
The True Powers of Multi-core Smartphones

Dhuha Basheer Abdullah1, Mohammed M. Al-Hafidh2

1Computer Science Dept., Mosul University, Computer Sciences and Mathematics College

Mosul, Iraq

2Computer Science Dept., Mosul University, Computer Sciences and Mathematics College

Mosul, Iraq

Abstract
Just as the multi-core processors took all the attention in general

computing field in the past decade, so too multi-core smartphones

are taking all the attention today. Relying on the principles of

tasks and data parallelism. We propose in this paper a parallel

programming approach on quad-core smartphones to do a big

matrices multiplication, and show how to increase the utilization

of processors to achieve improvement on the system’s runtime.

Keywords: Smartphone, Parallel processing, Multi-core

processor, Matrices multiplication.

1. Introduction

Mobility is a key term in the world of today. No matter

where you are or what you are doing you are surrounded

by a world of mobile devices. No longer are we confined to

work at a desktop terminal, we can now work and

communicate from virtually any location. This new mode

of interaction has been made possible by the advances in

the world of miniaturisation. We can now work and

communicate by using a myriad of devices such as:

Laptops, Ultra Mobile PC’s, PDA’s and mobile phones.

Even though we may be surrounded by these devices, the

question must be raised: are we using them to their fullest

potential? One possible solution to this lies within the area

of parallel processing [10], without realizing the true

potential of embedded multi-core architecture, we are not

making full use of this now technology.

Multi-core architectures for personal computers is an

important field in our everyday computing , many

frameworks and APIs focusing on parallel programming

have been proposed for multi-core processors, that achieve

speedup and maximum processor utilization. However,

very little researches have been proposed in the area of

multi-core architecture for smartphones primarily because

this is a relatively new concept and not many end-products

have embraced such architecture. The recent release of

multi-core smartphones optimized for both performance

and power consumption, such as Samsung Galaxy SII and

SIII [8], has revolutionized mobile computing and opened

up the door to new research paradigms, especially for real-

time processing.

Now we can consider complex algorithms for potential

implementation that previously regarded as impractical for

deployment on smartphones platforms. For instance,

performing certain computation on big data matrices on

smartphone was very difficult in the past, due in part to its

memory constraints but primarily to the processing power

of the smartphone. It is desirable to be able to use complex

algorithms whenever possible because they generally yield

more accurate results. Fortunately, the recent release of

multi-core smartphones has empowered us to do exactly

that, as true parallelism can now be achieved [1].

2. Contributions

In this paper, we consider the problem of big matrices

multiplication, relying on the principles of task and data

parallelism, we propose in this paper a parallel

programming approach on quad-core mobile devices to do

big matrices multiplication that has the following

prosperities:

1. Show how to increase the utilization of processors to

achieve improvement on the system’s runtime.

2. Show the full capabilities of multi-core processor

utilization.

3. Related work

On the parallel programming front, making a task

parallelizable and run on multiple cores can be a grueling

process. Challenging issues include thread

synchronization, data race, and starvation.

Many attempts have been made by researchers and

programmers alike to design a high-level framework that

provides an abstraction layer for programmers to use. Such

framework allows the programmers to fully focus on

application development without unnecessary worry about

parallel programming. The ParLab at Berkeley, UPCRC at

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 303

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Illinois, and the Pervasive Parallel Laboratory at Stanford

propose a two-layer framework, consisting of the

productivity layer where domain experts, assumed to have

limited experience with parallel programming, can focus

on application development, and the efficiency layer where

computer scientists with strong background in parallel

programming can focus on improving the efficiency of the

application [5].

Similar to the aforementioned framework, programming

models such as algorithmic skeletons have also been

proposed, aiming to benefit from multi-core architectures

while decoupling the hassle of thread management from

common programming. Skandium and Calcium [4] provide

high-level parallel programming libraries based on the

thread pool and ExecutorService frameworks in JAVA.

Users only need to provide a threshold for threads and a set

of initial parameters.

Daniel C. Doolan, and Laurence T. Yang in year 2006.

They considered the problem of matrix multiplication to

show and demonstrates that mobile devices are capable of

parallel computation using Mobile Message Passing

Interface (MMPI). MMPI allows parallel programming of

mobile devices over a Bluetooth network [2].

