
Broad View of Cryptographic Hash Functions

Mohammad A. AlAhmad
1

, Imad Fakhri Alshaikhli
2

1

Department of Computer Science, International Islamic University of Malaysia, 53100 Jalan Gombak Kuala Lumpur, Malaysia,

2

Department of Computer Science, International Islamic University of Malaysia, 53100 Jalan Gombak Kuala Lumpur, Malaysia

Abstract

 Cryptographic hash function is a function that takes an arbitrary length

as an input and produces a fixed size of an output. The viability of using

cryptographic hash function is to verify data integrity and sender identity

or source of information. This paper provides a detailed overview of

cryptographic hash functions. It includes the properties, classification,

constructions, attacks, applications and an overview of a selected

dedicated cryptographic hash functions.

Keywords-cryptographic hash function, construction, attack,

classification, SHA-1, SHA-2, SHA-3.

1. INTRODUCTION

A cryptographic hash function H is an algorithm that takes an

arbitrary length of message as an input {0, 1}
*
 and produce a

fixed length of an output called message digest {0, 1}
n

(sometimes called an imprint, digital fingerprint, hash code, hash

result, hash value, or simply hash). Cryptographic hash functions

play a fundamental role in modern cryptography practical

applications, for example, digital signature [1,2], digital

timestamp [3], message authentication code (or MAC) [4], public

key encryption [5], tamper detection of files and many others.

This versatility earned them the nickname ―Swiss army knife of

cryptography‖.

2. CLASSIFICATION, PROPORITIES, CONSTRUCTIONS AND

ATTACKS OF HASH FUNCTIONS

A. Classification of Hash Functions

Cryptographic hash functions can be classified as unkeyed

hash functions and keyed hash functions as Figure 1 shown.

Unkeyed hash functions that accepts a variable length message as

a single input and produce a fixed hash digest, H: {0,1}*→{0,1}
n
.

It is also known as modification detection codes (MDCs). Where,

keyed hash functions accept a variable length message and a fixed

length secret key as two inputs to the hash function design to

produce a fixed length hash digest, HK: {0,1}
k
×{0,1}*→{0,1}

n
. It

is also known as message authentication codes (MACs). Unkeyed

hash function is further classified into one-way hash function

(OWHF), collision resistant hash function (CRHF), universal one

way hash function (UOWHF) [2].

Figure 1. Classification of cryptographic hash function

CRHF usually deals with longer length hash values. An

unkeyed hash function is a function for a fixed positive integer n

which has, as a minimum, the following two properties:

1) Compression: h maps an input x of arbitrary finite bit

length, to an output h(x) of fixed bit length n.

2) Ease of computation: given h and an input x, h(x) is easy

to compute.

Modification Detection Codes are classified as follows:

1) One-way hash function is a hash function where finding

an input which hashes to a pre-specified hash digest is

difficult.

2) A collision resistant hash function is a hash function

where finding any two inputs having the same hash

digest is difficult.

3) In a universal one-way hash function, for randomly

chosen input x, key k and the function Hk, it is hard to

find y = x such that Hk(x) = Hk(y) [2].

A keyed hash function is a function whose specific purpose is

called message authentication code (MAC) algorithms as shown

in Figure 1.Keyed hash functions should satisfy the following two

properties:

1) Compression: Hk maps an input x of arbitrary finite bit

length, to an output Hk(x) of fixed bit length n.

2) Ease of computation: for a known function Hk, given a

value k and an input x, Hk(x) is easy to compute. The

result is called MAC value [2].

Apart from the classification of keyed and unkeyed hash

functions, they can be classified into other ways such as hash

function based on block ciphers, hash function based on modular

arithmetic and dedicated hash functions.

B. Proporities of Hash Functions

Hash functions play a major role in application security today.

Hash functions provide different security properties depend on the

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 239

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

security requirements of the application. The basic security

properties of hash functions are preimage resistance, second

preimage resistance and collision resistance. They are explained

below:

1. Preimage resistance: for any given code h, it is

computationally infeasible to find x such that H(x) = h.

2. Second preimage resistance: for any given input m, it is

computationally infeasible to find y ≠m with H(y) =

H(m).

3. Collision resistance: it is computationally infeasible to

find any pair (m, y) such that H(y) = H(m) [2].

Figure 2 illustrates the definitions of hash function security

proprieties.

