 

description of published services. The service/request 

descriptions used for matching mainly include inputs, 

outputs, preconditions, effects (IOPEs). The inputs and 

outputs are the data channels where data flows between 

processes. The service preconditions are the world facts 

that must be asserted before its execution and the effects 

are the world facts that become asserted after its execution.  

The matching can also be based on goals to be achieved 

and nonfunctional requirements of the services. The 

degree of matching is based on some criteria. If more than 

one service matches the request, one is chosen (selected) 

based on non-functional attributes such as cost or quality. 

Services are classified into two main subclasses: Atomic 

and Composite service. An atomic service is a stateless 

service that receives a set of inputs to commence its 

execution and produces a set of outputs after it is executed. 

A composite service is a stateful service composed of 

atomic processes. In other words, it may accept inputs and 

produce output messages at different stages during its 

execution. A composite service model is a workflow 

describing the composition or orchestration of a service in 

terms of its constituent processes. A workflow expresses 

the composition of atomic services by using appropriate 

control constructs such as Sequence, Unordered, Choice, 

If-then-else, Iterate, Repeat-until, Repeat-while, Split, and 

Split+join. The problem of selecting a web service 

dynamically or composing a set of web services to conduct 

a requested service has been investigated by different 

researchers. This paper outlines the problem of the 

discovery of either atomic or composite processes where 

the service has to meet the request requirements. Firstly, 

the request Input/Output has to syntactically and 

semantically match the service signature. More than one 

matched process may exist, and then the QoS 

(nonfunctional) attributes best fit process is chosen.  The 

QoS may be set by the service consumer or be computed 

from past executions.   If the chore cannot be satisfied by 

atomic process, it should be bind with a virtually 

composed service. This paper only concentrates on QoS 

parameters, i.e. a Non-Functional Service Discovery.  

 
The QoS properties may be End-to-end or Service-

centered properties. Service-centered QoS properties focus 

only on the QoS properties of application services while 

end-to-end QoS considers all the factors having impact on 

the QoS delivered to users. The QoS concepts may be 

given in syntactic or semantic descriptions. In case of 

syntactic descriptions, users and service providers must 

use the same syntax to define the required and offered QoS 

while in case of semantically description they can use 

different syntax. Semantic QoS descriptions (e.g., QoS 

ontologies) explicitly define the semantics of QoS 

concepts and the relationship between these concepts 

allowing us to enable reasoning on QoS concepts and 

inferring matches between requested and offered services 

even at the run time. For this reason, semantic description 

is more reliable. Quality-based service description (QSD) 

is defined by embedding QoS specifications into the 

description of services. This can be carried out according 

to two approaches: the black-box approach where QoS 
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specifications (concern the whole service entity) are 

associated to services wrapped as black boxes and the 

white-box approach where QoS specifications are 

associated to the functional behavior of services 

(associated with elementary parts or operations). The 

black-box approach is generally used when addressing 

atomic services with simple behavior (i.e., a single 

operation). However, the white-box approach is more 

suitable for services with various operations, each 

characterized with a different QoS.  

 

QoS-based service discovery determines service 

candidates that may fulfill the user’s requirements. The 

way the matching is carried out impacts the spectrum of 

discovered services, notably the number of discovered 

services and the extent to which they fit the user’s required 

task. QoS-based service discovery approaches may be 

either syntactic or semantic. Syntactic discovery 

approaches requires the same syntax to describe the 

required and offered QoS, so they constrain the number of 

discovered services as they disregard services that fit the 

user requirements but use a different QoS syntax. 

Semantic discovery approaches infer matches between 

heterogeneous QoS terms, hence determining all services 

which fulfill the required QoS.  

 

Like all the algorithms dealing with combinatorial 

problems, QoS-based selection algorithms can be divided 

into two broad classes: brute-force-like algorithms and 

heuristic algorithms. The first class of algorithms (NP-hard 

[1]) aims at determining the optimal service composition 

(i.e., with the highest QoS) by exploring all possible 

compositions of services. A second class of algorithms is 

heuristic algorithms which do not explore all possible 

compositions and they find near-optimal compositions, 

i.e., compositions that meet global QoS constraints and 

sub-optimize the QoS delivered to the user. The goal of 

any QoS-based selection technique is to reduce the number 

of service compositions to be investigated. Therefore, the 

greedy technique is opted to be coupled with our selection 

approach to reduce the number of service compositions 

trials. Greedy selection is a technique that selects, for each 

abstract activity in the user task, the service candidate with 

the highest QoS. The selection is performed for each 

abstract activity individually and it is generally used under 

local QoS constraints. 

