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Abstract 
Massive Immersive Participation is enriched through the use of 
context information describing the dynamic states and relations 
among people places and things. This in turn mandates the 
creation of methods and models for establishing and supporting 
these relationships. Previous approaches are undermined by their 
limited interpretation of context centric relations and 
subsequently do not offer support for multi-criteria relationships. 
In this paper, we extend on our previous work on establishing 
multi-criteria context relationships, to adding the support 
required for maintaining these relationships over heterogeneous 
and dynamic context information. We introduce a query language 
that supports an extended publish-subscribe approach and define 
solutions for dynamically evaluating and adjusting these 
relationships while minimizing overall costs. 
 
Keywords: Context-Awareness, Immersive Participation, 
Context, Context Models, Internet Of Things, Context Proximity, 
Sensor Information, P2P Context 

1. Introduction 
The increase in massive immersive participation scenarios 
is one part of our trend towards a pervasive computing 
reality. Such realities range from immersive games such as 
Google Ingress [1] to theatrical productions such Maryam 
[2] produced by RATS Theatre [3]. Users are immersed in 
realities that range from world domination to complete 
theatrical performances where people places and things are 
fused together in dynamic participatory environments. 
 
The resulting immersion is enriched through the addition 
of the underlying context information driving the 
interactions among the collection of connected things.  
Supported by an Internet of Things (IoT), this additional 
information presents itself as the backbone of our 
pervasive realities, which responds to and accommodates 
for the establishing of the dynamic relationships that exist 
between a user, his environment and services. Systems 
such as SenseWeb [4], IP MultiMedia Subsystem (IMS) 
[5] , MediaSense [6] and SCOPE [7] were developed in 
response to this need to provision information supporting 
immersive realities.  
 
Their limitations with respects to expressivity however 
limits their suitability in answering the question of “Who 

you are, who you are with and what resources are 
nearby” as required by Schilit and Adams suggest in [8] 
and further reiterated and summarized by Dey in [9], who 
expects that applications and services be provided answers 
to the question of  [which] entity is considered relevant to 
the interaction between a user and an application.  
 
While semantic approaches such that described by 
Dobslaw et al. in [10], Toninelli et al in [11] and Liu et al. 
in [12] offer some support towards this problem,  
Adomavicius et al. in [13] suggested that these types of 
approaches are limited and should be complemented by 
metric type approaches thus realizing the ability to answer 
the question of “nearness” as posited by both Schilit et al. 
in [8] and Dey and [9]. This further characterization would 
permit us to better identify and establish context relations 
between related entities. Therefore, establishing the types 
of relationships shown in Figure 1 is premised on our 
ability to support the complementing metric-type 
similarity models which, according to Hong et al. in [14], 
is critical in realizing applications and services that can 
discover nearby sensors or points of information. 
 
Supporting these types of relationships is a multifaceted 
problem involving the identification and selection of 
candidate entities and managing the subsequent volume of 
required context information. One approach to this is 
through the use of centralized presence systems such as 
described by Petras et al. in [15]. Here an entity watches 
other entities contained in its address book. While this 
reduces the volume of context information required to 
maintain relationships, the resulting relationships are not 
context centric and limits the watcher’s ability to discover 
entities of interest with which to establish common context 
relationships. With the average address book estimated to 
be limited in size to 0.005 * population [15],  the 
alternative of subscribing to all users would not present 
itself as a feasible solution with the volume of messages 
per status change would be approximated to population x 
population. This solution would not scale well and simply 
pruning the message queue as suggested by Petras et al. 
would offer little guarantee with regards to the quality of 
the context information.  
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In defining an Operational Approach to Context 
Zimmermann et al. in [16] describes the notion of 
proximity as the overarching factor in establishing context 
relationships. This subsumed the earlier address book 
approaches and moved towards realizing truly context-
centric networks where interactions, discovery and 
relationships are underpinned by the degrees of 
relationships between entities over their underlying 
context information. Zimmermann et al. equated the notion 
of proximity to spatiality, essentially disregarding the 
types of higher level relational proximity expected by 
Hong et al. in [14].  
 
In [17] we defined an approach to establishing context 
centric relationships between entities on an Internet of 
Things. Here, relationships are established between 
entities over the similarity of their underlying context 
behaviors evaluated over a pre-determined time window. 
This extends the work of Zimmermann et al. in [16] 
towards a context-centric model while subsuming it with 
respects to expressiveness. This satisfies the initial 
requirement of a context relational model capable of 
supporting the establishing, adjusting and exploiting of 
implicit context based relationships in massive immersive 
environments. With this approach, we are capable of 
identifying and discovering candidate entities that can be 
fused to realize new user experiences and deliver more 
expressive applications and services.  
 
