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Abstract 
Due to the growth in demand for software with high reliability 
and safety, software reliability prediction becomes more and 
more essential. Software reliability is a key part of software 
quality. Over the years, many software reliability models have 
been successfully utilized in practical software reliability 
engineering, however, no single model can obtain accurate 
prediction for all cases. So in order to improve the accuracy of 
software reliability prediction the proposed model combine the 
software reliability models with the neural networks (NN). 
Particle swarm optimization (PSO) algorithm has been chosen 
and applied for learning process to select the best architecture of 
the neural network. The applicability of the proposed model is 
demonstrated through three software failure data sets. The results 
show that the proposed model has good prediction capability and 
more applicable for software reliability prediction.  
Keywords: software reliability prediction, neural network,   
particle swarm optimization 

1. Introduction 
As the use of software is increasing, the failures are also 
increasing rapidly. The consequences of failures may lead 
to loss of life or economic loss. So, the software 
professionals need to develop software systems which are 
not only functionally attractive but also safe and reliable 
[6]. Software reliability is defined as the probability of 
failure free software operation for a specified period of 
time in a specified environment[5]. Being able to predict 
the number of faults resides in software helps significantly 
in specifying/ computing the software release day and 
manage project resources (i.e. people and money) [23]. 

Software reliability growth models, refers to those models 
that try to predict software reliability from test data. These 
models try to show a relationship between fault detection 
data (i.e. test data) and known mathematical functions 
such as logarithmic or exponential functions. The 
goodness of fit of these models depends on the degree of 
correlation between the test data and the mathematical 
function[4]. Typically two broad categories of software 
reliability growth models (SRGMs) include parametric 
models and nonparametric models. Most of the parametric 
models are based on nonhomogeneous Poisson process 
(NHPP) that has been widely used successfully in practical 

software reliability engineering[24]. Artificial neural  
network (ANN)  with software reliability models have 
aroused more research interest . 
in this paper, we use the effect of neural network  to build 
non-parametric model for software reliability prediction, 
with the particle swarm optimization (PSO) algorithm used 
in our work for learning and to select the best architecture 
of the neural network. 
 
The rest of this paper is organized as follows: 
In section 2 a brief review of the researches carried out in 
the area of software reliability prediction is presented. 
Section 3 include background about software reliability. In 
section 4 the various artificial techniques that are applied 
in this paper are described briefly. Section 5 depicts neural 
network based approach for software reliability modeling. 
Section 6 presents  the proposed model. Section 7 presents 
the experimental methodology and results. Section 8 
conclude the paper. 
 

2. Related Work 

In recent years, many papers have presented various 
models for software reliability prediction . In this section, 
some works related to neural network techniques for 
software reliability modeling and prediction are presented. 
 
Karunanithi et al. [18][16] first presented neural network 
based software reliability model to predict cumulative 
number of failures, the execution time is used as the input 
of the neural network. They used different networks like 
Feed Forward neural networks, recurrent neural networks 
like Jordan neural network and Elman neural network in 
their approach. 
Karunanithi et al. [19] also used connectionist models for 
software reliability prediction, the results shows that the 
connectionist models may adapt well across different 
datasets and exhibit a better predictive accuracy. 
Karunanithi et al. [17] they also predict the software 
reliability using neural network and present a solution to 
the scaling problem uses a clipped linear unit in the output 
layer of the neural network. 
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Su et al.[26] they used the neural network approach to 
build a dynamic weighted combinational model. 
Sitte [25] presented a neural network based method for 
software reliability prediction. He compared the approach 
with recalibration for parametric models using some 
meaningful predictive measures with same datasets. They 
concluded that neural network approach is better 
predictors. 
Cai et al. [8] proposed a neural network based method for 
software reliability prediction. They used back propagation 
algorithm for training. They used multiple recent 50 failure 
times as input to predict the next-failure time as output. 
They evaluated the performance of the approach by 
varying the number of input nodes and hidden nodes. They 
concluded that the effectiveness of the approach generally 
depends upon the nature of the handled data sets. 
Hu et al. [12] proposed an artificial neural network model 
to improve the early reliability prediction for current 
projects/releases by reusing the failure data from past 
projects/releases.  
Su et al. [27] proposed a dynamic weighted combinational 
model (DWCM) based on neural network for software 
reliability prediction. They used different activation 
functions in the hidden layer depending upon the software 
reliability growth models (SRGM).  
Aljahdali et al. [2] investigated the performance of four 
different paradigms for software reliability prediction. 
They presented four paradigms like multi-layer perceptron 
neural network, radial-basis functions, Elman recurrent 
neural networks and a neuro-fuzzy model. They concluded 
that the adopted model has good predictive capability. 
 