2. Related Works 

Recently, the QoS-based web service selection and 

composition in service-oriented applications has gained 

the attention of many researchers. Several selection 

algorithms have been proposed to select service 

compositions with different composition structures and 

various QoS constraints. Taxonomy of these solutions may 

be produced based on their objectives and the way they 

proceed. Approaches aim at determining the optimal 

service composition (i.e., composition with the highest 

QoS utility) using brute-force-like algorithms (e.g., Global 

Planning, BBLP, WS-IP [3]). These solutions have high 

computational cost and they cannot provide a solution in a 

satisfying amount of time, thus they are inappropriate to be 

used in the context of dynamic service environments. 

Other approaches propose heuristic-based solutions (e.g., 

WS-HEU [3] and DIST_HEU [11]), Genetic algorithm [4, 

5, 6, 7, 8, 9] aiming to find near-optimal compositions, i.e., 

compositions that respect global QoS constraints and 

maximize a QoS utility function. Yu et al. [3] present two 

heuristics, WS-HEU and WFlow, for the service selection 

problem. WS-HEU is specific heuristic applied to 

sequential workflows (i.e., workflows structured as a 

sequence of activities), whereas WFlow is designed for 

general workflow structures (i.e., sequential, conditional, 

parallel). The main idea of WFLow is to decompose 

workflows into multiple execution routes. WFlow 

considers a probability of every route to be executed. 

Therefore, it focuses on the route with the highest 

probability. Bin Mubarak [10] adapts this solution giving 

feasible service compositions regardless of the way the 

workflow will be executed. 

 

More recently, Alrifai et al. [11] presented a novel 

approach (DIST-HEU) that combines local and global 

optimization techniques. This approach starts from the 

global level and resolves the selection problem at the local 

level. It proceeds by decomposing global QoS constraints 

(i.e., imposed by the user on the whole composition) into a 

set of local constraints (i.e., for individual sub-tasks, part 

of the composition). To do so, it uses MILP (mixed integer 

linear programming) techniques [1] to find the best 

decomposition of QoS constraints. The main drawback of 

this approach is that it represents a greedy selection 

method, since it selects services at the local level and does 

not ensure that the global QoS constraints are respected. 

 

The work of Zeng at al. [12] focuses on dynamic and 

quality-driven selection of services using global planning 

to find the best service components for the composition. 

They use (mixed) linear programming techniques [13] to 

find the optimal selection of component services. Linear 

programming methods suffer from poor scalability due to 

the exponential time complexity of the applied search 

algorithms [12]. 

3. The QoS Model 

Web service may be evaluated based on many 

generic quality criteria such as: price, execution 

duration, reputation, reliability, availability, 
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documentation, and relevance ration. QoS attributes 

can be classified into four basic classes [14] as 

visualized in Figure 1. Only five QoS attributes are 

considered in this research: execution price, 

execution time (response time), reliability, 

availability, and reputation.   
 

 
Fig. 1 The QoS taxonomy 

3.1. The Composition model 

Our QoS-aware service composition approach is initialized 

by taking an input as a user request R which is defined as a 

quadruple R = (T, C, Q, W), where T refers to the required 

task and C = <c1, .., cn> refers to global QoS constraints 

(e.g. cost doesn’t exceed certain limit) imposed by the user 

on a set of QoS properties Q = <q1, .., qn >. The user has to 

specify the relative importance of its associated QoS 

property by giving a set of weights W = <w1, ..,wz >, 

where wi is the weight of QoS property pi. It is worth 

noting that the sum of all the weights must be equal to 1, 

i.e.   ∑ (  )       
   , where 0 <= wi <= 1 and (z) is the 

number of QoS properties. 

