

Fast Color Edge Detection Algorithm Based on Fast Color Edge Detection Algorithm Based on Fast Color Edge Detection Algorithm Based on Fast Color Edge Detection Algorithm Based on

Similarity Relation MSimilarity Relation MSimilarity Relation MSimilarity Relation Matrixatrixatrixatrix

H.I.ALI

 Electronics and Communication Engineering Department, Helwan University,
Cairo, 11792, Egypt

Abstract

A fast edge detection algorithm for color images was
described in this paper. In the proposed method,
smoothness of each pixel in color image is firstly
calculated by means of similarity relation matrix and is
normalized to maximum gray level. In spite of the
simplicity of the proposed method, it can be further
simplified taking benefit from the symmetry of matrix
components as well as the avoidance of re-computing the
common matrix elements between two successive pixel
windows. This will reduce the time complexity extremely.
The time complexity is further reduced by the splitting the
algorithm into parallel tasks.
Keywords: Edge detection; Similarity relation matrix;
Smoothness thresholding

1. Introduction

Edge is commonly defined as a sudden change in
the local color intensity of an image or a jump in
intensity from one pixel to the next. On the other
hand, a region in image that generally represents
objects could be defined as a collection of pixels,
which share similar intensities. Thus boundaries of
regions or objects in image are characterized by
edges. The analysis of an image can be simplified
by detecting edges since; it reduces the amount of
data to be processed. Usually, edge detection is
performed by smoothing, differentiating and
thresholding.

The gradient of an image is the most common edge
detector so far. Computing the gradient of an image
can be performed by obtaining the partial
derivatives in x and y directions by means of many
operators like Roberts, Prewitt and Sobel operators
[1, 2]. The gradient-based edge detection methods
suffer from some practical limitations. Firstly, they
need a smoothing operation to alleviate the effect of
high spatial frequency in estimating the gradient.
Smoothing is applied to all pixels in the image
including the edge regions. This may distort or
eliminate the edge in some cases. Secondly, the
gradient magnitude alone is insufficient to
determine meaningful edges because of the
ambiguity caused by underlying pixel pattern,
especially in complex natural scenes. Thirdly, the

gradient-based edge detection method increases the
computational complexity because calculations,
such as square root and arctangent, to produce the
gradient vector are required [1].

A detailed comparison and evaluation of edge
detectors has been performed by Heath et al. [3].
They employed people to evaluate performance of
several edge detectors with a number of images and
looked for correlations in judgments of participants.
Kim and Han have described edginess of pixels in
terms of fuzzy rules [4] whereas the gradient
magnitude and direction with fuzzy reasoning rules
have been used to locate edges by others [5–7].

On the other hand, the edge detection process of
color images is another important research issue.
Typically, a color image consists of RGB channels.
The color edge detection process must take into
account the changes in intensity, chromaticity or
both. So far, several color edge detection algorithms
have been developed. These schemes can be
classified into two different approaches. In the first
approach, the three-channel image is processed as
three gray-level images. We can use any gray-level
edge detection scheme to detect the edge image for
each color channel separately. Therefore, three edge
images can be obtained for the RGB channels.
Finally, a merging procedure is executed to combine
these edge images into a targeted edge image.
However, these sorts of algorithms have two major
drawbacks. First, the inter-channel correlation is
discarded in these schemes. Second, a high
computational cost is consumed [8–10].

In the second approach, a two-stage structure is
imposed on the design of color edge detection
schemes. In the first stage, a channel reduction
technique is employed to reduce the dimensionality
of each color image from three to one. Next, an
edge detection procedure for the reduced one-
channel image is executed to detect edge. The two-
stage edge detection schemes or color image have
two advantages. First, the channel reduction process
is independent of the edge detection scheme. The
correlation among the color channels is taken into

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 108

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

consideration. Second, any gray-level edge
detection scheme can be applied to the detection of
edge images in the second stage. In other words, the
computational cost can be reduced [11–14].

Recep Demirci [15], proposed a two-stage edge
detection algorithm. Firstly, the color image in three
dimensional color spaces is mapped into one
dimension by means of the similarity relation matrix.
This transformation produces a gray level image
where the similar pixels show the smooth areas and
dark pixels show the dissimilar areas, noise and
edges. Secondly, the thresholding could be
employed if it is preferred. This work suffers from
the high computational cost. So, in this paper we
propose a fast edge detection algorithm that takes
benefit from the symmetry of similarity matrix
components as well as the avoidance of re-
computing the common matrix elements between
two successive pixel windows. Also a parallel
implementation of the proposed algorithm is
implemented which further reduces the time needed
by the algorithm.

