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Abstract 

A fast edge detection algorithm for color images was 
described in this paper. In the proposed method, 
smoothness of each pixel in color image is firstly 
calculated by means of similarity relation matrix and is 
normalized to maximum gray level. In spite of the 
simplicity of the proposed method, it can be further 
simplified taking benefit from the symmetry of matrix 
components as well as the avoidance of re-computing the 
common matrix elements between two successive pixel 
windows. This will reduce the time complexity extremely. 
The time complexity is further reduced by the splitting the 
algorithm into parallel tasks.  
Keywords: Edge detection; Similarity relation matrix; 
Smoothness thresholding 

1. Introduction 

Edge is commonly defined as a sudden change in 
the local color intensity of an image or a jump in 
intensity from one pixel to the next. On the other 
hand, a region in image that generally represents 
objects could be defined as a collection of pixels, 
which share similar intensities. Thus boundaries of 
regions or objects in image are characterized by 
edges. The analysis of an image can be simplified 
by detecting edges since; it reduces the amount of 
data to be processed. Usually, edge detection is 
performed by smoothing, differentiating and 
thresholding. 
 
The gradient of an image is the most common edge 
detector so far. Computing the gradient of an image 
can be performed by obtaining the partial 
derivatives in x and y directions by means of many 
operators like Roberts, Prewitt and Sobel operators 
[1, 2]. The gradient-based edge detection methods 
suffer from some practical limitations. Firstly, they 
need a smoothing operation to alleviate the effect of 
high spatial frequency in estimating the gradient. 
Smoothing is applied to all pixels in the image 
including the edge regions. This may distort or 
eliminate the edge in some cases. Secondly, the 
gradient magnitude alone is insufficient to 
determine meaningful edges because of the 
ambiguity caused by underlying pixel pattern, 
especially in complex natural scenes. Thirdly, the 

gradient-based edge detection method increases the 
computational complexity because calculations, 
such as square root and arctangent, to produce the 
gradient vector are required [1]. 
 
A detailed comparison and evaluation of edge 
detectors has been performed by Heath et al. [3]. 
They employed people to evaluate performance of 
several edge detectors with a number of images and 
looked for correlations in judgments of participants. 
Kim and Han have described edginess of pixels in 
terms of fuzzy rules [4] whereas the gradient 
magnitude and direction with fuzzy reasoning rules 
have been used to locate edges by others [5–7]. 
 
On the other hand, the edge detection process of 
color images is another important research issue. 
Typically, a color image consists of RGB channels. 
The color edge detection process must take into 
account the changes in intensity, chromaticity or 
both. So far, several color edge detection algorithms 
have been developed. These schemes can be 
classified into two different approaches. In the first 
approach, the three-channel image is processed as 
three gray-level images. We can use any gray-level 
edge detection scheme to detect the edge image for 
each color channel separately. Therefore, three edge 
images can be obtained for the RGB channels. 
Finally, a merging procedure is executed to combine 
these edge images into a targeted edge image. 
However, these sorts of algorithms have two major 
drawbacks. First, the inter-channel correlation is 
discarded in these schemes. Second, a high 
computational cost is consumed [8–10]. 
 
In the second approach, a two-stage structure is 
imposed on the design of color edge detection 
schemes. In the first stage, a channel reduction 
technique is employed to reduce the dimensionality 
of each color image from three to one. Next, an 
edge detection procedure for the reduced one-
channel image is executed to detect edge. The two-
stage edge detection schemes or color image have 
two advantages. First, the channel reduction process 
is independent of the edge detection scheme. The 
correlation among the color channels is taken into 
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consideration. Second, any gray-level edge 
detection scheme can be applied to the detection of 
edge images in the second stage. In other words, the 
computational cost can be reduced [11–14]. 
 