In [24], Singh et al. used feed forward neural network for 
software reliability prediction. They applied back 
propagation algorithm as learning algorithm. The 
experimental result had shown that the proposed system 
has better prediction than some traditional software 
reliability growth models. 
Wang et al.[30] they used artificial neural network with 
software reliability combinational model by constructing 
the transfer function corresponding to the selected model. 
 
In [13], Huang et al. derived software reliability growth 
models (SRGM) based on non-homogeneous poison 
processes (NHPP) using a unified theory by incorporating 
the concept of multiple change-points into software 
reliability modeling. They estimated the parameters of 
their proposed models using three software failure data 
sets and compared results with some existing SRGM. 
Their model predicted the cumulative number of failures 
in various stages of software development and operation. 
 
In [6][15][31], it was presented that the performance of a 
neural network system can be significantly improved by 
combining a number of neural networks. 

3. Background  
3.1  Concept of software reliability 

Software reliability is one of the important factor been 
considered while ensuring the software quality. In simple 
term we can say that software reliability deals with the 
failure or faults that exist in the system [11]. Failures are 
the result of a fault in the software code, and several 
failures can be the result of one fault. The process of 
finding and removing faults to improve the software 
reliability can be described by a  mathematical relationship 
called a software reliability growth model (SRGM)[3]. 

3.2  Software reliability growth models(SRGMs) and 
criteria 

A software reliability growth model (abbreviated as 
SRGM)  is known as one of the fundamental technologies 
for quantitative software reliability assessment, and  
playing an important role in software project management 
for producing a highly-reliable software system[14]. 
SRGM is mathematical model, shows how software 
reliability improves as faults are detected and repaired. 
SRGM can be used to predict when a particular level of 
reliability is likely to be attained. Thus, SRGM is used to 
determine when to stop testing to attain a given reliability 
level [21]. There are many software reliability growth 
models but the Commonly used model of software 
reliability models are JM, GO model, MO model, Sch 
model, S-Shape model. To evaluate the prediction powers 
of different models, it is necessary to use a meaningful 
measures. In this paper we use two criteria: Root Mean 
Square Error (RMSE) and Average Error(AE). These 
criteria are used to measure the difference between the 
actual and predicted values, the formulas is as  Eq. (1) (2). 
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 Where n is the number of groups of failure data, )(kc   is 
the number of the actual failures in each group of failure 
data, )(ˆ kc  is the number of the predicted failures. The 
smaller the RMSE and AE, the stronger that the model 
prediction ability[6] [30]. 

4. Overview of The Artificial Techniques 
Used 

4.1  Artificial neural networks (ANNs) 

An artificial neural network, or simply neural network, is a 
type of artificial intelligence (computer system) that 
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attempts to mimic the way the human brain processes and 
stores information. It works by creating connections 
between mathematical processing elements, called 
neurons, Fig.1 shows a neuron. Knowledge is encoded into 
the network through the strength of the connections 
between different neurons, called weights, and by creating 
groups, or layers, of neurons that work in parallel. The 
system learns through a process of determining the number 
of neurons or nodes and adjusting the weights for the 
connections based upon training data[27][29]. 

 

 

Fig. 1  The model of neuron  

4.2  Particle swarm optimization(PSO) 

Particle swarm optimization (PSO) is a population-based 
stochastic optimization technique modeled on the social 
behaviors observed in animals or insects, e.g., bird 
flocking, fish schooling, and animal herding. It was 
originally proposed by James Kennedy and Russell 
Eberhart in 1995. Since its inception, PSO has gained 
increasing popularity among researchers and practitioners 
as a robust and efficient technique for solving difficult 
optimization problems[7]. 

 
The swarm of particles initialized with a population of 
random candidate solutions move through the d-dimension 
problem space to search the new solutions. The fitness f, 
can be calculated as the certain qualities measure. Each 
particle has a position represented by a position-vector 
present i (i is the index of the particle), and a velocity 
represented by a velocity-vector velocity i. After every 
iteration the best position-vector among the swarm is 
stored in a vector. The update of the velocity from the 
previous velocity to the new velocity is determined by  Eq. 
(3). The new position is then determined by the sum of the 
previous position and the new velocity by Eq. (4). 
 
 Velocity ij(new) = w * velocity ij(old) + c1rand1(pbest ij(old))  
                                 −  present ij(old) + c2rand2(gbest j(old)  
                                   − present ij(old))                                      (3) 
                                
 Present ij(new) = present  ij(old) + velocity  ij(new)              (4) 

 

Here w is the inertia weight, rand1 and rand2 are the 
random numbers usually chosen between [0,1]. c1 is a 
positive constant ,called as coefficient of the self-
recognition component, c2 is a positive constant, called as 
coefficient of the social component and the choice of value 
is c1=c2= 2 generally referred to as learning factors[28].                                                                 