2. Color similarity

An image consists of pixels, which are neighbor to
each other. Gray level differences of each color
component between pixel P1 and P2 could be
defined as follows:

∆R = |LR,1 − LR,2| (1)
∆G = |LG,1 − LG,2| (2)
∆B = |LB,1 − LB,2| (3)

The Euclidean distance can be computed as:

di,j =
�
√� (∆R� + ∆G� + ∆B�)� �� (4)

On the other hand, Wuerger et al. [16] showed in
their research into proximity judgments in color
space that perceptual color proximity is not
Euclidean in nature. That means that distance
information in Euclidean color space is not adequate
for similarity judgment. The most general from of
similarity measure based on the distance in color
space could be given as below:

S��x�, x�� = 1 − ����� = 1 − ��������� (5)

Where, S1 is similarity between xi and xj, Dn is
normalization coefficient. In Generalized Context
Model, the similarity was expressed in terms of an
exponential or Gaussian function of distance [17,
18]. So, the following formula could be obtained for
color similarity:

S��x�, x�� = exp	(����"��) = exp	(��������"��) (6)

With q=1 and 2 we obtain an exponential and a
Gaussian functions respectively. The employment
of Gaussian function with color distances to
calculate similarity measure in term of color
histograms was recently performed in applications
for color image retrievals [28, 29]. Recep Demirci,
showed that the usage of an exponential or Gaussian
functions as color similarity functions, gives better
performance in measuring similarity [15].

3. Proposed algorithm

3.1. Formation of similarity relation matrix

The similarity of any neighboring two pixels could
be calculated by means of Eq.'s (5) and (6),
respectively. A pixel in an image has eight
neighboring pixels as shown in Fig. 1. Therefore,
the similarity calculations for all the possible
combinations are performed as shown in Fig. 2.

Fig. 1 Pixel neighborhood

Fig. 2 Similarity network

This approach is well-suited with noisy exemplar
approach proposed by Kahana and Sekular [17]
where inter-stimulus similarity is used to categorize
the noisy image. Consequently, similarity relation
matrix is achieved as:

P1 P4 P7

P2 P5 P8

P3 P6 P9

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 109

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

#$,% =
&'
''
'(
#�,�			#�,� 	…	 #�,*#�,�			#�,� 	… #�,*…………………… .…………………… .#*,�			#*,� 	…					#�,*	 ,-

--
-.	 (7)

As the similarity of a pixel to itself is always equal
to unity, there is no need to calculate them. The
similarity relation matrix is symmetric. When all
elements of the Sm,n, apart from diagonal, are unity,
it means that the central pixel and its all neighbors
have the same color level or it is perfectly smooth.
The local smoothness of kth pixel could be estimated
as follows: #/ = �

0∑ #/,%*%2� 				345		6 ≠ 8				 (8)

As could be seen from Eq. (8) and Fig. 2, there is no
need to consider the similarity of itself. Therefore,
Eq. (8) gives the average of how the kth pixel is
similar to the others. On the other hand, the general
average of the central and all neighboring pixels
could be calculated as follows: #9 = �

∑ #//2� 						 	 	 (9)	

The Sa could be interpreted as the smoothness of
the central pixel. Its values vary between zero and 1.
On the other hand, the complement of the Sa (1−Sa)
is considered to be dissimilarity or noisiness [15].

Calculating the similarity using this direct approach,
as proposed in [15], needs very large time. So we
proposed a modified approach for calculating the
color similarity, which will reduce the computation
time considerably. To show how to reduce the
calculations needed to compute Sa, consider Fig. 3
that shows the elements of two successive pixel
windows.

P1 P4 P7 P10
P2 P5 P8 P11
P3 P6 P9 P12

Fig.3 The elements of two successive pixel windows

If we need to compute the similarity of pixel P5, we
will need to construct the similarity matrix shown in
Eq. (7). Now to compute the similarity of next pixel
P8, the similarities between (P4, P5, P6, P7, P8, and
P9) need not be computed again. These similarities
are already computed during the computation of the
similarity matrix of pixel P5. So, we need to reshape
this matrix to construct the similarity matrix for the
next pixel (P8).

