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Abstract 
Systems of algebraic equations with interval coefficients 

are very common in several areas of engineering 

sciences. Generalized intervals extend classical intervals 

providing better algebraic properties.  These properties 

allow one constructing a generalized symmetric single 

step method. This paper proposes a new C-XSC (C- for 

eXtended Scientific Computing) software  for the 

symmetric single step method with generalized intervals 

for computing an enclosure for the solution set. 

Examples illustrating the applicability of the proposed 

method are solved, and compared with other methods. 

Keywords:  interval linear systems, validated interval 

software, C-XSC, symmetric single step method. 

1. Introduction 

Solving linear systems involving uncertainties in 

the parameters is an important part of the solution 

to many scientific and engineering problems. But 

in real life situations, parameters of these systems 

often are charged by different kinds of 

uncertainties[4, 5, 6]. Leontief's input output model 

of economy[16] can be taken as an example[29]. In 

many cases, uncertainty can be represented by 

intervals. Since the seminal publication by 

Moore's[17], a rapid development of interval 

arithmetic had been observed. The system of linear 

interval equations can be presented as follows: 

[ ] [ ],bxA =⋅                         (1)  

with x ∈ 	ℝ� , the matrix �A� ∈ 	ℝ�×�   and the 

vector  �b� ∈ 	ℝ�  are said to belong to interval 

family if their elements are from some real 

intervals. System (1) is called the interval system of 

equations. Suppose �A�  is regular i.e. A is 

nonsingular for any A ∈ �A� . Then for a matrix A ∈ �A� and any vector b ∈ �b�	an ordinary linear 

system A ∙ x = b has the unique solution. We are 

interested in a set ∑  of all these solutions of 

interval system:  �=�� ∈ ℝ�: �� = �, � ∈ ���, � ∈ ���� 
The characterization of this set has been obtained 

in[20]. It has been proved that the intersection of  ∑ 

with each orthant in ℜ� gives a convex polytope. 

But in general, ∑  is non-convex as the union of 

convex sets, and its detailed description meets 

combinatorial difficulties. The main objective is to 

find interval solution of linear interval system that 

is to determine the smallest interval vector [y] 

containing all possible solutions. In other words, 

we need to imbed the solution set ∑  into the 

minimal box in ℝ�. This problem is known to be 

NP-hard [15] and complicated from computational 

viewpoint for large-scale systems. Oettli[21] shows 

how multiple linear programming can be used to 

obtain [y]; this line of research was continued by 

Cope and Rust[7], and Rust and Burrus[26]. Some 

iterative approaches were established t this context 

as well as direct numerical methods that provide 

over-bounding of  [y] (see monographs[8, 9, 19] 

and papers[25, 27]). 

In this paper, we propose  a new C-XSC software 

(C for Extended Scientific Computing)[10] of the 

symmetric single step method for the solution of 

the systems of interval linear equations with the use 

of „generalized interval”. We will compare our 

method to other methods. The rest of the paper is 

set as follows. In Section 2, some Basic notation is 

introduced. In section 3, we recall the fundamentals 

of „generalized interval” and present its 

interpretation as the modified of interval arithmetic. 

The main results of this paper is presented in 

Section 4. Another modification for the symmetric 

single step method is introduced in Section 5.  

Numerical and practical examples  illustrating the 

features of the proposed method are provided in 

Section 6. Last section concludes with some 

remarks. 