4.3  Training the artificial neural network(ANN) 
using PSO algorithm 

In this paper we use the particle swarm optimization(PSO) 
algorithm for learning and selecting the best architecture 
of our feedforward neural network, PSO is applied to 
feedforward neural network as follows: 

The position of each particle in swarm represents a 
set of weights for the current epoch or iteration. The 
dimensionality of each particle is the number of 
weights associated with the network. The particle 
moves within the weight space attempting to 
minimize learning error. Changing the position 
means updating the weight of the network in order to 
reduce the error of the current epoch. In each epoch, 
the particles update their position by calculating the 
new velocity, and move to the new position. The 
new position is a set of new weights used to obtain 
the new error. This process is repeated and the 
particle with the lowest learning error is considered 
as the global best particle. The training process 
continues until satisfactory error is achieved by the 
best particle or computational limits (maximum 
iteration) are exceeded[1]. 

5. Neural Network Based Approaches for         
Software Reliability Modeling 

5.1  The selection of the base models 
As we mentioned in section 3 there are many software 
reliability models, among these models we choose GO 
model, logistic curve model, S-Shape model because their 
performance in software reliability evaluation. The failure 
mean value function of These three model are as Eq. (5)(6) 
and (7) [22]. 

 

m(t) = )1( btea                           GO model        (5) 

m(t) = btke
a

1
                        logistic curve model  (6) 

m(t) = ))1(1( btebta                S-Shape model   (7) 
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5.2  Design the activation function of a neural    
Network  for each base model 

The derivation of the neural network into a software 
reliability modeling  had depicted as follow:  

For example, if  we take the logistic growth curve model, 
this model simply fits the mean value with a form of the 
logistic function. so if we consider the basic feedforward  
neural network shown in Fig. 2, the derivation equations 
for the activation function of the neural network into 
software reliability models are depicted in Eq. (8),(9) and 
(10) . 
 
    y(t) = 	଴	ଵଵݓ ൫1 − ݁ି൫௪భభ		భ ௧൯൯                GO model        (8) 
 

  		y(t) = 	 ୵భభ
బ

ଵାୣష൫౭భభ
భ 	౪൯	              logistic curve model        (9)  

    
   	y(t) = 	 	11ݓ

0 	൫1 − (1 11ݓ	+
1 1	11ݓ−݁	൯(ݐ	  S-Shape model     (10)         	ݐ

	
                           
                             
ଵଵଵݓ                                    h(t)    ݓଵଵ଴    
         X(t)                                                           y(t) 
 

Fig. 2  Feed-forward neural network with single neuron in each layer 

 
Where  the input, x(t), at time t is fed to the input layer, 
h(t) is the output of the hidden layer, y(t) is the output of 
the output layer[26]. 

 
 6. Methods 
 
In this section, we present the proposed model for software 
reliability prediction based on neural network. 

6.1  Software reliability data 

During the execution process the software may fail. Fig. 3 
illustrate the software failure process, where ݐ௜  is the 
execution time for 	݅	th software failure and ∆	ݐ௜		 ௜ݐ	= −
݅)  is the time interval between the	௜ିଵݐ − 1)th and ݅	th 
software failures [31]. The proposed model is used for 
predicting by taking execution time ݐ௜ 		as input and the 
accumulative number of failures 	 ௜ܰ		as output. 
 

 

Fig. 3   Software failure process.   

6.2  The proposed model 

The prediction model based on neural network is shown in 
Fig.4, the input of the model is  ݐ௜		which is encoded value 
of the execution time between (0,1), the output of the 
system is the cumulative number of failure		 ௜ܰ 	, the 
prediction model consist of three neural network combined 
together, each one is a three - layer feedforward  neural 
network(FFNN) with n number of hidden neurons in the 
hidden layer, and there is a bias node in the input and the 
hidden layer, the activation function of the first neural 
network  represent GO model, the activation function of 
the second  neural network  represent  logistic curve model  
and the third  neural network  represent S-Shape model. 
For example the output of the first neural network as Eq. 
(11). 

y(t) = 1- eିቀ൫୵మభ(୩ଵ)ା୵మమ(୩ଶ)ା୛మయ(୩ଷ)൯ା୆∗ୠ୵మరቁ            (11) 

k1 = 1 − eି୵భభ	୲	ା	୆	∗	ୠ	୵భభ  
k2 = 1 − eି୵భమ	୲	ା	୆	∗	ୠ	୵భమ 	 
k3 = 1 − eି୵భయ	୲	ା	୆	∗	ୠ	୵భయ  
 
the output of the three neural network are combined 
together using mean value  rule which is defined as  Eq. 
(12). 

    
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Where miN ,  is the output of 3 neural network, 
m=1,2,…M. 
 