However the problem of support remains as Zimmermann 
et al. in [16] provided no solution for discovering the 
candidate entities and establishing relationships in light of 
the highly dynamic nature of context information. 
Schmohl partially addressed this in [18] proposing a multi-
dimensional hypersphere of interest in which entities 
entering are deemed to be candidates for the watcher and 
are evaluated and selected according to a proposed 
proximity measure. Here entities are discovered through 
the use of multi-dimensional indexing structures such as 
R-trees, kd-trees and space partitioning grids. These 
solutions are less optimal for multi-dimensional dynamic 
context environments as the cost of indexing increases 
exponentially with a linear increase in the number of 
dimensions. Queries therefore risk being executed against 
outdated indexes with no guarantees of information 
freshness. As a solution to this problem, Schmohl 
suggested that dimensions could be selectively pruned 
from the indices. By taking this solution applications 
depending on less popular dimensions would not stand to 
realize any benefit from this optimization. Alternatively, 
accuracy could be sacrificed for speed, which would not 
offer any guarantee of information accuracy for 
applications where this is critical.  
 

Yoo et. al in [19] and Santa et. al in [20] proposed the use 
of publish-subscribe approaches as suitable alternatives 
with Kanter et. al in [21] showing that such approaches are 
scalable and can realize dissemination times on par with 
UDP signally used in SIP implementations.  Frey and 
Roman in [22] extended this approach to provide for event 
driven subscriptions in context networks, however this is 
based on events rather than the raw underpinning context 
information.  
 
Supporting the establishing of context-centric relationships 
over heterogeneous context information therefore requires 
new approaches to maximizing the identification of 
candidate entities while minimizing the overall resource 
costs 
 
In this paper we introduce an approach to discovering 
related context entities through the use of an extended 
publish subscribe module coupled with a context query 
language. Additionally we introduce solutions for reducing 
the corresponding resource demands on established 
relationships. In Section 2 we summarize our approach to 
establishing context relationships. Section 3 details our 
approach to supporting these relationships while Section 4 
discusses early analysis and results. Section 5 completes 
with a conclusion and discussion.  
 

2. The Context Relational Model 
In [17], we introduced a dynamic heterogeneous approach 
to context relationships where notion of context proximity 
is one that considers the situation, attributes, relations, 
accuracy and heterogeneity of both the underlying 
information and the vast array of requirements for metrics 
supporting application domains. We defined context 
proximity as: the amount of work required to transform 
the context behavior of one entity into that of over the 
characteristics of their current underlying context states 
 

Here, we model 
context as an n-

dimensional 
domain space; the 
universe of 
discourse of a 
problem domain; 
the subset of all 
global information 
considered relevant 
and supports the 
delivery of any 

application or service relative to this domain. 

In an immersive participation environment, such a domain 
could be the play “Maryam”. This domain is then 

Figure 1 - Context Relational Model 
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partitioned into situations or activities representing an 
acceptable range of context information defining a real 
world situation or activity. For the domain Maryam, 
activities could be Scene 1, Scene 2, Scene 3, etc.  Activity 
definitions are not mutually exclusive and therefore 
several activity sub-spaces can overlap. 

Each situation in turn contains context states; a 
combination of unique attribute values within a situation 
or activity space corresponding to a context observation 
made on an entity. For the domain Maryam, a state could 
be the context information recorded from body sensors at 
Scene 1.  

2.1 Activity Classification 
Citing the lack of consideration given to the context 
activity by existing proximity approaches, an underpinning 
element of our approach is use of activity information for 
deriving relational proximity. We identify activities of 
using the probabilistic approach described by Padovitz in 
[23].  

The activity of an entity 𝑃  bearing a context state 
∀𝑆𝒜 = 𝑠!, 𝑠!,…   𝑠! ⋮    𝑠! ∈   𝒜!  can be determined by 
assigning it the activity with the highest confidence 
calculated as: 

𝑞! 𝑤!  .    Pr 𝑎!!   ∈   𝐴! +   𝑞! 𝑃𝑟 𝑎!!   ∈   𝐴!

!

!!!

  
!

!!!