2. Basic notations 

We use the following notations ℝ,ℝ� , ℝ�×� , 	ℝ, 	ℝ� , 	ℝ�×�, to denote the set of real numbers, 

the set of real vectors with n components, the set of 

real n×n matrices, the set of intervals, the set of 

interval vectors with n components and the set of 

n×n interval matrices, respectively. By interval we 

mean a real compact interval ��� ≔ ��, �� ≔ �� ∈ ℝ| � ≤ � ≤ �� 
For ���, ��� ≔ ��, �� we define 

• The mid-point mid#���$ ≔ #� + �$ 2' , 

• the radius  rad#���$ ≔ #� − �$ 2'   , 

• the absolute value |���| ≔ max�|�|, |�|�, , 
• the distance +#���, ���$ ≔ max�|� − �|, |� − �|� 
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• minimal absolute value (mignitude) 
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For interval vectors and interval matrices, these 

quantities are defined componentwise. If for two 

interval vectors �,�, �-� ∈ 	ℝ�we have �,.�⋂�-.� ≠∅,	2 = 1,2,⋯ , 5,   then �,�⋂�-� ≔ #�,.�⋂�-.�$ 
otherwise �,�⋂�-� = ∅.  In addition, for �,�, �-� ∈	ℝ� we define �,� ⊆ �-  iff �,.� ⊆ �-.�,	2 =1,2⋯ , 5.  Furthermore, we repeat some relations 

concerning the  distance: +#�,�, �-�$ ≤ +#�,�, �8�$ + +#�8�, �-�$+#�,� + �8�, �-� + �8�$ = +#�,�, �-�$+#�,� + �-�, �8� + �9�$ ≤ +#�,�, �8�$ + +#�-�, �9�$	
if �,�, �,�, �8�, �9� ∈ 	ℝ� . 

For square interval matrices we define the 

comparison matrix (Ostrowsky matrix) 〈���〉 ≔<=.>? ∈ ℝ�×� using (2) by setting 

�.> ≔ @ −A�.>A								if								2 ≠ C〈��.>�〉									if									2 = CD 
A square matrix ��� ∈ 	ℝ�×�  is called regular if all 

[ ]AA∈  are nonsingular. 

If [ ] [ ]AA ⋅)(mid  is regular then [ ]A  is strongly 

regular. An interval matrix [ ]A  is an H-matrix iff 

there exist a vector 0>v   such that  〈���〉- > 0. 

Definition 1 [28] Let �, G, = ∈ ℝ�×� . Then � = G − = is a regular splitting of A  if = ≥ 0 and 

B is nonsingular with GIJ ≥ 0. 

Theorem 1 [28] Assume that is  � ∈ ℝ�×� 

nonsingular, that 01 ≥−A  and that � = G − = 

is a regular splitting of � . Then K#GIJ=$ < 1  , 

where )(ρ  denotes the spectral radius of a 

matrix. 

 

Regular splitting was introduced in [28], where one 

can also find the proof  of Theorem 1. 

 

3. Generalized intervals 

Generalized intervals are intervals whose bounds 

are not constrained to be ordered, for example [-2,2] 

and [2,-2] are generalized intervals. They have 

been introduced in[12,22] so as to improve the 

algebraic structure of intervals, while maintaining 

the inclusion monotonicity. The set of generalized 

intervals is denoted by Mℝ   and is divided into 

three subset: 

o The set of proper intervals with bounds 

ordered increasingly. These proper intervals 

are identified with classical intervals.  The set 

of proper intervals is denoted 	ℝ ≔���, ��|� ≤ ��. Strictly proper intervals satisfy � < �. 

o  The set of improper intervals with bounds 

ordered decreasingly. It is denoted by                    

	ℝNNNN ≔ ���, ��|� ≥ �� . Strictly improper 

intervals satisfy � > �. 

o The set of degenerated  intervals ���, ��|� =�� = 	ℝ⋂	ℝNNNN . Degenerated intervals are 

identified to reals. 

  

Therefore, form a set of reals �� ∈ ℝ�|� ≤ � ≤ ��, 
one can build the two generalized intervals [a,b] 

and [b,a]. It will be convenient to switch from one 

to the other keeping the underlying set of reals 

unchanged. To this purpose, the following three 

operations are introduced: 

 

� The dual operation is defined by dual#��, ��$ = ��, ��. 
� The proper projection is defined by pro#��, ��$ = �min��, ��,max��, ���. 
� The improper projection is defined by imp#��, ��$ = �max��, ��,min��, ���. 