Studying the matrix in Eq. (7), we find that
similarities between (P1, P2, P3) and all other pixels
will not be needed again during the construction of
the similarity matrix for the next pixel. So, the first
step is to eliminate rows 1, 2 and 3, also the
columns 1, 2 and 3. Secondly, the similarities
between pixels (P10, P11, and P12) and (P4, P5, P6,
P7, P8, P9) need to be computed.

Generally, the similarity matrix for pixel Pm+1,n can
be constructed as shown in Eq.(10). The lined
elements will not be computed, so they will be
cashed from the similarity matrix computed
previously for pixel Pm,n. finally, we can summarize
the steps to construct a similarity matrix for Pm+1,n
(call it Sm+1,n) using the similarity matrix for Pm,n
(call it Sm,n) as:

1- Eliminate rows 1,2,3
2- Eliminate columns 1,2,3
3- Compute the similarities between

(P10,P11,P12) and (P4,P5,P6,P7,P8,P9)
 #$:�,% =

&'
''
''
'(
#;,;					#;,< 			…	 #;,*				#;,�=				#;,��				#;,��#<,;					#<,< 			… #<,*					#<,�=				#<,��				#<,��…			…		…		…		…………………………… . .…		…		…		…			…………………………… . .#*,�				#*,< 			…				#*,*				#*,�=				#*,��				#*,��	#�=,�			#�=,< 	…			#�=,*		#�=,�=		#�=,��		#�=,��#��,�			#��,< 	…				#��,*		#��,�=		#��,��		#��,��#��,�			#��,< 	…		 	#��,*		#��,�=		#��,��		#��,�� ,-

--
--
-.
 (10)

3.2 Local similarity thresholding (LST)

Kahana and Sekular [17] have described inter-
stimulus dissimilarity as noise in their investigation
by assuming that each stimulus is stored imperfectly
in memory. Therefore they proposed to threshold
the summed similarity of a stimulus to make
decision. Keeping in mind that the complement of
the Sa is considered as dissimilarity or noisiness and
assuming that each pixel is stimulus, Recep Demirci
[15], proposed a new version of similarity matrix as
follows:

#>	$,% =	 ?1				@3	#$,% ≥ #B0				@3	#$,% < #B E																									(11)	

Where, ST is similarity threshold. The interpretation
of Eq. (11) is that if the similarity of two pixels is
lower than ST, they are considered to be dissimilar.
So the local smoothness of kth pixel could be
estimated as follows: #>	/ =	 �0∑ #/,%*%2� 			345		6 ≠ 8																						(12)

The general average of the central and all
neighboring pixels could be calculated as follows:

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 110

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

#>9 = 19G#>/
*

/2�
																																																									(13)				

With such approach, a color image in three-
dimensional color spaces is mapped into one-
dimensional gray image while the noise is
weakened and the edge information is preserved.

These calculations, as proposed in [15], could be
reduced also, for the Euclidean, Exponential and
Gaussian functions, with which we compute Sm,n.
Our approach is based on rearranging the inequality
(11) by putting the �x� − x�� in one side, while all
other variables are in the other side. In this way, we
will obtain the following variations shown in table 1.

Table 1: Rearranging inequality (11) for Euclidean, Exponential
and Gaussian forms

Original
inequality
[15]

#>	$,% = 		 ?1				@3	#$,% ≥ #B0				@3	#$,% < #B E
Rearranging
the Euclidean
form of Sm,n

#>	$,%
=			 I1				@3	�JK − JL� ≤ Dn(1 − SP)0				@3	�JK − JL� > Rn(1 − SP)E

Rearranging
the
exponential
form of Sm,n

#>	$,%
=	I1				@3	�JK − JL� ≤ −Dn ∗ ln(SP)0				@3	�JK − JL� > −Dn ∗ ln(SP)E

Rearranging
the Gaussian
form of Sm,n

#>	$,%
=		 U1				@3	�JK − JL� ≤ V−Dn ∗ ln(SP)0				@3	�JK − JL� > V−Dn ∗ ln(SP)

Studying table1 carefully, we notice that the right
hand sides of the inequalities are all of constant
values. So, we can compute them once at the
beginning of the algorithm and compare directly
with the pixels difference. This will surely reduce
the computation of Sm,n, since we need not to
compute Sm,n, in its different forms, and then
compare with ST. All what is needed is to compute
the difference between pixels and directly compare
this difference with the new constants, computed
once, to get SW	X,Y.