 
 
1 

where 𝑞1 + 𝑞2 = 1. This is discussed in detail in [24]. 
With this approach, we consider state value membership, 
information accuracy and the importance of each context 
attribute to determining an activity. Here, we could 
observe states in Maryam and identify the current activity 
being experienced by the user. 

2.2 Activity Similarity 
We define a similarity 
matrix between the 
activities within an 
application or domain 
space.  

As shown in Table 1, 
this is an 𝑀𝑥𝑁  matrix 
of real values between 

0.0 and 1.0 conveying the 
similarity between activities in a domain space; the ease 
with which one activity can be transformed into another. 
Here an activity is not simply confined to primitive 
determinations such as walking, running, sitting laying but 
rather encompasses higher level notions of activities such 
as going to work, going home, shopping, watching 
television, washing, cooking. 

These higher-level activities are not necessarily 
discernable from raw context information but can be 

derived by applying learning methods, human annotation 
and assumptions. The underlying context information 
could be very similar or even identical while the perceived 
higher-level activities are not.  

2.3 Relational Context Proximity 
Relational proximity is derived between the states of 
entities as observed over a time window W. For solving 
this, we used the Earth Movers Distance as described by 
Rubner et al. in [25] setting the distributions as the sets of 
observable context states for each window 𝑊 , the 
weighted edges being the activity similarity between 𝑃 and 
𝑄 and the ground distance 𝑑!" being the distance between 
pairs of  states 𝑠! , 𝑠! derivable as:  

𝑑!" 𝑠! , 𝑠! =   
𝑤! ∗ ℱ!𝒟(𝑎! , 𝑎!)

!

!
!
!!!

!
!

𝑤! ∗ ℱ!𝒟(𝑎! , 𝑎!)!"#
!

!
!
!!!

!
!   
     

where    𝑎!   ∈ 𝒜!
𝒟   , 𝑎!   ∈ 𝒜!

𝒟 

 

2 

Here, 𝑤 is the weighting for each attribute. The value of 𝑟 
can be adjusted to reflect the perceived distance between 𝑃 
and 𝑄 as shown by Shahid et al. in [26]. The distance is 
normalized with respects to the maximum distance 
between states in the encompassing application space. Our 
measure of proximity therefore logically subsumes and 
extends existing 𝐿𝑝 − 𝑛𝑜𝑟𝑚 approaches.  

The 𝐸𝑀𝐷 algorithm is then applied to derive the largest 
possible transformation between 𝑃 and 𝑄 that minimizes 
the overall context transformation cost, where: 

𝑊𝑂𝑅𝐾 𝑃   → 𝑄,𝑭 =    𝑓!"𝑑!"

!

!!!

!

!!!

 
 

3 

 Subjected to the following constraints: 
1. 𝑓!" ≥ 0                  1 ≤ 𝑖   ≤ 𝑚, 1 ≤ 𝑗   ≤ 𝑛  
2. 𝑓!"     ≤!

!!!   𝑃        1 ≤ 𝑖   ≤ 𝑚 4 
3. 𝑓!"     ≤!

!!!   𝑄        1 ≤ 𝑗   ≤ 𝑛  
4. 𝑓!"!

!!!
!
!!! = 𝑚𝑖𝑛 𝑃!

!!! , 𝑄!
!!!    

The first constraint permits the transformation and hence 
the proximity from 𝑃   → 𝑄  and not the opposite. The 
second and third constraints limit the transformation 
𝑃   → 𝑄 to the maximum number of context observations 
made for 𝑃 or 𝑄. The final constraint forces the maximum 
transformation possible between both entities. The context 
proximity, 𝛿(!,!), is the earthmover’s distance normalized 
by the total flow. 

𝛿 !,! = 𝑓!"𝑑!"

!

!!!

!

!!!

∗ 𝑓!"

!

!!!

!

!!!

!!

 
 

5 

We using the maximum possible flow between 𝑃 and 𝑄. It 
is important to note, that 𝛿(!,!) is indifferent to the size of 
both sets of observations and permits partial similarity 

 stand walk sit lay 

stand 1 0.7 0.5 0.25 

walk 0.7 1 0.4 0.05 

sit 0.5 0.4 1 0.70 

lay 0.25 0.05 0.70 1 

Figure 2 Activity Similarities 
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where the behavior of 𝑃 is subsumed by the behaviour of 
𝑄 . Therefore 𝛿(!,!)  |  𝑤  = 𝛿(!,!)  |   

!
!
  𝑤 . This is a distinct 

advantage of our approach and excess observations are 
inherently discarded.  