Panya Chanawangsa, and Chang Wen Chen in year 2012.

They demonstrate how proper utilization of a dual-core

mobile processer can achieve tremendous speedup in

mobile application [1].

4. Development Platform

The system was developed on Android 4.1.2 (Jelly Bean).

Released in September 2012. The phone’s most

outstanding feature is its processor – a superscalar quad-

core 1.4 GHz Arm Cortex-A9 with 2 GB RAM [8].

Optimized for high performance and low power

consumption, the Galaxy SIII is indeed an ideal platform

for this system.

5. Matrix Multiplication

Matrix multiplication is a time consuming operation

because for an n × n matrix the best possible time

complexity is O(n2) it cannot be less than this as all n2 cells

must be visited. Assume two matrices are to be multiplied,

if A is an n×m matrix and B is an m×p matrix, the result

AB of their multiplication is C n×p matrix defined only if

the number of columns m in A is equal to the number of

rows m in B. When multiplying matrices, the elements of

the rows in the first matrix are multiplied with

corresponding columns in the second matrix. One may

compute each entry in the third matrix one at a time [2][3].

For two matrices

(where necessarily the number of columns in A equals the

number of rows in B equals m) the matrix product AB is

defined by

where AB has entries defined by

 (1)

The implementation of matrix multiplication in application

code is generally a question of three loops as shown in

Figure (1).

Fig. 1 Method to calculate product of two matrices.

6. Parallel Processing

Parallel processing involves multiple processes which are

active simultaneously and solving a given problem,

generally on multiple processors. We are underplaying the

role of physical multiprocessing here, because the study of

parallel processing does not require multiple processors.

Most of OS today provide multiprocessing / tasking, which

can be exploited to study the issues and programming

aspects of pp. But, we must have multiple processes (or

rather, independent execution units) which are

simultaneously active. These units take the role of different

processing units (or processors). The critical aspect here is

“solving a given problem”. The processes must all be

concerned with the solution of one single problem.

In other words, there must be interaction among the units.

For example, one unite compiling file1 and another

compiling file2, will not be considered as parallel

processing, because these two are absolutely independent

tasks according to the definition of C language. But, if one

private void mult(int a[][],int b[][],
int c[][])
{for (int i = 0; i < a.length; i++)
{for (int j = 0; j < b[0].length; j++)
{for (int k = 0; k < a[0].length; k++)
{c[i][j] += a[i][k] * b[k][j];}}}}

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 304

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

unit is compiling a statement from file1 and the other is

compiling the next statement from the same file, they need

to share variable declaration and scoping information,

properly between them. Hence they are solving a single

problem and not two separate problems. We can, therefore,

consider that as parallel processing [9].

7. Multithreading and Processor Utilization

Since a mobile phone is considered a general-purpose

device, application-level parallelism is the best we can

achieve. Without explicitly using multiple threads, speedup

from a multi-core architecture will not be obvious. In this

paper, we propose a general guideline for breaking down a

global task into multiple subtasks and later demonstrate

how to apply this idea on a matrix multiplication task.

The first step towards parallelizing a task is to determine

the optimal number of threads to use. Limiting thread

contention is crucial for application speedup. Spawning too

many threads than necessary not only disrupts other

applications, but may also result in a longer execution time

of the application due to the overhead associated with

context-switching. A processor core can handle only one

thread at a time. For efficiency purposes, a simple rule is to

spawn as many threads as the number of cores available,

thereby delegating one thread to each core and eliminating

the need for time-slicing. A simulation was conducted by

spawning different numbers of threads to execute certain

tasks. A dramatic improvement in execution time can be

seen when we increase the number of worker threads from

1 to4. However, since there are only four available cores,

increasing the number of threads does not enhance but

aggravates the performance, resulting in a slightly longer

execution time.

8. Matrix slicing

The next step is to determine if data parallelism is possible

and appropriate. For this work, matrix multiplication, data

comes in the form of matrices, or on the lower level 2-

dimensional arrays. In many cases, they can be split up into

smaller independent chunks and processed concurrently,

reducing the execution time while producing the same

output as when processed sequentially. For instance, to

multiply two matrices A and B , we can split matrix A up

into smaller sub-matrices (matrix slicing) and multiply

each sup-matrix from matrix A with matrix B concurrently.