Recep Demirci [15], proposed a two-stage edge 
detection algorithm. Firstly, the color image in three 
dimensional color spaces is mapped into one 
dimension by means of the similarity relation matrix. 
This transformation produces a gray level image 
where the similar pixels show the smooth areas and 
dark pixels show the dissimilar areas, noise and 
edges. Secondly, the thresholding could be 
employed if it is preferred. This work suffers from 
the high computational cost. So, in this paper we 
propose a fast edge detection algorithm that takes 
benefit from the symmetry of similarity matrix 
components as well as the avoidance of re-
computing the common matrix elements between 
two successive pixel windows. Also a parallel 
implementation of the proposed algorithm is 
implemented which further reduces the time needed 
by the algorithm. 

2. Color similarity 

An image consists of pixels, which are neighbor to 
each other. Gray level differences of each color 
component between pixel P1 and P2 could be 
defined as follows: 

∆R = |LR,1 − LR,2|     (1) 
∆G = |LG,1 − LG,2|     (2) 
∆B = |LB,1 − LB,2|     (3) 

 
The Euclidean distance can be computed as: 

di,j =
�
√� (∆R� + ∆G� + ∆B�)� ��     (4) 

 
On the other hand, Wuerger et al. [16] showed in 
their research into proximity judgments in color 
space that perceptual color proximity is not 
Euclidean in nature. That means that distance 
information in Euclidean color space is not adequate 
for similarity judgment. The most general from of 
similarity measure based on the distance in color 
space could be given as below: 

S��x�, x�� = 1 − ����� = 1 − ���������    (5) 

 
Where, S1 is similarity between xi and xj, Dn is 
normalization coefficient. In Generalized Context 
Model, the similarity was expressed in terms of an 
exponential or Gaussian function of distance [17, 
18]. So, the following formula could be obtained for 
color similarity: 

S��x�, x�� = exp	(����"�� ) = exp	(��������"�� )  (6) 

 

With q=1 and 2 we obtain an exponential and a 
Gaussian functions respectively. The employment 
of Gaussian function with color distances to 
calculate similarity measure in term of color 
histograms was recently performed in applications 
for color image retrievals [28, 29]. Recep Demirci, 
showed that the usage of an exponential or Gaussian 
functions as color similarity functions, gives better 
performance in measuring similarity [15]. 

3. Proposed algorithm 

3.1. Formation of similarity relation matrix 

The similarity of any neighboring two pixels could 
be calculated by means of Eq.'s (5) and (6), 
respectively. A pixel in an image has eight 
neighboring pixels as shown in Fig. 1. Therefore, 
the similarity calculations for all the possible 
combinations are performed as shown in Fig. 2.  
 

 
 

              
 
 
 
 

Fig. 1 Pixel neighborhood 

 
 
 

 
 
 
 
 
 
 
 
 
 

 

 

Fig. 2 Similarity network  

This approach is well-suited with noisy exemplar 
approach proposed by Kahana and Sekular [17] 
where inter-stimulus similarity is used to categorize 
the noisy image. Consequently, similarity relation 
matrix is achieved as: 
 

P1 P4 P7 

P2 P5 P8 

P3 P6 P9 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 5, No 1, September 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 109

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

 

#$,% =
&'
''
'(
#�,�			#�,� 	…	 #�,*#�,�			#�,� 	… #�,*…………………… .…………………… .#*,�			#*,� 	…					#�,*	 ,-

--
-.	  (7) 

 
As the similarity of a pixel to itself is always equal 
to unity, there is no need to calculate them. The 
similarity relation matrix is symmetric. When all 
elements of the Sm,n, apart from diagonal, are unity, 
it means that the central pixel and its all neighbors 
have the same color level or it is perfectly smooth. 
The local smoothness of kth pixel could be estimated 
as follows: #/ = �

0∑ #/,%*%2� 				345		6 ≠ 8				  (8) 
 
As could be seen from Eq. (8) and Fig. 2, there is no 
need to consider the similarity of itself. Therefore, 
Eq. (8) gives the average of how the kth pixel is 
similar to the others. On the other hand, the general 
average of the central and all neighboring pixels 
could be calculated as follows: #9 = �

*∑ #/*/2� 						 	 	 (9)	
 
The Sa could be interpreted as the smoothness of 
the central pixel. Its values vary between zero and 1. 
On the other hand, the complement of the Sa (1−Sa) 
is considered to be dissimilarity or noisiness [15]. 
 