 

 

Fig.4  The architecture of the proposed model 
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6.3  The optimal set of PSO parameters 
 
The PSO algorithm with well-selected parameter set can 
have good performance, In our software reliability 
prediction model, we use n number of swarms, the number 
of particle in each swarm is 25, the inertia weight is 0.9. 
according to Eberhart and Shi [10], the acceleration 
coefficients c1,c2 represent the stochastic acceleration that 
pulls each particle toward Gbest and Pbest position. In our 
model the acceleration coefficients c1,c2 changed in each 
iteration, and decreasing from large value to a small value 
through each iteration to improve the performance of the 
PSO algorithm,c1Max=0.9, c1Min=0.1, c2Max=0.2, 
c2Min=0.1. 
 
6.4  Artificial neural network training and selecting 

the best architecture for the proposed model 
 
The connection weights of the network have to be adjusted 
through a learning algorithm based on the training data, 
each neural network is trained with different initial 
weights connecting the three layers, the three NN trained 
in parallel by using particle swarm optimization(PSO) 
algorithm as we mentioned in section 4. 
The number of neurons in the hidden layer determines the 
network's learning capabilities and its selection is a key 
issue in optimal network structure design. For selecting the 
best architecture of the NN(optimal number of the hidden 
layer neurons), we first build n models of NN architecture, 
each one have a different number of hidden neurons in the 
hidden layer, according to this we initialize n number of 
swarms based on the number of the models of the  NN 
architecture. Fig.5 shows the flowchart of PSO learning 
process and selecting the best architecture. At the end of 
the training process ( the maximum number of iterations ), 
we get n number of Gbest (the optimal weights) of each 
swarm, then we evaluate the performance of each NN 
architecture based on the set of weights taken from Gbest, 
the evaluation is done by calculate the mean squared 
error(MSE), and the simulation results for the optimal 
number of the neurons in the hidden layer based on the 
minimum  MSE. 

7.  Experiments 

The proposed approach is applied to three software 
reliability datasets DS1[20], DS2[9] and DS3[23]. The 
DS1 and DS3 was collected from a real-time command 
and control application with 136 failures for DS1, 481 
failures for DS3, the DS2 was collected from Operating 
System with 375 failures. The execution time and the 
number of failures of each dataset are normalized to the 
range of [0,1]. The model trained using 70% of the failure 
data for each dataset and the remaining data were used to 

test the model, the evaluation criteria (AE, RMSE) of the 
training and testing are shown in table 1. Figures 6 to 11 
are showing the training and testing result for various 
datasets using our proposed model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 the flowchart of PSO learning process and selecting the best 
architecture. 

 
Table 1: results for the AE and RMSE of the training and testing dataset 
obtained using the proposed model 
 

Dataset 
no. 

Best no. 
of  hidden 
 neuron 
 

Training data Testing data 

AE RMSE AE RMSE 

DS1 15 
 

5.338824 

 
0.016248 

 
7.178521 

 
0.018374 

 
DS2 15 

 
5.666911 

 
0.016613 

 
6.087315 

 
0.018605 

 
DS3 3 

 
3.219852 

 
0.013820 

 
4.481290 

 
0.018025 

 

 
 
 
 
 
 
 
 
 
 
 
 

Start 

  Initialization 
1- build n NNs (different no. of hidden nodes (nh) in the hidden layer)     
2- initialize  n  swarms (positions, velocities, swarm  size, Vmax, Vmin,)   
 

Train the NNs using initial particle position 

 
Next  iteration 

 
learning error (set overall best error as Gbest and each particle best error as Pbest) 

 

Calculate velocity and update positions based on Gbest and Pbest particle in each 
swarm 

 
  Evaluate (train NNs using the updated particles to get new  Gbest and Pbest in each    
  swarm 
 

Stopping 
criteria  
satisfied? 

  Evaluate the NNs performance based on each Gbest (according to    
  the   match structure) 
 

Calculate the MSE of each  NN { MSE1,MSE2, …. , MSEn } 

 

nh = nh   min { MSE1,MSE2 , … , MSEn } 

 

End 
 

no 

yes 
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Fig. 6  Actual and predicted failure using DS1 (Training  case) 

 
Fig. 7  Actual and predicted failure using DS1 (Testing  case) 

 
Fig. 8  Actual and predicted failure using DS2 (Training  case) 

 
Fig. 9  Actual and predicted failure using DS2 (Testing  case) 

 
Fig. 10  Actual and predicted failure using DS3 (Training  case) 

 
Fig. 11  Actual and predicted failure using DS3 (Testing  case) 
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8. Conclusions 
Software reliability is generally accepted as the major 
factor in software quality since it quantifies software 
failures. Neural networks trained by particle swarm 
optimization (PSO) has shown to be an effective non-
parametric technique for software reliability prediction by 
optimizing the mean squared error(MSE), Selecting the 
best architecture of the network are also concerned for 
enhancing the performance of our model. The 
experimental results show that the proposed model gives 
acceptable result for different datasets relating to the 
prediction of the software cumulative failure.  
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