However, where partial matching is desirable and the 
completeness of containment is important for relations 
such that 𝑃 ∩ 𝑄 = 𝑃 ∪ 𝑄 , we extend the proximity 
measure to be normalized relative to the maximum 
potential transformation of either 𝑃 or 𝑄, such that  

𝛿 !,! = 𝑓!"𝑑!"

!

!!!

!

!!!

∗ 𝑓!"

!

!!!

!

!!!

!!

 

𝑓!"

!

!!!

!

!!!

= 𝑚𝑎𝑥 𝑃
!

!!!

, 𝑄
!

!!!

 

 

6 

 

The Confidence Constraint 

In order to consider scenarios over unreliable context 
information, we can adjust the distance  𝑑!" to reflect the 
potential errors in the underlying context information such 
that:  

𝑑!" =   𝑑!" ∗ 𝑐!" + 1 − 𝑐!" ∗ 1 − 𝑘    

𝑤ℎ𝑒𝑟𝑒  𝑐!   = 𝑤!  .    Pr 𝑎!!   ∈   𝐴!

!

!!!

 

 

 

7 

This confidence measure is described by Padovitz et al. 
and considers the accuracy of the sensors using several 
factors described in [24]. However for scenarios where the 
confidence is a trade off, we, we add the confidence factor 
𝑘, which allows us to adjust this trade-off.  

The Temporal Constraint 

For calculating proximity considering the time constraint, 
we can adjust the size of the observation window 𝑊.  For 
clarity: 

lim
!  ⟶  !

𝐸𝑀𝐷   𝑃,𝑄 =     𝐿𝑝!"#$ 𝑃,𝑄  

 

 

 

8 

By adjusting 𝑊 we permit wider variations in the time 
differences between state observations reducing the time 
constraints. Increasing 𝑊increases the constraint on the 
nearness of observations with respects to their temporal 
attribute. 

The Continuity Constraints 

Furthermore, we derive the measure of proximity stability 
between two entities as a means of filtering entities based 
on the stability of potential relationships. The first 
constraint finds the standard deviation of 𝛿(!,!)  as the 
window 𝑊  progresses. We call this the co-relational 
constraint defined as: 

𝑅 !,! =
1

𝑁 − 1
𝛿 !,! !

− 𝜇
!!

!!!
   

𝑎𝑛𝑑    𝜇 =
1
𝑁

𝛿(!,!)!
!

!
 

 

 

9 

Where the greater the deviation the more unstable the 
relationship between is. Secondly, we derive the 
convergence factor between two entities; the rate at which 
their context proximity is converging defined as: 

𝐶𝑓(!,!) =
∆𝛿 !,!

∆  𝑊
 

 

 

10 

With this factor we can consider entities that are diverging 
or moving apart or entities that are getting closer or 
merging over time. Having established context 
relationships of the types described we are subsequently 
required to maintain these relationships at a minimal cost 
overhead.  

 

3. Supporting the Context Relational Model 
In Section 2.3, we described an approach to establishing 
context relationships over a proximity function defining 
the relationship between the behaviors of two given 
entities. Supporting this type of relationship requires an 
approach to finding, establishing and maintaining the 
relationships between the entities satisfying the proximity 
function. Figure 3 illustrates this process of supporting 
relationships over relational proximity.  
 
Firstly, we created a query language for defining the 
proximity; the bounds of the hypercube of interest. The 
query is then executed across a distributed heterogeneous 
data store with the candidate entities selected for 
establishing a relationship. The resulting relationships are 
maintained by subscribing to the entities of interest and 
continually evaluating the relationships with each derived 
context state ranking each entity by its current proximity. 
New entities are continually added while non-relevant 
entities are consequently pruned. 
 
 

 
Figure 3 Supporting Relational Proximity 

 
Finding related entities requires that the underpinning 
context information is readily stored and accessible and is 
organized in such that it permits discovery in a scalable 
manner with respects to real time qualities. While 
centralized approaches may be supported by databases, 
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they are inhibited by their inability to scale well in 
response to service demands and availability.  In response 
to this, we proposed a distributed approach to organizing 
context information using a self organizing peer-peer 
protocol [27]. 
 