However, if the size of data to be processed is not

significantly large, employing data parallelism will not

yield much speedup as a result of thread overhead. In the

case of this application, since the matrices are large

(1500×1500), data parallelism is well worth a try.

Generally speaking, given k processor cores, we should

divide the input data of size n into n/k smaller chunks and

distribute them across k cores with each core running a

single thread. Figure (2).

Fig. 2 Matrix slicing

9. Speedup

Speedup is the expected performance benefit from running

an application on a multi-core versus a single-core

machine. When speedup is measured, single-core machine

performance is the baseline. For example, assume that the

duration of an application on a single-core machine is six

hours. The duration is reduced to three hours when the

application runs on a quad machine. The speedup is 2-

(6/3)- in other words, the application is twice as fast [7].

Speedup can be found by using the formula below

Total Speedup = Ts / Tp (2)

Ts : is the runtime without parallelism.

Tp : is the runtime with parallelism.

10. Putting It All Together: The Proposed

System In Action

For the parallel computation we consider that the matrices

are square. The parallel computation requires several steps

that are not required in the sequential version of the

application (Figure 3). One of the first main differences is

that we need to determine the number of threads suitable

for the phone hardware. Since Samsung Galaxy SIII has

four cores, four threads are ideal for execution the task in

hand. So that the matrix must be split in to four same size

blocks called sub-matrix, then send each sub-matrix to one

of the four cores we have. Once this operation has been

completed each core can compute its own section of the

matrix. The final stage is to gather all the results back in to

one matrix. The result of the computation can then be

available for the user.

To gain full control of task management, we also make use

of the FutureTask class , allowing us to track the progress

of the submitted tasks and block until all of them have

been completed. The four tasks are eventually submitted to

CORE

CORE

CORE

CORE

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 305

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

an ExecutorService, which takes care of thread pool

creation and assigns a submitted task to an available

thread. More importantly, by using the ExecutorService,

memory consistency is guaranteed, thus eliminating the

trouble of thread synchronization. Figure (4).

Fig. 3 Overall functionality of the system.

11. Experimental Results

The system tested on different size matrices, The results

are shown in (Table (1)) below:

Table 1: Experimental results

Matrix size Time in sequential Time in parallel

500×500 7435ms 2466ms

1000×1000 80497ms 22645ms

1500×1500 319766ms 101394ms

Fig. 4 Code snippet illustrating matrix slicing, task submission and use of

ExecutorService.

Figure (5) below shows runtime comparison between sequential

and parallel.

Fig 5. Runtime comparison between sequential and parallel.

Figure (6) below shows expected performance comparison.

0

50000

100000

150000

200000

250000

300000

350000

Sequential

Parallel

Read the matrices

 Matrix slicing

Form the result

matrix

 Result matrix

Make new thread

for each sub-

matrix

Submit threads

 Wait for results

Getting results

Multiply

sub-matrix

Multiply

sub-matrix

Multiply

sub-matrix

Multiply

sub-matrix

Final ExecutorService es;
int nsize=size/4;

int[][] a1=new int[nsize][size];
int[][] a2=new int[nsize][size];

int[][] a3=new int[nsize][size];

int[][] a4=new int[nsize][size];
for(int i =0;i<nsize;i++)

for(int j=0;j<size;j++)

{a1[i][j]=a[i][j];
a2[i][j]=a[i+nsize][j];

a3[i][j]=a[i+nsize*2][j];

a4[i][j]=a[i+nsize*3][j];}
Future f1; Future f2; Future f3; Future f4;

f1=es.submit(new Callable<Object>(){

@Override
public Object call() throws Exception

{mult1(a1);

return true; }});
f2=es.submit(new Callable<Object>(){

@Override

public Object call() throws Exception
{mult2(a2);

return true; }});

f3=es.submit(new Callable<Object>(){
@Override

public Object call() throws Exception

{mult3(a3);
return true; }});

f4=es.submit(new Callable<Object>(){

@Override
public Object call() throws Exception

{mult4(a4);

return true; }});
try {

f1.get();f2.get();f3.get();f4.get();

Toast.makeText(getBaseContext(),
 "Getting results",Toast.LENGTH_SHORT).show();

} catch (InterruptedException e) {

e.printStackTrace();}}

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 306

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 6 Expected performance comparison : (1) Matrix multiplication

without using the proposed system vs. (2) Matrix multiplication using the

proposed system.