  

For a user task T, its structure is specified as a set of 

activities T = <A1 … Am > coordinated by composition 

patterns (Sequence, AND, XOR and Loop). There is an 

associated set of atomic service candidates S = {si,1, si,2, .., 

si,n}  for each activity Ai in the user task T. Each candidate 

service si,k (1 <= k <= n) in this set is able to 

realize/accomplish Ai and it is represented by its QoS 

vector QoSsi,k = <q1, … , qz >, where qj is the advertised 

value of QoS property qj (1 <= j <= z). Only one atomic 

service si,k is enacted for each activity Ai, thus forming a 

candidate service composition CS = <s1,k , ..., sm,k > 

realizing the user’s task T, where 0 < k <= n. Figure 2 

shows an example on “reserving the cheapest flight from 

Cairo to Austin” task with its associated activities and their 

candidate services. 

 

The question to be asked is then which service should be 

enacted for each activity in the user task so that the overall 

composition meets the user’s QoS requirements. The 

problem becomes even more complicated when we aim at 

selecting several alternative service compositions (CS1, … 

, CSv ) in order to support dynamic binding of services. 

The first step to address this problem is to determine how 

to evaluate the QoS of a service composition QoSC = <Q1, 

... , Qn > based on the structure of the composition (i.e., its 

composition patterns) and the QoS of its constituent 

services.  

 

 
Fig. 2 Example on Task, activities and candidate services for each 

activity  

3.2 The QoS Aggregation 

Global service selection requires evaluating QoS of service 

compositions prior to their execution. The service 

composition is unforeseen during service selection, so the 

overall QoS of a composition cannot be assessed in an 

accurate manner. It is rather estimated with respect to 

possible execution scenarios of the composition. QoSCi = 

<QoSs1, ..,QoSsm> = <Q1, ..,Qm > is determined by 

aggregating QoS values of its constituent services. Each 

QoSsi,k = Qi,k = <q1, .., qz>, where 0 < k <= m corresponds 

to one of these atomic/constituent services from each 

activity, while taking into account the composition 

patterns which are the structuring elements used to build 

the composition. There is a set of common composition 

patterns such as sequence (sequential execution of 

activities), AND (parallel execution of activities), XOR 

(conditional execution of activities), and Loop (iterative 

execution of activities).Three QoS aggregation approaches 

may be considered: optimistic approach (i.e., considering 

the best QoS value), pessimistic approach (i.e., considering 

the worst QoS value), and mean-value approach (i.e., 

considering the average of services’ QoS values). For 

instance, the response time of two services composed in 

exclusive choice (XOR) or AND can be pessimistically 

estimated considering the worst-case QoS values of the 

two services (the longest response time). A history-based 

estimation that considers the maximum number of loops 

may also be adapted for Loop.  

 

In our model we assume that we have a universe of web 

services U which is defined as a union of abstract 

activities. Each abstract activity Aj Є U is used to describe 
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a set of candidate functionally-equivalent web services. A 

composite service (corresponds to the user task T) can be 

represented as CS = (A1, … , Am) where Aj refers to a 

requested task activity j. The si,j is an atomic candidate 

service (i) as one of available atomic services which can 

be chosen of abstract activity j (assuming there are ni 

concrete services for abstract activity j), Si,j Є Aj. A QoS 

of the composition for each property is aggregation of the 

same QoS property for all constituent services. The QoS 

vector for a composite service C is defined as QoSc = { 

Qrt(C), Qpr(C),  Qrep(C), Qrel (C), Qav(C) }, where Qi 

represents the aggregated i
th

 QoS property value which can 

be aggregated from the expected QoS values of its (n) 

component services (n = no. of all the atomic candidate 

services that constitute a solution/composite service = no. 

of activities) as given in Table 1. For example, the services 

“Lufthansa_Check_Flights()”, “List_Cheap_First()”, 

“Orbitz_booking()” and “Send_Word_Format()” in figure 

2 are considered the component services for the solution of 

the user requirement/query “reserve cheapest flight from 

Cairo to Austin”. 
 