Calculating the similarity using this direct approach, 
as proposed in [15], needs very large time. So we 
proposed a modified approach for calculating the 
color similarity, which will reduce the computation 
time considerably. To show how to reduce the 
calculations needed to compute Sa, consider Fig. 3 
that shows the elements of two successive pixel 
windows. 
 
 
 

P1 P4 P7 P10 
P2 P5 P8 P11 
P3 P6 P9 P12 

 

Fig.3 The elements of two successive pixel windows 

If we need to compute the similarity of pixel P5, we 
will need to construct the similarity matrix shown in 
Eq. (7). Now to compute the similarity of next pixel 
P8, the similarities between (P4, P5, P6, P7, P8, and 
P9) need not be computed again. These similarities 
are already computed during the computation of the 
similarity matrix of pixel P5. So, we need to reshape 
this matrix to construct the similarity matrix for the 
next pixel (P8). 
 

Studying the matrix in Eq. (7), we find that 
similarities between (P1, P2, P3) and all other pixels 
will not be needed again during the construction of 
the similarity matrix for the next pixel. So, the first 
step is to eliminate rows 1, 2 and 3, also the 
columns 1, 2 and 3. Secondly, the similarities 
between pixels (P10, P11, and P12) and (P4, P5, P6, 
P7, P8, P9) need to be computed.  
 
Generally, the similarity matrix for pixel Pm+1,n can 
be constructed as shown in Eq.(10). The lined 
elements will not be computed, so they will be 
cashed from the similarity matrix computed 
previously for pixel Pm,n. finally, we can summarize 
the steps to construct a similarity matrix for Pm+1,n 
(call it Sm+1,n) using the similarity matrix for Pm,n 
(call it Sm,n) as: 

1- Eliminate rows 1,2,3 
2- Eliminate columns 1,2,3 
3- Compute the similarities between 

(P10,P11,P12) and (P4,P5,P6,P7,P8,P9) 
 #$:�,% =

&'
''
''
'(
#;,;					#;,< 			…	 #;,*				#;,�=				#;,��				#;,��#<,;					#<,< 			… #<,*					#<,�=				#<,��				#<,��…			…		…		…		…………………………… . .…		…		…		…			…………………………… . .#*,�				#*,< 			…				#*,*				#*,�=				#*,��				#*,��	#�=,�			#�=,< 	…			#�=,*		#�=,�=		#�=,��		#�=,��#��,�			#��,< 	…				#��,*		#��,�=		#��,��		#��,��#��,�			#��,< 	…		 	#��,*		#��,�=		#��,��		#��,�� ,-

--
--
-.
   (10) 

 

3.2 Local similarity thresholding (LST) 

Kahana and Sekular [17] have described inter-
stimulus dissimilarity as noise in their investigation 
by assuming that each stimulus is stored imperfectly 
in memory. Therefore they proposed to threshold 
the summed similarity of a stimulus to make 
decision. Keeping in mind that the complement of 
the Sa is considered as dissimilarity or noisiness and 
assuming that each pixel is stimulus, Recep Demirci 
[15], proposed a new version of similarity matrix as 
follows: 

#>	$,% =	 ?1				@3	#$,% ≥ #B0				@3	#$,% < #B E																									(11)	
 
Where, ST is similarity threshold. The interpretation 
of Eq. (11) is that if the similarity of two pixels is 
lower than ST, they are considered to be dissimilar. 
So the local smoothness of kth pixel could be 
estimated as follows: #>	/ =	 �0∑ #/,%*%2� 			345		6 ≠ 8																						(12) 

 
The general average of the central and all 
neighboring pixels could be calculated as follows: 
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#>9 = 19G#>/
*

/2�
																																																									(13)				

 
With such approach, a color image in three-
dimensional color spaces is mapped into one-
dimensional gray image while the noise is 
weakened and the edge information is preserved. 
 
