

Algorithms for Data Compression in Wireless

Computing Systems

Upasana Mahajan, Dr. Prashanth C.S.R

CSE, VTU, Bangalore, Karnataka, India

Professor & HOD, Dept. of CSE, NHCE, VTU,

Bangalore, Karnataka, India

Abstract

Compression is a technique used for reducing data

size by manipulating data redundancy; so that the

packet transmission time and storage cost can be

reduced. This can be achieved with the use of

suitable data compression algorithms. Choosing the

right algorithm can be accomplished by analyzing the

performance of the algorithm. This paper presents the

survey of various lossless data compression

algorithms.

Keywords: Lossless data compression, irreducible

substitution tables, wireless sensor networks,

compression algorithms, compression ratio.

1. INTRODUCTION

Data Compression can be defined as encoding the

information using the small number of bits rather

than original representation. There are two types of

data compression, lossless and lossy compression.

The lossy compression is a method of data encoding,

in which compression is done by discarding/losing

some data. This is commonly used in multimedia

data, especially in applications like streaming media

and internet telephony. In this some loss of

information is acceptable. Dropping nonessential

detail from the data source can save storage

space. There are two basic lossy compression

schemes
1
lossy transform codecs and lossy predictive

codecs. The lossless data compression can be defined

as reducing the bits by identifying and

eliminating statistical redundancy. The lossless data

compression is reversible of lossy compression, such

that the exact original data to be reconstructed from

the compressed data. Lossless compression can be

used for images, audios etc. but mostly it is used for

text data like executable program, text documents

and source code. In this paper focus is only on the

lossless data compression. There are different types

of lossless data compression algorithms
2
 like

Huffman’s coding, Run Length encoding, Dictionary

coders (LZW) etc. Based on the algorithm

performance factors
10

 like compression ratio, saving

percentage and compression time, we choose the

algorithm for compressing the data. The ultimate goal

is to study different algorithms and select the best for

compression.

2. LITERATURE SURVERY

2.1. Lossless Data Compression Algorithms Based

on Substitution Tables [3] [4]

This paper introduces a class of new lossless data

compression algorithm. Each algorithm first tries to

transforms the original data, which is to be

compressed into an irreducible table representation

and then uses an arithmetic code to compress the

irreducible table representation. These are generally

known as universal coding algorithms as they try to

achieve the compression rate. These new range of

lossless data compression algorithm has been

developed to improve overall compression rate and

performance with the help of different variants of

hierarchical transformations.

Firstly, the tables are formed with the help of parallel

substitution which ends up with a unique string using

the reduction rules. In this research 5 different

reduction rules have been implemented and with the

help of which, less complex tables are formed. For

example, Let x be a string from A which is to be

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 71

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

mailto:upasanamahajan1@gmail.com
mailto:hod_cse@newhorizonindia.edu
https://en.wikipedia.org/wiki/Codec
http://en.wikipedia.org/wiki/Redundancy_(information_theory)

compressed. Starting from the table T consisting of

only one row (s, x), a hierarchical transformation

applies repeatedly the reduction rules 1-5 in some

order to reduce T to an irreducible substitution table.

To compress x, the corresponding algorithm then

uses the zero order arithmetic code to compress the

irreducible table. After receiving the code word of T',

one can fully recover T' from which x can be

obtained via parallel substitution. Some examples of

hierarchical transformation are Greedy Sequential

Transformation, SEQUITUR Transformation,

Multilevel Pattern Matching Transformation (MPM),

The greedy sequential transformation parses the

sequence, into non-overlapping substring and build a

sequentially an irreducible table for each substring.

This algorithm helps in sequential compression. The

SEQUITUR algorithm has two main rules:

1. No pair of adjacent symbols appears more

than once in the grammar.

2. Every rule is used more than once.

This helps to build irreducible table for each prefix

and then append a substring to the end of the row at

last apply the reduction rules 1-5 to reduce the table.

It transforms the binary sequence.

The MPM transformation bisects each distinct

substring repeatedly, until the length of substring is 2.

Then, assign a unique token to each substring and

create a substitution table. The MPM code and

Lempel-Ziv code have similarities like both are pure

pattern matching codes, so they do not directly

compress the data. But there are differences like

MPM is a hierarchical transformation so it does

pattern matching at multiple levels and the LZE is

non-hierarchical. The MPM code was developed for,

strictly for data of length a power of two, and named

the bisection algorithm.