3.1 Distributed Organization 
At the base of our approach is the existence of a 
distributed data store capable of locating context 
information in response to the interest of applications and 
services. A fundamental point of departure from similar 
approaches is that this distributed data layer is capable of 
responding to queries on ranges of data and capable of 
answering queries with a range. Our solution is detailed in 
[27]and consists of an organized peer-to-peer data store 
with a lookup complexity of 0.5  log 𝑛, and a protocol for 
persisting, locating and subscribing to entities of interest. 
This permits us to find entities based on an area of interest 
by defining range of context values encompassing this area 
of interest. However defining areas of interest requires 
more expressive means of expressing context based 
queries than the primitive constructs of the associated 
protocol defined in [28].  
 

3.2 Relational Context Query 
In response to this we introduce a declarative query 
language, the Context Proximity Query Language (CPQL), 
for defining an area of interest relative to an entity. This is 
a natural extension of the interest based approach we 
introduced in [21], however with the interest area defined 
as a complex distance function over any underlying 
context information.  
Similar to type and structure to SQL, the query language 
sits at the core of our query functionality and has two main 
constructs: GET or SUB. A GET is similar to an SQL-
SELECT and retrieves all the states that currently match 
the defined proximity function. This can be used for a 
single evaluation for finding candidate entities.  A SUB is 
also the equivalent to the SQL-SELECT with the addition 
that its function is to supporting existing established 
relationships between the entities bearing the satisfying 
states through an extension of publish-subscribe approach 
as described by Kanter et.al in [6]. Each application space 
defines function modules that satisfy ℱ!𝒟(𝑎! , 𝑎!)  in 
Equation 2. Function modules are persisted on the 
distributed overlay architecture described in [6] and are 
identifiable, and retrievable by all nodes within the 
distributed data space. 
 
A CPQL query is the defined of the type: 

GET|SUB  PRESENTITY    
WHERE  DISTANCE  𝐷𝐼𝑆𝑇_𝑁𝐴𝑀𝐸   <   0.25    
[ORDER  ASC|DESC]    
DEFINING  DIST_NAME    
AS  sqrt(pow(ℱ!"# 𝑃!"# ,𝑄!"# , 2)   +   pow(ℱ!"# 𝑃!"# ,𝑄!"# , 2));  
 
 

 

11 

 
For modularity and re-use, proximity functions can be 
defined prior to usage be saved as: 
 
DEFINING  DIST_NAME    
AS  sqrt(pow(ℱ!"# 𝑃!"# ,𝑄!"# , 2)   +   pow(ℱ!"# 𝑃!"# ,𝑄!"# , 2));  
 
 

 

12 

 
Successive queries reference the defined function as: 
 
GET|SUB  PRESENTITY    
WHERE  DISTANCE  𝐷𝐼𝑆𝑇_𝑁𝐴𝑀𝐸   <   0.25    
[ORDER  ASC|DESC]    
 
 

 

13 

 
 

 
Figure 4 Relational Proximity Query-Subscribe Model 

 
 

 

Figure 5 Range Query Subscribe 
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This permits us to share query definitions in a global data 
store that can be found and re-used by applications and 
services. Queries are accepted by an interface layer, which 
also provides the support for defining proximity definition 
functions. Each query is parsed and analyzed for 
correctness and decomposed into its corresponding parse 
tree. The resulting tree is passed to an executor for 
execution across the distributed data store. The proximity 
function as described in Equation 9 uses (𝒂𝒎𝒊𝒏,𝒂𝒎𝒂𝒙) as 
the upper and lower boundaries for each dimension of the 
application space and are used as the limits for the 
range_sub and range_get as shown in Figure 5. A range 
get for any proximity function is then expressed as: 
range_get(𝒂𝒎𝒊𝒏,𝒂𝒎𝒂𝒙). This limits the context states and 
entities that are queried to only those being relevant to and 
entity for the execution of a specific application or service.  

3.3 Relational Publish Subscribe  
 
Establishing relationships requires a new approach 
towards publish-subscribe solutions in context aware 
systems. Previous publish subscribe solutions such as that 
detailed by Kanter et. al in [6] supported primitives for 
getting or subscribing to the context information of an 
entity. Unlike Petras et al. in [15] such a solution was 
distributed reducing issues of scalability; however like 
Petras et al. a watcher cannot subscribe to greater than the 
size of its address book. This is estimated in [15] to be 
around 0.005N, the number of global presentities. 
However, in context centric approaches, a watcher’s 
address book does not determine the number of presentity 
it watches. This should be determinable by the number of 
entities with which it can potentially establish a 
relationship. The absolute maximum number of 
subscriptions for each watcher would therefore be N which 
is not scalable. 
  