4. Simulation results and discussion

The original algorithm [15] and the modified
algorithm were tested with the well-known peppers
image shown in Fig. 4(a) which is a color image of
size 256 × 256 pixels. Fig. 4(b)–(d) show the
smoothness image obtained by means of Eq. (5)
with different normalization coefficients: 32, 64 and
128, respectively. Fig. 4(e)–(g) shows the
transferred images when the similarity of pixels is
calculated by means of exponential similarity
function, Eq. (6), with different Dn: 32, 64 and 128,
respectively. Moreover, Fig. 4(h)–(j) have been

achieved when the Gaussian similarity measure is
employed with different Dn: 1024, 8192 and 16 384,
respectively.

Table 2 shows the time needed by the modified
algorithm and the original algorithm [15] using
same image, Peppers image. The algorithms were
implemented on a computer having the following
specifications: Intel(R) Core™2 Duo CPU @
2,26GHZ. The results show that there is a large
reduction in time complexity more than 40%.

Table 2: The time needed by the modified algorithm and the
original algorithm

Distance
function

Time for
the original
algorithm
(seconds)

Time for
the

modified
algorithm
(seconds)

Reduction
percent

Euclidean 155.54 92.32 40.65%
Exponential 158.25 93.31 41.04%
Gaussian 156.19 93.45 40.17%

Table 3 shows the time needed by the modified
algorithm when implemented as parallel tasks on
two processors and the original algorithm using
same image, Peppers image. The results show that
there is a large reduction in time complexity more
than 70%. The image data was split into two equal
parts. Each part is processed by a separate task on a
separate processor.

Table 3: the time needed by the original algorithm and the
modified algorithm when implemented as parallel tasks

Distance
function

Time for
the

original
algorithm
(seconds)

Time for
parallel

implementation
of the modified

algorithm
(seconds)

Reduction
percent

Euclidean 155.54 42.64 72.59%
Exponential158.25 43.95 72.23%
Gaussian 156.19 44.64 71.42%

Fig. 5 shows the transferred image of Peppers with
original LST algorithm and the modified algorithm
while normalization coefficient is fixed as 32. Fig.
5(a)–(c) show the images with ST: 0.25, 0.50 and
0.75, respectively, when linear similarity function is
employed. Transformation of three dimension color
space into one dimension with exponential function
and different ST: 0.25, 0.50 and 0.75 have been
shown in Fig. 5(d)–(f), respectively. Moreover, LST
images obtained with Gaussian functions with ST:
0.25, 0.50 and 0.75 are shown in Fig. 5(g)–(i),
respectively. It has been noticed from applications
that the three dimensional color images could be
successfully transferred into one-dimension image
with these algorithms. The transformed image is a

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 111

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

gray scale image in which the gray levels show the
edginess strength.

Table 4 shows the time needed by the modified LST
algorithm and the original algorithm using same
image, Peppers image. The results show that there is
a large reduction in time complexity around 40%.

Fig. 4 Transformation of three-dimension color space into one dimension: Sa: (a) Peppers (b)–(d) By means of linear function with
Dn: 32, 64 and 128. (e)–(g) By means of exponential function with Dn: 32, 64 and 128. (h)–(j) By means of Gaussian function
with Dn: 1024,8192 and 16 384.

Fig. 5 Transformation of Lena image into one dimension with LST: Sa: (a) Peppers (b)–(d) By means of linear function with ST:
0.25, 0.50 and 0.75. (e)–(g) By means of exponential function with ST: 0.25, 0.50 and 0.75. (g)–(i) By means of Gaussian function
with ST: 0.25, 0.50 and 0.75.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 112

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Table 4: The time needed by the modified LST algorithm and the
original LST algorithm

Distance
function

Time for
the original

LST
algorithm
(seconds)

Time for
the

modified
LST

algorithm
(seconds)

Reduction
percent

Euclidean 157.21 92.16 41.38%
Exponential 156.05 93.99 39.77%
Gaussian 157.30 93.84 40.34%

Table 5 shows the time needed by the modified LST
algorithm when implemented as parallel tasks on
two processors and the original algorithm using
same image, Peppers image. The results show that
there is a large reduction in time complexity more
than 70%. The image data was split into two equal
parts. Each part is processed by a separate task on a
separate processor.