The generalized intervals are partially ordered by 

an inclusion which extends the inclusion of 

classical  intervals. Given two generalized intervals  ��� = T�, �U  and ��� = V�, �W , the inclusion is 

defined by ��� ⊆ ��� ⟺ � ≤ �⋀� ≤ � . For 

example, �−1,1� ⊆ �−1.1,1.1� (this matches the set 

inclusion),  �−1.1,1.1� ⊆ �−1,1�  (the inclusion 

between the underlying  set of real is reversed for 

improper intervals) and �2,0.9� ⊆ �−1,1� . As 

degenerated intervals are identified to reals, if  ��� 
proper then � ∈ ��� ⟺ � ⊆ ���. On the other hand, 

if ���  is strictly improper then for all � ∈ ℝ  the 

inclusion � ⊆ ��� is false. 

The generalized interval arithmetic (Kaucher 

arithmetic) extends the classical interval arithmetic. 

Its definition can be found in[13,27]. When only 

proper intervals are involved, this arithmetic 

coincides with the interval arithmetic:  ��� ∘ ��� =�� ∘ � ∈ ℝ|� ∈ ���, � ∈ ���� . When proper and 

improper intervals are involved, some new 

expressions are used . For example, ��, �� +��, �� = �� + �, � + ��  and if �, �, �, � ≥ 0  then ��, �� ∙ ��, �� = �� ∙ �, � ∙ �� . The following useful 

property provides some bounds on the proper 

projection of the results of  the generalized interval 

arithmetic. Let us consider ���, ��� ∈ Mℝ  and ∘∈ �+,−,∙,/� . If pro��� ∘ pro���  is defined then ��� ∘ ��� is defined and it satisfies pro#��� ∘ ���$ ⊆ #pro���$ ∘ #pro���$ 
Generalized interval arithmetic has better algebraic 

properties than the classical interval arithmetic. The 

addition in Mℝ   is a group. The opposite of an 

interval ��� is – dual���, i.e. ��� + #−dual���$ = ��� − dual��� = �0,0�. 
The multiplication in  Mℝ restricted to generalized 

intervals whose proper projection does not contain 

0 is also a group.  The inverse of such a generalized 

interval ��� is 1 dual���⁄ , i.e., ��� ⋅ #1 dual���⁄ $ = ��� #dual���$ = �1,1�⁄  . 
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Although addition  and multiplication  in Mℝ are 

associative, they are not distributive. The addition 

and multiplication in Mℝ  are linked by the 

following distributivity laws[24,27]. Whatever are ���, ���, �9� ∈ Mℝ 

� Conditional distributivity: ��� ⋅ ��� + #imp���$⋅�9� ⊆ ��� ⋅ #��� + �9�$ ⊆��� ⋅ ��� + #pro���$ ⋅ �9�. 
The three following particular cases will be of 

practical interest in this paper. 

� Subdistributivity: if ��� ∈ Mℝ  then           ��� ⋅ #��� + �9�$ ⊆ ��� ⋅ ��� + ��� ⋅ �9�; 
� Superdistributivity: if ��� ∈ Mℝ  then ��� ⋅ #��� + �9�$ ⊇ ��� ⋅ ��� + ��� ⋅ �9�; 
� Distributivity: if � ∈ ℝ  then                        � ⋅ #��� + �9�$ = � ⋅ ��� + � ⋅ �9�. 

Another useful property of the Kaucher arithmetic 

is its monotonicity with respect to the inclusion. 

Whatever are  ∘∈ �+,−,∙,/�	  and ���, ���, ����,  ���� ∈ Mℝ	,  ��� ⊆ ����⋂��� ⊆ ���� ⟹ #��� ∘ ���$ ⊆ #���� ∘ ����$. 
The next example illustrates the way these 

properties will be used in the sequel. 