To address this shortcoming and provide scalable support 
for context centric networks, we extend the publish-
subscribe approaches to enable subscriptions to 
relationships and areas of interest as defined by an 
underlying proximity function. A watcher issues a 
subscription for all ( 𝑎!"#, 𝑎!"# ) of the underlying 
application space. This is issued to range_brokers, 
distributed nodes responsible for brokering ranges of 
values between watchers and their presentities. The 
range_sub or range_get is routed by the underlying 
support to the node or nodes in the data space shown in 
Figure 4 that are responsible for the range of values in 
(𝑎!"#, 𝑎!"#). Each presentity each presentity subsequently 
publishes its current context value to the corresponding 
range_broker.  The range_broker in turn sends the current 
set of states to the watcher. The watcher evaluates the list 
of states over its proximity function and establishes a 

context relationship with selected presentities. In order to 

 
 

Figure 6 Range Publish-Subscribe Messaging  

maintain the relationship, the watcher then subscribes to 
the presentities and continually evaluates the relationship 
with each new context states received. The watcher also 
maintains a subscription with the range_broker, which 
continually send lists of context states matching the range 
subscription to the watcher. Context entities publish new 
context states as the supporting context information 
changes; this can range from very frequently in highly 
dynamic situations to seldom in lesser dynamic situations. 
Petras et al. in [15] stated that the number of messages 
originating with each state change of a presentity is equal 
to the number of watchers for that presentity. In prescence 
systems without context information this can be taken as 
the size of the presentity’s address book. However, in 
context centric approaches, the number of watchers for 
each presentity would have no relation to the size of such 
an address book.  
 
Therefore, given that the known context universe contains 
D dimensions with N uniformly distributed entities. Each 
application A is enclosed by an application space with M 
dimensions such that 𝑀   ∈ !

!  where 0 < 𝑘 < 𝐷 . With 
existing publish-subscribe approaches the cost of 
subscribing to all entities is of the order (𝑁 − 1) for each 
entity and a global subscription cost of (𝑁! − 𝑁) for all 
known entities. 
 
We however reduce the number of subscriptions, n, per 
entity by defining the number of potential candidate 
entities for each watcher.  Given the universe of discourse 
of the application A, where each dimension d occurs with a 
probability distribution 𝜃, the number of subscriptions, we 
limit the number of potential candidates to: 
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𝑁 𝑃 𝑑 𝜃!
!∈!

 

 

14 

 
and the overall number of subscriptions for all entities 
contained in each application is:  

𝑁 𝑃(𝑑|𝜃!)
!∈!!"#

 

 

15 

 
That is to say we do not allow subscriptions to entities 
without a probability of being a candidate entity i.e, 
entities without the required context dimensions. 
Additionally, given that an application space is further 
limited by the dimensions having values between 
(𝑎!"#, 𝑎!"#), we further limit this to:  

𝑁 𝑃 𝑑 𝜃! ∗ 𝑃(
!∈!

𝑎!"# < 𝑑!"# < 𝑎!"#|𝜃!"#$) 
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for each entity within the application space and:  

𝑁 𝑃 𝑑 𝜃! ∗ 𝑃(
!∈!

𝑎!"# < 𝑑!"#
!"#

< 𝑎!"#|𝜃!"#$)    

 

17 

for all entities contained within each application. This is 
achieved through the use of the relational publish-
subscribe approach. From this we derive the following 
proposition: 
 
Proposition 1: 
The number of presentities required for an application or 
service is limited by the universe of discourse of the 
application or service itself. 
 
After selecting the candidate entities and establishing a 
relationship, we are now required to maximize the quality 
of the context relationship while minimizing the message 
overheads required for support. The maximum quality 
achievable by a context relationship is calculating with 
every change in the underlying context states. Current 
approaches to deriving context proximity between two 
entities calculates a notion of proximity either in response 
to continual changes in context information or on demand 
by the utilizing application or service. Therefore, the 
current state of the context relationship does not influence 
the flow of context information between two entities with 
an established relationship. From this we derive: 
 
Proposition 2: 
The cost of maintaining the context relationship between 
two given entities is determined by the state of the context 
relationship itself. 
 
Given two entities P and Q, The cost of maintaining the 
relationship between any two entities 𝑃 → 𝑄, is related to 

the current state. When the two entities are in close 
proximity the cost of maintaining their relationship is 
higher and decreases as the proximity between both 
entities approaches 1. Therefore with respects to proximity 
the 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  between refreshes of the underlying 
information is:  

lim
!⟶  !