Table 1: The Criterion Aggregation Formula for Sequence Composition 

Criteria Aggregate Function 

Price Qpr(C) = ∑ (   (  )) 
 

   
 

Response Time Qrt(C) = ∑ (   (  )) 
 

   
 

Reputation Qrep(C) = ∑ (    (  )) 
 

   
 

Reliability Qrel(C) = ∏ (    
(  )) 

    

Availability Qav(CS) = ∏ (   
(  )) 

    

 4. The Non-functional Matching Problem 

Formulation 

This section formulates the problem as an objective 

function to be optimized and constraints to be 

satisfied. Optimization solving techniques can then 

be applied. As mentioned earlier, individual Web 

services are federated into composite one whose 

business logic is expressed as a process model. The 

selection of component services considers multiple 

QoS criteria taking into consideration global 

constraints and preferences set by the consumer 

(e.g., response time and budget constraints). The 

process model of a composite service can be 

specified as a state chart where the execution path is 

viewed as a sequence of states [t1, t2, … , tm] with an 

initial and final states. Each state represents an 

atomic process/service. A whole path as a Directed 

Acyclic Graph corresponds to a composite service c 

composing of a set of pairs { <t1,q1> , <t2,q2> , … , 

<tm,qm> } where m is the total number of 

states/activities (its constituent atomic processes) 

and qk is the vector of  QoS parameters for an atomic 

process k of the composite c.  A path which 

optimizes the QoS and satisfies the constraints is 

chosen. 

 

Once user requirements are specified, we proceed by 

automatically building executable service compositions 

with respect to user requirements and the dynamics of the 

service environment. Building executable compositions 

consists of selecting, and composing services at runtime. 

For every activity in the composition, there should be a 

preceded discovery phase that gives the set of service 

candidates, which are able to fulfill the activity (i.e., 

functional aspect) and to satisfy user QoS requirements 

(non-functional aspect). The non-functional service 

discovery uses advertised QoS of services to perform a 

preliminary filtering to ensure that QoS requirements are 

satisfied at the global level (i.e., for the whole 

composition) and at the level of individual service. 

Further, selection phase is done, so that we use the QoS 

attributes to determine the utility of service candidates 

regarding our objective, i.e., selecting optimal 

compositions. Once the global selection is fulfilled, the 

composition phase uses the selected services to define an 

executable service composition.  

 

The problem can be treated as a single objective 

optimization problem to be solved by an 

optimization technique such as integer 

programming. By accumulating all the execution 

plans' quality vectors, we obtain matrix Q, where 

each column represents the quality vectors of all the 

atomic candidate services that achieve/correspond to 

one of the activity of the User task. On the other 

hand, each row represents an execution plan quality 

vector corresponds to a candidate solution (five 

services for the five activities) that constitutes the 

composite service which meets the user 

requirement/query. The “n” in the Q matrix denotes 

all the execution plans’ quality vectors. In other 

words, “n” represents all the possible solution for the 

user query. 

 

Q    =    [

              

     

 

     

 

     

 
               

       

 
 
 

     

 
       

] 

 

Then Q matrix may be normalized by applying a scaling 

operation getting V to handle a variance in quality 

parameters values. The parameters/qualities that are 

needed to be maximized will take a positive value. On the 

other hands, qualities to be minimized will take negative 

values. In the scaling process each QoS attribute value is 

transformed into a value between 0 and 1, by comparing it 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 6, No 1, November 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 135

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

with the minimum and maximum possible values. 

Therefore, min and max aggregated values should be 

determined in each quality (i.e. price, time…etc.) in 

universe of web services U.  

 

- Vi,j = (Qi,j – Qmin) / (Qmax – Qmin), for 

reliability, availability, and reputation 

qualities to be maximized. 

- Vi,j = (Qmax – Qi,j) / (Qmax – Qmin), for price 

and execution time to be minimized. 

 

Where Qi,j is the quality vector of the service in the 

Matrix Q located in row i and column j,  

 

- Qi,j = < qpr, qrt, qrel, qrep,qav > for each atomic 

service 

- Qmin  =  Min Quality Vector = <min(qpr), 

min(qrt), … min(qav)>  

- Qmax =  Max Quality Vector = <max(qpr), 

max(qrt), … max(qav)> 

 

V    =    [

               

     

 

     

 

     

 
               

       

 
 
 

     

 
       

] 

 

A weighting factor for each quality parameter is 

applied to get a path score.  For example, the 

composite service score is given in equation 2. 