H	

?	

H	

?	

H	

?	

H	

m	

H	

?	

Preimage resistance	 Second-preimage resistance	 Collision resistance	

Figure 2. Hash function security proprieties

The preimage resistance property can be described as the

inability to learn about the contents of the input data from its hash

digest. The second preimage resistance property can be expressed

as the inability to learn about the content of the second preimage

from the given first preimage such that both of these preimages

have same hash digest. The collision resistance property can be

interpreted when two different and separate contents of inputs

yield to the same hash digest.

C. Classification of Hash Functions

Building hash functions can be achieved by using various

constructions such as Merkle-Damgård or sponge constructions.

Merkle-Damgård construction was introduced by R. Merkle‘s

PhD in 1979. It represents a guidance of building dedicated hash

functions from compression functions. In 2007, sponge

construction introduced in SHA-3 competition by Guido Bertoni,

Joan Daemen, MichealPeeter and Gilles Van Assche. It represents

the compression function of the new SHA-3 standard (Keccak

algorithm).

 The Merkle-Damgård Construction

Merkle-Damgård construction was described by R. Merklein

his Ph.D. thesis [6] in 1979. As Figure 3 shows Merkle-Damgård

(MD) construction that iterates sequentially a chaining

transformation that takes as input message block and the previous

chaining value. The input string x is divided into t equal-sized

fixed-length blocks xi with bit-length r. Bit-length r corresponds

to input length of desired compression function f. The algorithm

steps of Merkle-Damgård construction as follows:

1) Break the input x into blocks x1, x2…..xt.

2) Pad the last block xt with 0-bits if necessary to obtain the

multiple length of r.

3) Create the length block xt+1 with bit length r to hold the

right justified binary representation of overall bit-length

of x (MD strengthen).

4) Inputting x1, x2…..xt to the compression function

(iterated processing) to produce an intermediate value of

Hi.

5) Hi serves as feedback value to f and is processed with

xi+1 in the next iteration. This implies the need of an

initial value (IV) H0 for the first iteration that is often

provided pre-defined with bit- length r.

6) After processing all the input blocks, then, function g

transforms the preliminary result Ht+1 of bit-length r to

the final hash-value with desired bit-length. Function g is

often the identity mapping [6].

The most distinctive and special part of Merkle-Damgård

construction is that the problem of designing a collision-resistant

hash function reduced to designing a collision-resistant

compression function. This means, if the compression function is

collision resistant, then, the hash function is collision resistant. So,

the properties of the compression function will be transformed to

the hash function.

Figure 3. Detailed View of Merkle-Damgård Construction

The well-known Merkle-Damgård construction [6] has

determined the basic structure of iterated hash functions. Merkle-

Damgård iterates sequentially a chaining of input message blocks

and the previous chaining value to produce the final hash digest

h(x). Figure 4 shows the Merkle-Damgård strengthen overall

design. Padding is an algorithm to extend the input length to

become a multiple length of r. Padding is obtained by appending a

single ‗1‘ bit and ‗0‘ bits as many as needed to reach length r.

This approach called Merkle-Damgård strengthen or length

padding which makes the construction secure.

Figure 4. Merkle-Damgård strengthening

The Merkle-Damgård construction used in designing popular

hash functions such as MD5, SHA-1 and SHA-2. Also, the

Merkle-Damgård construction is quite well studied and several

weaknesses (generic attacks) such as multi-collisions [7], long-

message second preimage and differentiability [8] have been

shown for this construction. Due to the structural weakness

founded from these attacks, two intermediate Merkle-Damgård

construction versions were developed; wide pipe hash

construction and fast wide pipe construction.

 Wide Pipe Hash Construction

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 240

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Stefan lucks [9] introduced the wide pipe hash construction as

an intermediate version of Merkle-Damgård to improve the

structural weaknesses of Merkle-Damgård design. Figure 5 shows

the wide pipe hash construction. The process is similar to Merkle-

Damgård algorithm steps except of having a larger internal state

size, which means the final hash digest is smaller than the internal

state size of bit length.

Figure 5. The wide pipe hash construction

Also, the final compression function compresses the internal

state length (for ex, 2n- bit) to output a hash digest of n-bit. This

simply can be achieved by discarding the last half of 2n-bit

output.