These calculations, as proposed in [15], could be 
reduced also, for the Euclidean, Exponential and 
Gaussian functions, with which we compute Sm,n. 
Our approach is based on rearranging the inequality 
(11) by putting the �x� − x�� in one side, while all 
other variables are in the other side. In this way, we 
will obtain the following variations shown in table 1. 

Table 1: Rearranging inequality (11) for Euclidean, Exponential 
and Gaussian forms 

Original 
inequality 
[15] 

#>	$,% = 		 ?1				@3	#$,% ≥ #B0				@3	#$,% < #B E 
Rearranging 
the Euclidean 
form of Sm,n 

#>	$,%
=			 I1				@3	�JK − JL� ≤ Dn(1 − SP)0				@3	�JK − JL� > Rn(1 − SP)E 

Rearranging 
the 
exponential 
form of Sm,n 

#>	$,%
=	I1				@3	�JK − JL� ≤ −Dn ∗ ln(SP)0				@3	�JK − JL� > −Dn ∗ ln(SP)E 

Rearranging 
the Gaussian 
form of Sm,n 

#>	$,%
=		 U1				@3	�JK − JL� ≤ V−Dn ∗ ln(SP)0				@3	�JK − JL� > V−Dn ∗ ln(SP)

 
Studying table1 carefully, we notice that the right 
hand sides of the inequalities are all of constant 
values. So, we can compute them once at the 
beginning of the algorithm and compare directly 
with the pixels difference. This will surely reduce 
the computation of Sm,n, since we need not to 
compute Sm,n, in its different forms, and then 
compare with ST. All what is needed is to compute 
the difference between pixels and directly compare 
this difference with the new constants, computed 
once, to get SW	X,Y. 

4. Simulation results and discussion 

The original algorithm [15] and the modified 
algorithm were tested with the well-known peppers 
image shown in Fig. 4(a) which is a color image of 
size 256 ×  256 pixels. Fig. 4(b)–(d) show the 
smoothness image obtained by means of Eq. (5) 
with different normalization coefficients: 32, 64 and 
128, respectively. Fig. 4(e)–(g) shows the 
transferred images when the similarity of pixels is 
calculated by means of exponential similarity 
function, Eq. (6), with different Dn: 32, 64 and 128, 
respectively. Moreover, Fig. 4(h)–(j) have been 

achieved when the Gaussian similarity measure is 
employed with different Dn: 1024, 8192 and 16 384, 
respectively.  
 
Table 2 shows the time needed by the modified 
algorithm and the original algorithm [15] using 
same image, Peppers image. The algorithms were 
implemented on a computer having the following 
specifications: Intel(R) Core™2 Duo CPU @ 
2,26GHZ. The results show that there is a large 
reduction in time complexity more than 40%. 
 

Table 2: The time needed by the modified algorithm and the 
original algorithm 

Distance 
function 

Time for 
the original 
algorithm 
(seconds) 

Time for 
the 

modified 
algorithm 
(seconds) 

Reduction 
percent 

Euclidean  155.54 92.32 40.65% 
Exponential 158.25 93.31 41.04% 
Gaussian 156.19 93.45 40.17% 

 
Table 3 shows the time needed by the modified 
algorithm when implemented as parallel tasks on 
two processors and the original algorithm using 
same image, Peppers image. The results show that 
there is a large reduction in time complexity more 
than 70%. The image data was split into two equal 
parts. Each part is processed by a separate task on a 
separate processor. 