 

Score (CSi) = ∑ (       )
 
    …………..…              (2), 

where Wj is the weight of criterion j, 0 <= Wj   <= 1, and 

∑ (  )
 
    = 1 

 

The problem of finding the best service composition is an 

optimization problem, in which the overall objective 

function has to be optimized while satisfying all global 

constraints. Finding the solution by enumerating all 

possible combinations is NP-hard problem. Formally, the 

optimization problem can be stated as it follows.  

For a given composite service CS, find an implementation 

<S1, . . . , S5 > by bounding it to set of QoS global 

constraints such that: 

 

1. The overall objective function  (given in 3)  is 

optimized, and 

2. The aggregated QoS values satisfy the following 

constraints:  

                 Qpr  (CS)    <=  Cprice 

                 Qrt   (CS)    <=  CresponseTime 

                 Qrep (CS)    >=  Creputation 

                 Qrel  (CS)    >=  Creliability 

                 Qav  (CS)    >=  Cavailability  

 

Note: Where Cj is the limit of the QoS property set by the 

requester.     

    

The objective function to be optimized, is given in 

(3), if (Qjmax – Qjmin) is not equal to 0, otherwise it is 

given as 1.  

 

Objective Function: 

Max {∑ ( (            )    (             ) 
 
        )   +   

∑ ( (            )    (             ) 
 
    

    )       ……………………. (3)          

 

The qjmax (qjmin) is the maximum (minimum) value of 

QoS property j. We only consider five QoS criteria. 

The five QoS criteria are enumerated in which 

“Price”, “Response/Execution Time”, Reliability“, 

“Reputation” and “Availability” are assigned 

numbers starting from j=1 to j=5 respectively. A 

service class (i.e. abstract activity) is a set of services 

with same functionality (the same IOPEs), but 

different QoS. This leads to the optimization 

problem to select the best one in each class. In 

composite services, the objective function is used to 

evaluate a given set of alternative service 

compositions (alternative solutions). However, 

finding the best composition/solution requires 

enumerating all possible combinations of service 

candidates. For a composition request with m 

activities and n service candidates per activity, there 

are (n
m
) possible combinations to be examined. 

Performing exhaustive search can be very expensive 

in terms of computation time and, therefore, 

inappropriate for applications with many services 

and dynamic needs, so a heuristic solution is 

necessary.  

5. The Genetic Heuristic (G_HEU) algorithm 

The linear programming solving methods suffer poor 

scalability, so their applicability is restricted to 

small-size problems [11]. These methods are also 

inappropriate for dynamic applications with run-time 

requirements since the selection problem to be 

optimized is NP-hard. In this research, we propose a 

heuristic algorithm, which is mainly based on greedy 

technique and genetic. This heuristic algorithm tries 

to find the best atomic service within each activity 

list. There is an assumption that all the atomic 

services are independent. So, the algorithm runs 

regardless of relations of a service in a certain 

activity with other services in other activities. It 

might be prone and stuck with local peaks/solutions. 

On the other, hand this sub-optimal solution could be 

reasonable and good enough with respect to the time 
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taken and complexity of the algorithm. Brute-force 

algorithms run in very long time especially when we 

have big number of services and activities to check 

for. Therefore, it can be considered as a good and 

sufficient alternative for the Brute-force algorithm 

when the problem size is really big.   

 

 
 

The algorithm runs in two stages. The first stage is 

done by applying Eq. (3) on each entry/quality 

vector Vi,j in each column in Matrix V. Then apply 

Merge Sort on every column, so that all the services 

in each activity are sorted in a descending order 

based on the objective function value. The second 

stage starts with calculating the aggregated QoS 

values (as shown in table 1) for each row/solution 

(i.e. all the atomic services that represents all the 

activities of the Composite Service requested by the 

user). Iterate on each solution Aggregated QoS 

vector and check if meets all the global constraints; 

Stop when observing first solution that meets all the 

constraints. Keep it as the default solution to be 

returned. Discard all the below rows/solutions. For 

further improvement, a genetic cross over is applied 

on the accepted/kept rows/solutions. Number of 

cross over operations that are done might be set by 

the user. This genetic processing will produce new 

solutions that might have better QoS that abide by 

the constraints than the default one. Therefore, 

Apply on the new population equation (3) again, sort 

them descending and then check the constraints 

again. Select the best if solution with the highest 

QoS and abides by the constraints. 