 Fast Wide Pipe Construction

Mridul Nandi and Souradyauti Paul proposed the fast wide

pipe construction. It is twice faster than the wide pipe

construction. Figure 6 shows the fast wide pipe construction. As

the Figure shows, the input (IVs) for each compression function is

divided into halves.

Figure 6. The fast wide pipe hash construction

The first half is inputted in the compression function and the

other half is XORed with the output for the same compression

function. The feed-forward process makes the overall design

faster. Hence, faster process is obtained. The final output of the

hash digest can be truncated to the desired digest length using the

final compression function.

 The Sponge Construction

Sponge construction is an iterative construction designed by

Guido Bertoni, Joan Daemen, MichealPeeter and Gilles Van

Assche to replace Merkle-Damgård construction. It is a

construction that maps a variable length input to a variable length

output. Namely, by using a fixed-length transformation (or

permutation) f that operates on a fixed number of b = r + c bits.

Where r is called the bitrate and c is called the capacity as Figure

7 shown. First, the input is padded with padding algorithm and cut

into blocks of r bits. Then, the b bits of the state are initialized to

zero [9]. The sponge construction shown in Figure 7 operates in

two phases:

i. Absorbing phase: The r-bit message blocks are XORed with

the first r bits of the state of the function F. After processing

all the message blocks, the squeezing phase starts.

ii. Squeezing phase: The first r bits of the state are returned as

output blocks of the function F. lastly, the number of output

blocks is chosen by the user [9].

Figure 7. The sponge construction [9]

The sponge construction has been studied by many researchers

to prove its security robustness. Bertoni et al. [10] proved that the

success probability of any generic attack to a sponge function is

upper bound by its success probability for a random oracle plus

N
2
/2

c-1
 with N the number of queries to f. Aumasson and Meier

[11] showed the existence of zero-sum distinguishers for 16

rounds of the underlying permutation f of Keccak hash function.

Boura, Canteaut and De Cannière [12] showed the existence of

zero-sums on the full permutation (24 rounds).

D. Attacks on Hash Functions

Attacks on hash functions are a technical strategy(s) an

adversary may use to defeat the objectives of a hash function.

These technical strategies may vary and in many cases attacks

applied to the compression function of a hash function. A high-

level classification of attacks on hash functions is shown in Figure

8.

Figure 8. Attacks on hash functions

Attacks on hash functions are mainly classified into two

categories: brute force attacks and cryptanalytical attacks.

 Brute force Attacks

Brute force attacks are a particular strategy used to try

randomly computed hashes to obtain a specific hash digest.

Hence, these attacks do not depend on the structure of the hash

function (i.e compression function). The security of any hash

function lies on the output hash digests length. Which means, the

longer hash digest the more secure hash function. The brute-force

attack is a trial and error method to obtain a desired hash function.

As an example of a brute-force attack is a dictionary attack which

contain a list of dictionary words to try them all in a consecutive

manner. These brute-force attacks can always be attempted,

however they are not considered as a break unless the required

number of evaluations of the hash function is significantly less

than both the strength estimated by the designer of the hash

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 241

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

function and that of hash functions of similar parameters with

ideal strength [13].

 Cryptanalytical Attacks

A hash function cryptanalysis attempts to attack the properties

of hash functions such as a preimage attack, second preimage

attack and collision attack. Due to fixed size of the hash values

compared to much larger size of the messages, collisions must

exist in hash functions. However, for the security of the hash

function they must be computationally infeasible to find. Note

that collisions in hash functions are much easier to find than

preimages or second preimages. Informally, a hash function is

said to be ―broken‖ when a reduced number of evaluations of the

hash function compared to the brute force attack complexities and

the strengths estimated by the designer of the hash function are

used to violate at least one of its properties immaterial of the

computational feasibility of that effort. For example, assume that

it requires 290 evaluations of the hash function to find a collision

for a 256-bit hash function. Though it is impractical to generate

this amount of computational power today, the hash function is

said to be broken as this factor is less than the 2
128

 evaluations of

the hash function required by the birthday attack. This theoretical

break on the hash function is also termed an ―academic break‖ on

the hash function. It should be noted that hash functions are easier

to attack practically than encryption schemes because the attacker

does not need to assume any secrets and the maximum

computational effort required to attack the hash function is only

upper bounded by the attacker‘s resources not users gullibility.