This research helps in trying to solve a problem of

performance of an algorithm. It can be evaluated

mainly by calculating and comparing the two facts:

Frequency of a block of a sequence and Empirical

Entropy of a sequence.

2.2. A Simple Algorithm for Data Compression in

Wireless Sensor Networks [5] [6]

Sensor Nodes have small batteries which cannot be

changed or recharged frequently, so the WSN have

an issue of Energy. Power saving can be done by

either duty cycling (coordinated sleep/wakeup

schedules between nodes) or by in-network

processing (compression/aggregation techniques).

Data compression is the best option and appreciated

only if the execution of compression algorithms

requires lesser amount of energy than the one saved

in reducing transmission. This paper introduces the

algorithm known as Lossless Entropy Compression

(LEC), which shows the correlation between the data

collected by sensor nodes and the entropy

compression. This algorithm follows same scheme

used in baseline JPEG algorithm for compressing the

DC-coefficients of a digital image. The Huffman

table proposed in JPEG to entropy encoding the

groups has been adopted.

 Fig.1 Pseudo-code of the encode algorithm

The difference di computed by algorithm for the input

to an entropy encoder. The di = bsi (bit sequence) =

si|ai, si codifies the number ni and ai represents di. If

i. di> 0, ai = ni low order bits of the 2’s

complement representation of di.

ii. di< 0, ai = ni low order bits of the 2’s

complement representation of di – 1.

iii. di = 0, si is coded as 00 and ai is not

represented.

Encode (di, Table)

 IF di=0 THEN

 SET ni = 0

 ELSE

 SET ni = ┌ log2(|di|) ┐

ENDIF

 SET si TO Table [ni]

IF ni= 0 THEN

 SET bsi = si

ELSE

 IF di > 0 THEN

 SET ai= (di)|ni

ELSE

 SET ai = (di – 1)|ni

 ENDIF

 SET bsi TO <<si, ai>>

 ENDIF

RETURN bsi

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 72

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

 Table1: Huffman variable length codes used in the experiment.

EXPERIMENTAL RESULTS:

The performance of a compressed algorithm can be

defined by compression ratio as shown below:

With the help of datasheets given in SHT11 for

temperature & relative humidity and using the above

formula, following ratios are obtained. Thus the

comparison between other compression algorithm

ratios as per following results shows that the LEC

algorithm performs better.

2.3. Online Adaptive Compression in Delay

Sensitive Wireless Sensor Networks [7] [8]

In wireless sensor networks (WSN), compression

reduces the data size by exploiting the redundancy

residing in sensing data. This reduction of the data

can be measured as compression ratio which is

calculated as original data size divided by the

compressed data size. The higher the compression

ratio means more data reduction is done and results in

shorter communication delays. To understand the

effect of compression, firstly obtain the processing

time of compression, which depends on several

factors like compression algorithm, CPU frequency,

processor architecture and compression data. There

are so many compression algorithm have been

developed, but one of the best is Lempel-Ziv-Welch

(LZW). LZW is a dictionary based lossless

compression algorithm suitable for sensor nodes

which replaces the strings of characters with single

codes in the dictionary. To calculate the compression

delay, the software estimation approach is adopted.

The source code of this algorithm is written in C and

then converted into the assembly codes, which have

fixed number of execution cycles.

Fig. 2 the LZW Compression Algorithm

The total count of cycles can be obtained at the

completion of LZW algorithm. The processing time

of the algorithm can be calculated by dividing the

total execution cycles by the working (i.e. CPU)