6. The Algorithm Analysis and Evaluation 

Our algorithm is contrasted against the Linear 

Programming (LP) Brute-force and two other heuristic 

algorithms to be evaluated. We picked two famous 

heuristic algorithms which are WS HEU [3], and Alrifai 

Heuristic DIST HEU [11]. A simulation has been 

conducted to evaluate the proposed heuristic. The 

evaluation considers two criteria to be experimented 

amongst our algorithm and the other three. It considers the 

algorithm time taken to find the Optimal/Suboptimal 

solution and the optimality degree in case of suboptimal 

solution. This simulation runs many times while changing 

the size of the problem in terms of the number of activities 

(m) and the number of services per activity (n). For LP, the 

open source Linear Programming system lpsolve version 

5.5 [18] was used. LP was experimented with varying the 

number of activities (m) and the number of service 

candidates per activity (n). Each unique combination of 

these parameters represents one instance of the 

composition problem. There is an available QoS real 

dataset QWS [19], but it only includes measurements of 3 

QoS attributes for 364 real web services. To get a bigger 

dataset, we randomly generate activities and randomly 

generate component services (candidate services) per each 

activity. We also randomly generate input data between 

the minimum and maximum values of the QoS metrics 

associated with each component service. 

 

Figure 3 shows the result of the experiments on the four 

algorithms. The graph on the top shows the  Algorithms 

consumption time on y-axis meanwhile the x-axis 

represents the number of service candidates (n) is varied 

from 100 to 1000 per class. The number of activities is 

fixed to 20. Each experiment is executed 20 times and the 

mean value of the obtained results is computed. The 

obtained measurements also show that the execution time 

of our algorithm increases along with the number of 

services per activity and it also increases along with the 

number of QoS constraints. The results in both graphs 

show that our proposed heuristic has better computation 

time compared to all the others. 

 

To evaluate the quality of the results of our approach, we 

measure the closeness of the returned results to the optimal 

results obtained by the LP method by calculating the 

optimality ration R = Uh / Uopt as shown in the bottom 

graph in Figure 3. Uh is the objective value of the best 

composition returned by our approach according to Eq. (3) 

and Uopt is the optimal value of the composition returned 

by the LP method. The optimality of our algorithm 

increases along with the number of services per activity 
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which means that the more feasible compositions, the 

more probable to have a better utility as shown in Figure 3.  

It also indicates that our approach achieves good results 

with average 97.792% optimality. The biggest optimality 

degree difference between DIST_HEU and our approach is 

1.7% and in average our approach is just 0.65% below the 

DIST_HEU.  It is noticed that as the number of services 

increases per each activity, our approach shows better 

optimality that gets closer to that of the DIST_HEU. 

 
Fig. 3 Experiment the algorithm’s time consumption and Optimality VS. 

Atomic Services Number 

7. Conclusion 

This paper has addressed the problem of the best fit 

discovery of either atomic or composite processes 

considering the request QoS requirements. After, the 

request Inputs/Outputs  semantically match the service 

signature (functional requirements discovery),  there  may 

exist more than one matched service, then the QoS 

(nonfunctional) attributes best fit service is chosen. 

Usually, several component services are able to execute a 

given task, although with different levels of pricing and 

quality. In this paper, we advocated that the selection of 

component services should be carried out during the 

execution of a composite service, rather than at design-

time. QoS-based service selection aims at finding the best 

component services that satisfy the end-to-end quality 

requirements.  

 

 The QoS may be set by the service consumer or computed 

from past experiments. The service registry has been 

checked  for all services, so  a collection of service sets 

may be selected  where each set has a number of atomic 

services assembled together to result the desired business 

requirements. The best fit set of services based on QoS 

parameters is selected. This paper only concentrates on 

QoS parameters, i.e. a Non-Functional Service best 

matching. The problem is formulated as an optimization 

problem, so an optimization solving technique such as 

integer programming can be applied. Since it is a NP-hard 

problem, a heuristic technique is designed for shorter 

selection time (polynomial complexity) and suboptimal 

performance. Overall our approach showed a good 

optimality within very optimized and reduced time 

consumption. 
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