This is not the case with block ciphers where the maximum

practical count of executions of the block algorithm is limited by

how much computational effort the attacker can get the user to do

[14]. As Figure 8 shows that cryptanalytical attacks on hash

functions are classified into two categories: generic attacks and

specific attacks.

 Generic Attacks (Attacks on Merkle-Damgård construction)

Generic attacks are technical studies used to attack general

hash function constructions (i.e Merkle-Damgård construction).

The word “generic” means that the attack is not designed for a

specific hash function (i.e SHA-2). For example, if the hash

function uses a certain block cipher, replacing this block cipher

with another should not affect the complexity of a generic attack

of that hash function. The generic attacks are classified into four

types, discussed in the following sections.

1) Length Extension Attacks

An attacker can use the advantage of using the padding

scheme for the messages in Merkle-Damgård construction by

applying length extension attack (it is also called extension

attack). Length extension attack can be used to break secret prefix

MAC scheme where the attacker computes the authentication tags

without the knowledge of the secret key.

2) JouxAttack

Joux attack or Joux multi-collision attack is an attack on

Merkle-Damgård hash function, where Antoine Joux shown that

finding multiple collisions (more than two messages hashing to

the same digest) in a Merkle-Damgård hash function is not much

harder than finding single collisions as Figure 9 shown. In his

multi-collision attack, Joux assumed access to a machine C that

given an initial state, returns two colliding messages [7].

Figure 9. Joux Attack [7]

Also, Joux used his multi-collision in Merkle-Damgård hash

function to produce a collision attack in a concatenation of two

independent hash functions. Particularly, this attack deemed to be

the first spark to look forward to start searching for a new

paradigm of mode of operation of hash function other than

Merkle-Damgård construction and hence announced SHA-3

competition.

3) Long Message second preimage Attacks

In the second preimage attacks, the attacker finds a second

preimage S for a given message M, where M ≠ S and H(M) =

H(S) with an effort less than 2
t
computation of H. In the long

message second preimage attack, the attacker tries to find a

second preimage for a long target message M of 2
q
+1 message

blocks. The attacker does this by finding a linking message block

Mlink. Where, the digest of fIV of the linking message block Mlink

matches one of the intermediate states Hi obtained in the hashing

of M. The computation cost of this attack is about 2
t-q

calls to the

compression function f.

4) Herding Attack

This attack is due to Kelsey and Kohno [15] and is closely

related to the multi-collision and second preimage attacks

discussed above. A typical scenario where this attack can be used

is when an adversary commits to a hash value D (which is not

random) that he makes public and claims (falsely) that he

possesses knowledge of unknown events (events in the future)

and that D is the hash of that knowledge. Later, when the

corresponding events occur, the adversary tries to herd the (now

publicly known) knowledge of those events to hash to D as he

previously claimed [15].

 Specific Attacks (Attacks on Specific Hash Functions)

Specific attacks on hash functions are based on the hash

function itself. For example, attacks on MD5 [16], SHA-0 [17]

and SHA-1 [18] are called multi-block collision attacks. Multi-

Block Collision Attack (MCBA) technique on iterated hash

function (i.e Merkle-Damgård construction) finds two colliding

messages each at least two blocks on length. In such attack,

collisions are found by processing more than one message block.

In fact, multi-block collisions attack is applicable and valid on

MD5, SHA-0 and SHA-1, since these hash functions use more

than a single and collisions are distributed randomly.

As Figure 8 shows the sub-categories of ―attacks on specific

hash functions‖ which are (collision attack on MD4, MD5,

RIPEMD, SHA-0 and SHA-1; near collisions on reduced version

of SHA-256 and second preimage attack on MD4) are only

examples of specific attacks on these hash functions. Meaning

that, attacks can be customized and applied based on the hash

function behavior and architecture.

3. APPLICATIONS OF HASH FUNCTIONS

Hash functions play a major role in application‘s security such

as certification, data integrity and authentication. The following

sections illustrate these applications.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 242

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

A. Digital Signature

Digital Signature is a mathematical scheme used to validate

the authenticity of the sender, message and signer of the

document identity as Figure 10 shown. Digital signatures are

commonly used in Web-commerce, financial transactions and

other cases where it is crucial to detect alteration of a message or

a document. It uses private and public keys along with the hash

digest to create the signature for a document. Digital Signature

provides signer authentication and authorization of a document. It

indicates who signed a document, message or record and makes

difficult for another person to produce the same without

authorization [29].