Table 5: the time needed by the original LST algorithm and the
modified LST algorithm when implemented as parallel tasks

Distance
function

Time for
the

original
LST

algorithm
(seconds)

Time for
parallel

implementation
of the modified
LST algorithm

(seconds)

Reduction
percent

Euclidean 157.21 44.65 71.60%
Exponential 156.05 44.65 71.39%
Gaussian 157.30 43.26 72.50%

5. Conclusion

In this paper, a fast two-stage color edge detection
algorithm, where the similarity relation matrix is
used for the channel reduction process has been
proposed. In spite of the simplicity of the original
algorithm ,proposed in [15], it can be further
simplified taking benefit from the symmetry of
matrix components as well as the avoidance of re-
computing the common matrix elements between
two successive pixel windows. Accordingly, the
three-dimensional color images could be
successfully transferred into one-dimension images,
which show color discontinuous as gray levels. The
results show that there is a large reduction in time
complexity more than 40%. The modified two-stage
color edge detection algorithm was also
implemented as parallel tasks on two processors.
The results show that there is a large reduction in
time complexity more than 70%.

References
[1] Gonzalez RC,Woods RE. Digital Image Processing.

Reading, MA: Addison-Wesley; 1993.
[2] Canny JF. A computational approach to edge

detection. IEEE Trans Pattern Anal Mach Intell
1986;8(6):679–98.

[3] Heath H, Sarkar S, Sanocki T, Bowyer KW. Edge
detector comparison: initial study and methodology.
Comput Vision Image Understanding 1998;69:38–54.

[4] Kim TY, Han JH. Edge representation with fuzzy sets
in blurred images. Fuzzy Sets Systems 1998;100:77–
87.

[5] Kim DS, Lee WH, S Kweon I. Automatic edge
detection using 3×3 ideal binary pixel patterns and
fuzzy-based edge thresholding. Pattern Recognition
Lett 2004;25:101–6.

[6] Yuksel ME,Yildirim MT. A simple neuro-fuzzy edge
detector for digital images corrupted by impulse
noise. AEU—Int J Electron Commun 2004;58:72–5.

[7] Liang LR, Looney CG. Competitive fuzzy edge
detection. Appl Soft Comput 2003;3:123–37.

[8] Fan J, Aref WG, Hacid MS, Elmagarmid AK. An
improved automatic isotropic color edge detection
technique. Pattern Recognition Lett 2001;22:1419–29.

[9] Ruzon MA, Tomasi C. Edge, junction, and corner
detection using color distributions. IEEE Trans
Pattern Anal Mach Intell 2001;23:1281–95.

[10] Theoharatos C, Economou G, Fotopoulos S. Color
edge detection using the minimal spanning tree.
Pattern Recognition 2005;38:603–6.

[11] Trahanias PE, Venetsanopoulos AN. Color edge
detection using vector order statistics. IEEE Trans
Image Process 1993;2:259–64.

[12] Yang CK, Tsai WH. Reduction of color space
dimensionality by moment-preserving thresholding
and its application for edge detection in color images.
Pattern Recognition Lett 1996;17:481–90.

[13] Yang CK, Tsai WH. Color image compression using
quantization, thresholding, and edge detection
techniques all based on the moment-preserving
principle. Pattern Recognition Lett 1998;19:205–15.

[14] Tsai P, Chang CC, Hu YC. An adaptive two-stage
edge detection scheme for digital color images. Real-
time Imag 2002;8(4):329–43.

[15] Recep Demirci, Similarity relation matrix-based
color edge detection, Int. J. Electron. Commun. (AEـ)
61 (2007) 469 – 477

[16] Wuerger SM, Maloney LT, Krauskopf J. Proximity
judgments in color space: tests of a euclidean color
geometry. Vision Res 1995;35:827–35.

[17] Kahana MJ, Sekuler R. Recognizing spatial patterns:
a noisy exemplar approach. Vision Res
2002;42:2177–92.

[18] Stewart N, Brown GDA. Similarity and dissimilarity
as evidence in perceptual categorization. J Math
Psychol 2005;49:403–9.

Hossam Eldin Ibrahim received his B.Sc. degree in
Communications & Electronics Engineering, his M.Sc.
degree in Computer Engineering, and his Ph.D. degree in
Computer Engineering from Helwan University, Cairo,
Egypt, in 2000, 2004, and 2009 respectively. He has three
published papers at M.Sc. degree, and seven published
papers at Ph.D. degree. He is currently a Teacher at
Electronics, Communication & Computer Department,
Faculty of Engineering, Helwan University.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 113

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