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙   𝑃,𝑄 =     𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  !"#(𝑃,𝑄) 

lim
!⟶  !

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙   𝑃,𝑄 =     𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  !"#(𝑃,𝑄) 
18 

We extend the publish-subscribe module to additionally 
accept a parameter for the interval delays between 
publishing messages to entities with an existing 
relationship. Entities, according to the model described in 
Section 2 generate states in response to changes in the 
underlying context information. Each change in the value 
of a context attribute generates a new context state. Each 
relationship has three values: 𝑖  !"#  , the native interval 
between states for the entity Q, 𝑖  !"# , the maximum 
interval permitted by the application before the states must 
be refreshed and 𝑖  !"# the current interval between context 
states calculated as: 
𝑖  !"## = 

  
𝑖  !"# +   𝛿𝐶𝑓(!,!) ∗ (𝑖  !"# − 𝑖  !"#),        , 𝑓 ≠ 0

𝑖  !"# +   𝛿 ∗ (𝑖  !"# − 𝑖  !"#), 𝑓 = 0 
19 

The interval value is therefore calculated for each publish 
instance based on the last known proximity and the rate at 
which the proximity moves towards 0. This is an adaptive 
algorithm where the rate is kept relative to the known 
relationship quality. The intuition being that the closer two 
entities are the more resources that can be expended on 
maintaining their relationship, while distant entities require 
less updates and can make resources available to more 
critical relationships. The rate is adjusted based on the 
current rate of state generation, therefore we will not 
request updates faster than they are produced and not 
slower than the minimum required for the application’s 
quality of experience. The closer the value of 
𝑖  !"# 𝑖𝑠  relative to 𝑖  !"# , the smaller the penalty. The 
intuition here being that, as 𝑖  !"# → 𝑖  !"#, the back off 
potential gets smaller. 
 
With the frequency of refreshes derived, we are now 
required to adjust the volume of context information used 
for maintaining the context relationships. Existing publish-
subscribe modules transmit each updated element of 
context information to end points with no processing. 
Transmitting context information, which, in some cases 
offers no significant knowledge or variation in the 
perceived proximity between the entities. The context 
proximity model described in Section 3 creates a new state 
with every change in context information. The result being 
that context information such as GPS sensors, which might 
change continually would provide a continuous stream of 
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information even in cases where the difference between 
states is marginal and does not serve to noticeably 
influence the resulting proximity values. 
 
Firstly, we estimate the cohesion of points in 𝐼  by 
randomly selecting a sample of the relationships between 
all the observed states.  We take a sample set to avoid 
computing all the relationships within 𝐼, which is of order 
of complexity 𝑂  (𝑛!) . The size of the sample set is 
determined by taking the normal approximation to the 
hypergeometric distribution for  
 

𝑛 = !  !!!"
!! !!! !  !!  !"

   
 
n  =  required  sample  size  
N  =  𝐼!  
p,  q  =  set  to  0.5  
z  =  confidence  level,  set  to  1.96  
E  =  accuracy,  set  to  0.03  
0 < 𝑛 < 𝐼  
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This, as the hypergrometric approximation is more suitable 
for the relatively small numbers of states observed. We 
then sample n distances between states using the distance 
function described in Section 3.4, setting all the weights to 
0. 
 
With n selected distances, we then compute the cohesion 
as the standard deviation of the distances between states in 
I   
 

𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 =
1

𝑁 − 1
(𝑠! −   𝑠!)! − 𝜇 !

!

!!!
   

𝑤ℎ𝑒𝑟𝑒    𝜇 =
1
𝑁

(𝑠! −   𝑠!)!
!

!
  𝑎𝑛𝑑  𝑁 =    𝐼! 
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The final set of states transmitted for each observation 
window is therefore: 
 

𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 ∗ 𝐼  
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Here, the intuition is that a relatively stable entity 
expressing little change in its state over time would share 
less context information while an active entity would share 
almost all the context information generated. We therefore 
share as much information as is required for establishing 
and maintain the context relationships over time, deriving 
the following proposition: 
 
Proposition 3: 
The number of context states shared by an entity with each 
publish instance is a factor of the cohesion of the total set 
of observed context states over the observation interval 

4. Evaluation  
For simulation purposes, we assumed a global population 
N, of between 1000 and 100000 presentities each assigned 
a random context profile from a context universe D with 
20 dimensions. The application A was assigned three 
random dimensions (𝑑! ,𝑑! ,𝑑!) such that 𝑑   ∈   𝐷. 