frequency. There are different experiments conducted

in the NS-2 simulator to check out the effect of

ni si di

0 00 0

1 010 -1,+1

2 011 -3,-2,+2,+3

3 100 -7..-4,+4..+7

4 101 -15..-8,+8..+15

5 110 -31..-16,+16..+31

6 1110 -63..-32,+32..+63

7 11110 -127..-64,+64..+127

8 111110 -255..-128,+128..+255

9 1111110 -511..-256,+256..+511

10 11111110 -1023..-512,+512..+1023

11 111111110 -2047..-1024,+1024..+2047

12 1111111110 -4095..-2048,+2048..+4095

13 11111111110 -8191..-4096,+4096..+8191

14 111111111110 -16383..-8192,+8192..+16383

 Temperature Relative Humidity

Comp_size Comp_ratio Comp_size Comp_r

atio

LEC 7605bits 66.99% 7527bits 67.33%

S-

LZW

16760bits 27.25% 13232bits 42.57%

Gzip 15960bits 30.73% 13320bits 42.19%

Bzip2 15992bits 30.59% 13120bits 43.05%

STRING = get the first character

while there are still input character

 C = get next character

look up STRING + C in the dictionary

if STRING+C is in the dictionary

 STRING = STRING + C

else

 output the code for STRING

 add STRING+C to the dictionary

 STRING = C

 end if

end while

output the code for STRING

Orig _Size

Comp_Ratio = 100 X 1 - Comp_Size

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 73

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

ACS

compression on the packet delays. The results of the

experiments shows that delay can cause severe

performance degradation under light traffic load and

if traffic loads is heavy than compression reduces the

delay of packet, increase the maximum throughput.

So the compression is favored only when the packet

generation rate is higher than the threshold rate.

Therefore to determine whether the compression of

data is required or not the online adaptive algorithm

has been developed.

The adaptive compression algorithm is distributively

implemented on each sensor node as ACS (Adaptive

Compression Service) in an individual layer created

in a network stack. The main goal of this algorithm is

to take a right decision, that whether packet

transmission is required or not at a particular node.

Before moving to algorithm, let’s have a look of the

architecture of ACS. There are 4 functional units: 1)

Controller manages the traffic flow and makes

compression decisions on each incoming packet in

this layer. 2) The LZW compressor performs actual

compression of packet with the help of LZW

algorithm. 3) The information collector helps in

collecting local statics information about network and

hardware conditions. 4) The packet buffer helps in

temporarily storing the packets to be compressed.

 Statistics data Packet
 Fig.3 Architecture of ACS

As compression is managed by the node state, so the

adaptive algorithm helps to determine the node state.

In this algorithm the utilization of the queuing model

is done for estimation of the node state conditions.

The queuing model includes the network model and

the MAC model. The network model defines the

network topology and traffic (i.e. estimates the arrival

rates of each node). The MAC model defines the

packet service time with the help of DCF (Distributed

Coordination Function), which can be calculated as

the time when packet enters the MAC layer to the

time when packet is successfully transmitted or

discarded.

The Adaptive Compression Algorithm is divided into

two stages: Information collection and State

determination. Firstly, in ACS the information

collector collects the statistics information like

compression statistics (compression ratio rc, average

compression processing time Tp, the coefficient of

variance of processing time cp), MAC layer service

time and packet arrival rates. Once the collector

finishes its job, the controller in the ACS defines the

state of the node i.e. whether compression is required

or not. For making the decision the following State

Determination Procedure has been adopted which is

performed at the end of each time slot for a node in a

No-Compression state.

 Fig. 4 State Determination Procedure

Upper Layer

C
o
n
tr

o
ll

er

L
Z

W
 C

o
m

p
re

ss
o
r

C
o

m
p

re
ss

in

Information

collector

Buffer

 Mac Layer

For each node at level i:

if state = No-Compression then

read statistics from the information collector

compute Tcom, ΔTmin

if Tcom ≤ ΔTmin then

set state to Compression

else

 set i to the node’s level number

ΔTmac = 0

 while i > 0

 calculate λ
i
 and

compute reduction ΔTmac (i)

 add λ
i
 ΔTmac (i) to ΔTmac

 decrease i by one

 end while

 if λc Tcom ≤ ΔTmac then

 set state to Compression

 end if

end if

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 74

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Tcom the average packet waiting time at the

 compression queue.

ΔTmin lower bound of total delay reduction

ΔTmac MAC layer service time

ΔTmac(i) Delay reduction in level i

λc Arrival rate compression

λ
i
 Mean arrival rate for nodes in level i

With help of the queuing model, it is possible

to calculate the terms/equation used in algorithm. So

the outcome this paper is that using the online

adaptive compression algorithm, each node can

decide whether the packet is compressed or not,

adapting to the current network and hardware

environment.

2.4. A Statistical Lempel-Ziv Compression

Algorithm for Personal Digital Assistant (PDA)

[9]

This paper introduces a compression algorithm

named as Statistical Lempel-Ziv Compression

algorithm (SLZ), which is suitable for the

applications of hand held PDAs and can be viewed as

a variant of LZ77.