From the time results in (Table (1)), we can see that the

system achieved a great speedup as shown in (Table (2))

below:

Table 2: Speedup results

Matrix size Speed up

500×500 3.01

1000×1000 3.55

1500×1500 3.15

Figure (7) below shows speedup results.

Fig 7. Speedup results

12. Conclusions

In this paper, we have demonstrated how to achieve

speedup in a big matrices multiplication system written

entirely in JAVA by using the proposed parallel

programming approach, based on the idea of task and data

parallelism. Running on a quad-core Samsung Galaxy SIII.

The proposed system shows significant reduction in the

overall processing time and great speedup.

13. References

[1] Panya Chanawangsa, Chang Wen Chen, “A New Smartphone

Lane Detection System: Realizing TruePotential of Multi-core

Mobile Devices”, MoVid’12, 2012, pp.19-24.
[2] Laurence T. Yang, Daniel C. Doolan, “Mobile Parallel

computing”, Proceedings of The Fifth International

Symposium on Parallel and Distributed Computing, IEEE

International,2006.
[3] Gene H. Golub, Charles F. Van Loan, Matrix Computations,

The johns Hopkins University Press,2013.
[4] Tsogkas Panagiotis, “Evaluating Skandium’s Divide-and-

Conquer Skeleton”, Master Thesis, School of Information,

University of Edinburgh, 2010.

[5] Catanzaro, B., et al., “Ubiquitous Parallel Computing form

Berkeley, Illinois, and Stanford”, IEEE Computer Society,

2010, pp. 41-55.

[6] Herve Guihot, Pro Android Apps Performance Optimization,

Apress, 2012.

[7] Donis Marshall, Parallel Programming with Microsoft Visual

Studio, Microsoft Corporation by: O’Reilly Media, 2011.

[8] Samsung I9305 Galaxy S III Full Specifications,

http://www.gsmarena.com/samsung_i9305_galaxy_s_iii-

5001.php

[9] M. Sasikumar, Dinesh Shikhare, P. Ravi Prakash,

Introduction To Parallel Processing, Prentice-Hall of India

Private Limited, 2006.

[10] Daniel C Doolan, Sabin Tabirca, Laurence T Yang,” MMPI

a Message Passing Interface for the Mobile Environment”,

Proceedings of MoMM2008, Linz, Austria, 2008.

Dhuha Albazaz is the head of Computer Sciences Department,
College of Computers and Mathematics, University of Mosul. She
received her PhD degree in computer sciences in 2004 in the
speciality of computer architecture and operating system. She
supervised many Master degree students in operating system,
computer architecture, dataflow machines, mobile computing, real
time, and distributed databases. She supervised three PhD
students in FPGA field, distributed real time systems, and Linux
clustering. She also leads and teaches modules at both BSc, MSc,
and PhD levels in computer science. Also, she teaches many
subjects for PhD and master students.

Mohammed M. Al-Hafidh is a master student in Computer

Sciences Department, College of Computers and Mathematics,
University of Mosul. He interest with networks, Databases, and
operating system subjects

0

0.5

1

1.5

2

2.5

3

3.5

4

Speedup

1

2

Computations on the matrices

Matrix

Slicing

Computations on

sub-matrix 1

Computations on

sub-matrix 2

Computations on

sub-matrix 3

Computations on

sub-matrix 4

Expected

performance

speedup

Matrix

Gatherin

g

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 307

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://www.gsmarena.com/samsung_i9305_galaxy_s_iii-5001.php
http://www.gsmarena.com/samsung_i9305_galaxy_s_iii-5001.php
http://www.google.iq/search?hl=ar&tbo=p&tbm=bks&q=inauthor:%22M.+Sasikumar%22
http://www.google.iq/search?hl=ar&tbo=p&tbm=bks&q=inauthor:%22Dinesh+Shikhare%22
http://www.google.iq/search?hl=ar&tbo=p&tbm=bks&q=inauthor:%22P.+Ravi+Prakash%22