 

Example 1: Consider the expression ��� +�,��-� ⊆ ��� . Subtracting dual#�,��-�$ =#dual�,�$#dual�-�$  to each side preserves the 

inclusion: ��� + �,��-� − dual#�,��-�$ ⊆ ��� −#dual�,�$#dual�-�$ . As −dual#�,��-�$  is the 

opposite of �,��-�  , the following inclusion is 

eventually proved to hold: ��� ⊆ ��� −#dual�,�$#dual�-�$. 
 

Finally, generalized interval vectors ��� ∈ Mℝ� 

and generalized interval matrices ��� ∈ Mℝ�×� 

together with their additions  and multiplications  

are defined similarly to their real and classical 

interval counterparts. 

        

4. Generalized symmetric single step 

method 

In this section we assume that the reader is familiar 

with the concept P contractions for proving the 

convergence of a fixed point iteration to a unique 

fixed point for an arbitrary starting vector. For the 

details please see [1,2]. 

We assume throughout that the matrix ][ A  is 

nonsingular, and moreover that its diagonal entries 

][ iia  are all nonzero. We can express the matrix 

][ A  as the matrix sum [1,28] 

],[][][][ ULDA ++=                                 

Where ][D  is a diagonal matrix, and  ][L  and ][U  

are respectively strictly lower and upper triangular 

matrices. We can write (1) as 

xULbxD ⋅+−=⋅ ])[]([][][                           

Then 

),][]([]([][
1

xULbDx ⋅+−⋅=
−                      (3) 

where 
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Since the diagonal entries ][ iia  of  ][ A  are nonzero, 

we can carry out the following iterative method 

derived from (3): 

 V�.#bcJ d$⁄ W =
e�fg�I∑ dualeThgiUjkg<lmn o' ?pqI∑ dualrThgiUVkg#l$Wstiugmngvniun q

dual#�hgg�$ ,                   (7) 1 ≤ 2 ≤ 5			 
 V�.#bcJ$W =
e�fg�I∑ dualeThgiUjkg<lmn o' ?pqI∑ dualrThgiUVkg#lmn$Wstiugmngvniun q

dual#�hgg�$ ,              (8) 1 ≤ 2 ≤ 5,		w ≥ 0 

where the ��#x$�′z  initial interval vector. We call 

this iteration procedure the generalized symmetric 

single step method. 

  

Theorem 2. Consider interval linear system (1), we 

define ][L  , ][U   and 1][ −
D  as in (4), (5) and (6), 

respectively. Then, the sequence [ ]∞=0
)(

l
lx  calculated 

according to the iteration method (generalized 

symmetric single step method defined as in (7) and 

(8)), converges for all interval vectors ��#x$� ∈	ℝ�to  [x
∗
], where [x

∗
] is the unique fixed point of 

the equation (3). 

 

5. Generalized symmetric single step 

method with intersection 

In this section we consider modifications of the 

preceding iterative methods which are based on 

the fact that if for any of these methods one is 

starting with an interval vector containing the 

limit, then all iterates contain the limit. Therefore 

the enclosure of the limit might be improved by 

forming intersections after each iteration step. 
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Theorem 3. Let ��� ∈ 	ℝ�×�  and  ��� ∈ 	ℝ�  be 

given. ][L  , ][U   and 1][ −
D  as in (4), (5) and (6), 

respectively.  Let [x∗] is the unique fixed point of 

the equation (3). We assume that we have an 

interval vector   �initial� ∈ 	ℝ�  satisfying [x∗]⊆

[initial]. We consider the generalized symmetric 

single step method with intersection. 
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Then 	limb⟶∝��#b$� = ��∗�  . 
 

To get an interval vector [initial]. We assume that  ��� ∈ 	ℝ�×�  is an H-matrix. Let   ][L  , ][U   and 

1][ −
D   and [x∗] defined as in Theorem 2. Then we 

consider symmetric single step method with 

arbitrary [x(0)]. We assume that  � ≔ 〈���〉IJ|��� +���|  where K#�$ < 1 (see Theorem 11.4 in [1]). 