The first step of the algorithm is to build a dictionary

which may include up to 2
|c|

entries (supposing each

fixed length codeword c contains |c| bits). To build a

good dictionary, a two pass approach is adopted. The

first pass is to collect most useful phrases from the

file for building a dictionary. The second pass is to do

compression by creating codewords that refer to the

phrases in the dictionary. While building a dictionary,

there must be a balance between the dictionary size

and codeword length to avoid large number of

phrases. Therefore for a file of T symbols long, the

total number of phrases will be:

 T-1
∑i=0 T-i =T

2
 + T ≈ O(T

2
) (1)

 2

The sliding window approach which has been used in

LZ77 can be adopted to reduce the number of

phrases. Let’s imagine the sliding window of size W

symbols, such that W<<T then

W-1

∑i=0 T-i = W(2T – W + 1) ≈ O(WT)

 2 (2)

Once done with the number of phrases, time is to

decide which phrases have to collect. If the phrase

collected from the file is found in the dictionary, then

there is no need to add that phrase in the dictionary

but the number of counts/ frequency of that phrase is

incremented. On the other hand, two identical phrases

having overlap in the input file must be counted as

single occurrence instead of two. This overlap

detection can be done by adding a time stamp (last

time at which the phrase occurred in the file) to each

entry in the dictionary. When a phrase is fetched

from the input file and an identical phrase is found in

the dictionary, compare the timestamp of that phrase

in the dictionary with the current time stamp. If time

stamp difference is less than the phrase length,

overlap is detected.

After collecting the phrases, time to put all phrases in

the dictionary with respect of dictionary size. The

size of dictionary should not be too large and too

small; it must contain all useful phrases. The number

of entries in the dictionary can be reduced by pruning

the phrases having unit frequency. Which means

prune the phrases which occur once in a file not the

phrases that are one symbol long, and it can be done

at end of the first pass. With this method most of the

time the newly appears phrases are purged. So to

avoid this problem another method of pruning the

phrases known as Move-To-Front approach is used.

In this approach, when a new phrase inserted it is

move to the front of the dictionary. The time

dictionary is full, discard the phrase at the end of the

dictionary. With this method the phrases which have

high frequency will be at the front and phrases with

least frequency located at the end of the dictionary.

Once the dictionary has been build, it’s time for

compression which can be done with the help of

entropy coding method. The symbols of the file are

shifted into the sliding window and once it’s full, the

symbol sequence in window is compared with the

phrases one by one in the dictionary in the order of

entropy. When matched phrase is found, the matched

symbols in the window are coded by the index of that

phrase. The symbols that matched the phrases are

removed from the sliding window and new symbols

are moved to sliding window. As soon as window is

full repeat the process again until all the symbols get

coded.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 75

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

We can’t say that this is the best compression

algorithm but a simple entropy coding scheme

designed using the prefix codes to eliminate look-up

table for decoding. Using the combination of

dictionary based algorithm and sliding window

approach, the overall compression ratio decreases.

2.5. Comparison of Lossless Data Compression

Algorithms for Text Data [10]

Data compression helps in reducing the size of the

file, in other words compression represents the

information in a compact form rather than its original

form without any data loss. When data compression

is done while transmitting the data, the main concern

is speed. Speed of the transmission depends upon the

number of bits sent, the time required for the encoder

to generate the coded message and the time required

for the decoder to recover the original message.

Sometimes the lossless compression algorithms are

also known as reversible algorithms, as the original

message can achieve by the decompression process.

Some of the famous lossless compression algorithms

are Run-Length Encoding (RLE), Huffman

Encoding, Adaptive Huffman Encoding, Shannon

Fano algorithm, Arithmetic Encoding and Lempel

Zev Welch algorithms.

This paper introduces the comparison of

performances of above algorithms, based on different

factors. There are many different ways to measure the

performance of a compression algorithm. The main

concern is space and time efficiency, while

measuring the performance. Following are some

factors used to evaluate the performances of the

lossless algorithms.

Compression Ratio =size after compression

 size before compression (3)

Compression Factor = size before compression

 size after compression (4)

Saving Percentage =

size before compression –size after compression %

 size before compression

 (5)

Compression Time can be defines as time taken to

compress particular file. Time taken for the

compression and decompression should be

considered separately. For a particular file, if the

compression and decompression time is less and in

an acceptable level, it means that algorithm is

acceptable with respect to time.