The number of presentities with a dimension d was taken 
as a random value sampled from a binomial distribution 
𝐵  (𝑝/10,𝑁) where the value of p is randomly sampled 
from the Gaussian distribution 𝒩  (5.0, 1.6) . The 
simulation was run 20 times for each network size and the 
results shown below in Figure 7. We show the min, avg 
and max for each network size.  
 

 
Figure 7 Candidate Entities 

As can be seen from Figure 8 the number of potential 
subscriptions is reduced where subscriptions are made 
relative to the application’s universe of discourse. The 
number of candidate entities vary widely for each 
simulation size demonstrating that a priori information 
such as address books cannot be used to determine the size 
number of subscriptions required by an application and is 
best supported by real time approaches such as publish-
subscribe. As can be seen from Figure R.x the number of 

Figure 8 shows the comparison between the number of 
subscriptions that would be issued for the publish 

N Expected Pub/Sub Addressbook 

1000 35 36 5 
5000 177 186 25 

10000 1485 1535 50 
50000 2793 2700 250 

100000 7611 7691 500 

	   	   	   	  
Table 1 Candidate Entities Comparison 
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subscribe and the addressbook approaches compared with 
the expected number of subscriptions based on the 
distribution of the underlying context dimensions. As 
shown, the publish-subscribe approach of locating entities 
based on their probability of being candidate maximizes 
the number of candidate entities while remains 
significantly less than a full search or subscription to every 
entity and avoids any expensive indexing approaches.  

As shown in Figure 8, where entities are using applications 
and services with high duplication with respect to the 
attributes used for each application space, the number of 
subscriptions relative to applications increases at a lower 
rate. However, where there is little duplication among 
entities, the number of subscriptions quickly approaches 
N(100000).  

 
Figure 8 Subscription Increase With Applications 

By applying the adaptive ate algorithm we further reduced 
the number of messages between entities as their 
proximity approached 1.0 and increased as the proximity 
approached 0.0. For this simulation we assumed that the 
distance between an entity is a normal distribution of 
proximity values between 0.0 and 1.0. Each entity updates 
its context information using a rate sampled from the 
Poisson distribution: 

ℯ!!
𝜆!

𝑥!
 

 Where 𝜆 is sampled from a set of uniformly distributed 
values between 1 and 30.  This was simulated and the 
results shown in Table 

Rate(msgs/min) Adaptive Rate(msgs/min) 
100184 29438 

99799 29426 
100159 29314 
100052 29175 

 
Table 2  - Adaptive Publish 

The adaptive rate, reduced the frequency of updates for 
each period. This further reduces the overall messaging 
overhead needed to maintain the types of context 
relationships described in Section 2.  
 

5. Conclusion 
In this paper, we presented an approach to supporting 
context centric relationships between entities on an 
Internet of Things. This satisfies the requirement of 
solutions capable of supporting the types of dynamic 
relationships that exist over heterogeneous context 
information. With this approach, we are capable of 
identifying candidate entities that can be fused to realize 
new user experiences and deliver more expressive 
applications and services. 

Firstly we proposed a context proximity query language 
for identifying candidate entities over a distributed data 
store supporting range queries.  The queries are executed 
across a distributed heterogeneous data store with the 
candidate entities selected for establishing a relationship.  
In order to address the shortcomings of previous 
approaches to context proximity and provide scalable 
support for context centric networks, we extended earlier 
publish-subscribe approaches to enable subscriptions to 
relationships and areas of interest as defined by the 
underlying proximity function. The resulting relationships 
are continually evaluated relationships with each derived 
context state, ranking each entity by its current proximity. 
As a result, new entities are continually added while non-
relevant entities are consequently pruned. We further 
introduced an adaptive algorithm for adjusting the publish 
rate between two entities over the current state of their 
context relationship and adjust the volume of context 
information relative to cohesion of the observed context 
states. 
 
We performed simulations to show that our approach 
allows us to maximize the number of candidate entities 
while reducing overall resource costs.  We further showed 
that a priori solutions such as addressbook-based 
subscriptions do not provide sufficient support by 
subscribing to significantly less than the relevant number 
of entities.  By avoiding high dimensional indexing and 
extending proven publish-subscribe approaches we benefit 
from its proven real time properties.  Our solution scales 
well where applications are using common sets of context 
information, however where this is not the case, the 
number of subscriptions converges to N. 

Future work includes the in network aggregation and 
evaluation of proximity as well as the derivation of activity 
similarity through crowd sourcing. 
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