For lm >  we get [2]: 
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Since	limb⟶∝��#b$� = ��∗�, it holds that (set m := 1) 

( [ ] [ ] ) ( [ ] [ ] ) ,:,)(, )0()1(1)(
uxxqPIPxxq

l =⋅−⋅≤ −∗   

Then 

uxxxux
ll

+≤≤−
∗ )(*)(
,  

Hence, we get  ��∗� ⊆ V�#b$ − ,, �#b$ + ,W ≔ �initial�  
 

Algorithm 1. Interval linear systems (H-Matrix) 

1. Computation of an initial interval vector 

          � ≔ 〈���〉IJ|��� + ���|, 
      �initial� ≔ V�#b$ − ,, �#b$ + ,W ,			w > 0  

2. Verification step 

    T�#J$U = �initial�  
    repeat 

       if intersection = 0 then 

          Using equations  (7) and (8) 

      else Using equation (9) 

until [x
(l+1)

] and [x
(l)

] are equals 

3. 

     if [x(l+1)] and [x(l)] are equals then 

        x̂  ∈ [x(l+1)] ( x̂  the exact solution) 

   else no inclusion can be computed 

 

6. numerical  examples  

Example 1: 

Consider 

e�0.4481568,0.4498432� �0.4376422,0.4393578��0.4376938,0.4393062� �0.6503902,0.6516098�q∙ � = e�0.5646710,0.5667290��0.6103170,0.6134830�q	
 

Proposed method 
Formal-

Algebraic [3] 
Hoelbig [11] 

[0.9745537,1.0242698] [0.974,1.0246] [0.9740262,1.02468993] 

[0.2460811,0.2874072] [0.2458,0.2877] [0.24574949,0.28783412] 

 

Example 2: 

Consider 
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Proposed method Hoelbig [11] 

[0.111111,0.333334] [0.04394499,0.45605500] 

[0.111111,0.333334] [0.04394499,0.45605500] 

[0.111111,0.333334] [0.04394499,0.45605500] 

 

Example 3: 

Consider 
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]8.1,4.1[01.0

]3.0,2.0[]8.0,6.0[0

]3.0,2.0[]5.0,4.0[]8.1,6.1[

x

 
Proposed method Hoelbig [11] 

[-1.10487815,0.33737055] [-1.08943500,0.52626809] 

[3.10433362,5.30254389] [2.75007232,5.42039269] 

[1.09236830,1.72177701] [0.99326595,1.72943197] 

 

Example 4: Application 

 we consider a linear resistive network, presented in 

[30]. 

 

�
��
�1.98,2.02� �−1.01,−0.99��−1.01,−0.99� �2.97,3.03�000

�−1.01,−0.99�00
				

0 0 0�−1.01,−0.99� 0 0�2.97,3.03��−1.01,−0.99�0
�−1.01,−0.99��2.97,3.03��−1.01,−0.99�

0�−1.01,−0.99��1.98,2.02� �
��

∙ - =
�
��
1001000 �
��	

 
Proposed method Hoelbig [11] 

[6.89898004,7.29765392] [6.88299293,7.29882524] 

[3.97569664,4.405301763] [3.95697257,4.40666378] 

[5.26906122,5.656550266] [5.25126311,5.65782779] 

[2.04981395,2.3273262467] [2.03528617,2.32835018] 

[1.00461178,1.1871714692] [0.99390173,1.18791644] 

 

6. Conclusion 

The problem of solving interval linear systems of 

equations is very important in practical applications. 
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A simple method for determining an outer solution 

to the linear system considered has been suggested 

in section 5 by using the method presented in 

section 4. Some numerical and practical examples 

are solved. The methods that presented can be 

applied to big real life problems such as structural 

engineering [18,23] without any problems. 
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