Entropy can be used as a performance factor, if the

compression algorithm is based on statistical

information of the source file. Let set of event be S=

{s1, s2, s3 …sn} for an alphabet and each sj is a symbol

used in this alphabet. Let the occurrence probability

of each event be pjfor event sj. Then the self-

information I(s) is defined as follows:

I(s) = logb 1/ pj or I(s) = - logb 1/ pj (6)

The first order Entropy value H(P) can be calculated

as follows:

H(P) =
n
∑j=1pj I(sj) or H(P) = -

n
∑j=1pj I(sj) (7)

Code Efficiency is the ratio between the entropy of

the source and the average code length.

 E (P, L) = H (P) 100%, (8)

 ¯l (P, L)

E (P, L) is the code efficiency, H (P) is entropy and

¯l (P, L) is the average code length.

Average code length defined as the average number

of bits required to represent a single code word. It can

be calculated as: ¯l =
n
∑j=1 pj*lj, where pj is the

occurrence probability of j
th

 symbol of the source

message, lj is the length of the particular code word

for that symbol and L = {l1, l2, ……,ln}.

In order to test the performance of above mentioned

lossless compression algorithms, first step is to

implement them and then test them with some set of

files. Performances evaluated by computing above

mentioned factors. After the implementation and

testing the results shows that the Adaptive Huffman

algorithm needs larger time period for processing,

because the tree should be updated or recreated. LZW

works better as the file size grows up to certain limit,

because there are more chances of replacing the

words by using the small index number. But it cannot

be used for all cases, so can’t say it is one of the

efficient algorithms.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 76

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Arithmetic Encoding algorithm has an Underflow

problem, which gives an erroneous result after few

numbers of iterations. Therefore it is not suitable for

comparison. Huffman Encoding and Shannon Fano

algorithm shows similar results except in

compression times. Shannon Fano algorithm has

faster compression time than Huffman Encoding, so

this factor can be used to determine the more efficient

algorithm from these two.

While considering the major performance factors like

compression time, decompression time and saving

percentages of the all the selected algorithms. The

Shannon Fano algorithm is considered as the most

efficient algorithm, as the values of this algorithm

lies acceptable range and it also shows better results

for the large files.

3. CONCLUSION

This study introduces data compression and simple

algorithms for compression. Each algorithm has its

own advantages and disadvantages. With the help of

various performance factors, it is easy to choose

algorithms that are more efficient. This paper

demonstrates that if we use the right data

compression techniques, it will certainly be helpful in

reducing the storage space and the computational

resources. This is definitely more critical in the case

of wireless systems where network bandwidth is

always a cause for concern.

REFERENCES

[1] https://en.wikipedia.org/wiki/Lossy_compression.

[2] https://en.wikipedia.org/wiki/Lossless_

 Compression.

[3] John.C.Kieffer and En-hui Yang, “Lossless Data

 Compression Algorithms Based on Substitution

 Tables”, IEEE, 1998.

[4] J.C.Kieffer, E-H.Yang, G.Nelson, and P.Cosman,

 “Lossless data compression via multi-level pattern

 matching,” IEEE, 1996.

[5] Massimo Vecciho, “A Simple Algorithm for Data

 Compression in Wireless Sensor Networks”,

 IEEE, June 2008.

[6] https://en.wikipedia.org/wiki/Huffman_coding.

[7] Xi Deng and Yuanyuan Yang, “Online Adaptive

 Compression in Delay Sensitive Wireless

 Sensor Networks”, IEEE, October 2012.

[8] https://en.wikipedia.org/wiki/Lempel–Ziv–Welch.

[9] S.Kwong and Y.F.Ho, “A Statistical Lempel-Ziv

 Compression Algorithm for Personal Digital

 Assistant (PDA)”, IEEE, February 2001.

[10] S.R.Kodituwakku and U.S.Amarasinghe,

 “Comparison of Lossless Data Compression

 Algorithms for Text Data”, Indian Journal of

 Computer Science and Engineering, Vol 1 No. 4

 416- 425.

Upasana Mahajan is M.Tech in Computer Science

Engineering (2006) from VTU and passed B.Tech

(CSE) from Guru Nanak Dev University in year of

2006. She is currently pursuing her Ph.D and has

active research interest in area of Data Compression

and there applications in wireless networks.

Dr. Prashanth C.S.R holds B.E, M.S (USA), Ph.D

(USA). At present he is a Professor and Head of the

Department for Computer Science in New Horizon

College of Engineering Bangalore, Karnataka.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 77

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

https://en.wikipedia.org/wiki/Lossy_compression
https://en.wikipedia.org/wiki/Lossless_
https://en.wikipedia.org/wiki/Lempel–Ziv–Welch