Table 3: the time needed by the original algorithm and the 
modified algorithm when implemented as parallel tasks 

Distance 
function 

Time for 
the 

original 
algorithm 
(seconds) 

Time for 
parallel 

implementation 
of the modified 

algorithm 
(seconds) 

Reduction 
percent 

Euclidean  155.54 42.64 72.59% 
Exponential158.25 43.95 72.23% 
Gaussian 156.19 44.64 71.42% 

 
Fig. 5 shows the transferred image of Peppers with 
original LST algorithm and the modified algorithm 
while normalization coefficient is fixed as 32. Fig. 
5(a)–(c) show the images with ST: 0.25, 0.50 and 
0.75, respectively, when linear similarity function is 
employed. Transformation of three dimension color 
space into one dimension with exponential function 
and different ST: 0.25, 0.50 and 0.75 have been 
shown in Fig. 5(d)–(f), respectively. Moreover, LST 
images obtained with Gaussian functions with ST: 
0.25, 0.50 and 0.75 are shown in Fig. 5(g)–(i), 
respectively. It has been noticed from applications 
that the three dimensional color images could be 
successfully transferred into one-dimension image 
with these algorithms. The transformed image is a 
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gray scale image in which the gray levels show the 
edginess strength. 
 
 

Table 4 shows the time needed by the modified LST 
algorithm and the original algorithm using same 
image, Peppers image. The results show that there is 
a large reduction in time complexity around 40%. 

Fig. 4 Transformation of three-dimension color space into one dimension: Sa: (a) Peppers (b)–(d) By means of linear function with 
Dn: 32, 64 and 128. (e)–(g) By means of exponential function with Dn: 32, 64 and 128. (h)–(j) By means of Gaussian function 
with Dn: 1024,8192 and 16 384.  

Fig. 5 Transformation of Lena image into one dimension with LST: Sa: (a) Peppers (b)–(d) By means of linear function with ST: 
0.25, 0.50 and 0.75. (e)–(g) By means of exponential function with ST: 0.25, 0.50 and 0.75. (g)–(i) By means of Gaussian function 
with ST: 0.25, 0.50 and 0.75. 
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Table 4: The time needed by the modified LST algorithm and the 
original LST algorithm 

Distance 
function 

Time for 
the original 

LST 
algorithm 
(seconds) 

Time for 
the 

modified 
LST 

algorithm 
(seconds) 

Reduction 
percent 

Euclidean  157.21 92.16 41.38% 
Exponential 156.05 93.99 39.77% 
Gaussian 157.30 93.84 40.34% 

 
Table 5 shows the time needed by the modified LST 
algorithm when implemented as parallel tasks on 
two processors and the original algorithm using 
same image, Peppers image. The results show that 
there is a large reduction in time complexity more 
than 70%. The image data was split into two equal 
parts. Each part is processed by a separate task on a 
separate processor. 

Table 5: the time needed by the original LST algorithm and the 
modified LST algorithm when implemented as parallel tasks 

Distance 
function 

Time for 
the 

original 
LST 

algorithm 
(seconds) 

Time for 
parallel 

implementation 
of the modified 
LST algorithm 

(seconds) 

Reduction 
percent 

Euclidean  157.21 44.65 71.60% 
Exponential 156.05 44.65 71.39% 
Gaussian 157.30 43.26 72.50% 

5. Conclusion 

In this paper, a fast two-stage color edge detection 
algorithm, where the similarity relation matrix is 
used for the channel reduction process has been 
proposed. In spite of the simplicity of the original 
algorithm ,proposed in [15], it can be further 
simplified taking benefit from the symmetry of 
matrix components as well as the avoidance of re-
computing the common matrix elements between 
two successive pixel windows. Accordingly, the 
three-dimensional color images could be 
successfully transferred into one-dimension images, 
which show color discontinuous as gray levels. The 
results show that there is a large reduction in time 
complexity more than 40%. The modified two-stage 
color edge detection algorithm was also 
implemented as parallel tasks on two processors. 
The results show that there is a large reduction in 
time complexity more than 70%. 
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