Figure 10. Digitally signed document

B. MAC

A Message Authentication Code (MAC) is similar in usage to

a message digest. It is designed especially for applications to

detect message tampering and forgery. MAC accepts a shared

secret symmetric key (K) as input along with the arbitrary length

and outputs MAC (sometimes called tag). Figure 11 shows the

MAC algorithm process.

Figure 11. MAC algorithm

As Figure 11 shows the process of the MAC algorithm, sender

calculates the MAC by first calculating message digest of the

message or document and then applying secret key K to the

message digest. Then, the message with the calculated MAC

sends to the receiver [29]. Independently, the receiver calculates a

new MAC value by using the symmetric secret key (K) and

generate new hash digest. If the attached MAC with original

message matches the new calculated MAC performed by the

receiver then the message is authenticated and integrity verified.

MACs differ from digital signature as MAC uses a symmetric

secret key and digital signature uses asymmetric key (public and

private keys).

C. HMAC

A popular and specific implementation of message

authentication codes is the HMAC (Hash Message Authentication

Code). It is a specific construction for calculating a message

authentication code which involves a secret key and cryptographic

hash function to ensure secure data transfer over unsecure

channels. As computers becoming more powerful, the need arises

for complex hash functions. As a result, HMAC is a preferable to

use with hash functions other than MAC due to its higher security.

Cryptographic hash functions such as SHA-1 or MD5 may be

used to calculate HMAC. In this case, the resulting hash function

called HMAC-SHA-1 and HMAC-MD5 respectively.

D. Kerberos

Kerberos is network authentication protocol. It is designed to

provide strong authentication and improved security for users and

between client/server applications. Kerberos was developed at the

Massachusetts Institute of Technology (MIT) in 1998. Using

Kerberos, a user can request an encrypted ―ticket‖ from an

authentication process so it can be used to request a specific

service from a server.

E. Key Derivation

A key derivation function (KDF) is an algorithm to derive a

key of a given size from a secret value or other known

information. That is used to derive keys from a secret value such

as a value obtained by Diffie-Hellman key establishment. Keyed

cryptographic hash function can be used for key derivation.

F. One Time Password

Cryptographic hash functions are used to compute one time

password (OTP). OTP is a password that is valid for a single login

or transactions. By using cryptographic hash functions, hashed

passwords are saved instead of keeping the password itself. So

that, if the file of passwords are revealed then the passwords still

protected if the hash function is preimage resistance.

G. Pseudorandom generator

A cryptographic hash function can be used to generate

pseudorandom generator (PRG). PRGs are used to generate

pseudorandom bits from a short random seed, which can then be

used in place of truly random bits that most cryptographic

schemes rely on. On the foundational side, PRGs can be used as a

building block for more complex cryptographic objects like

pseudorandom function (PRF), bit commitment, etc [19].

H. Pretty Good Privacy

Pretty Good Privacy or PGP is a popular program that is used

to encrypt/decrypt and authenticate e-mails over the internet. PGP

uses a hash function to ensure the integrity of e-mail message.

I. Secure Socket Layer/Transport Layer Security

Secure Socket Layer (SSL) and Transport Layer Security

(TLS) protocols are used to authenticate servers and clients over

an untrusted network. SSL/TLS can help to secure data

transferred using encryption. Also, SSL/TLS can authenticate

servers as well as clients through secure communication.

4. AN OVERVIEW OF A SELECTED HASH FUNCTIONS

A. MD4 and MD5

The cryptographic hash function MD4 (Message Digest 4)

was introduced by Ronald Rivestin 1990. MD4 was a novel

design, which compresses an arbitrary input length and produce

128-bits as a hash digest. Later, other hash algorithms such as

MD5, SHA-0, SHA-1 and HAVAL were derived and influenced

by MD4. In 1991, hash function Message Digest 5 or MD5 was

designed by Ronald Rivest as a strengthen version of MD4. MD5

is widely used algorithm in a variety of security applications.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 243

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Working of MD5 is almost similar to MD4 but some changes

have been made to MD4. One extra round is added in MD5. MD5

also compresses arbitrary bit-length input into a 128-bit hash

value [29].

B. RIPLEMD

RIPEMD is a cryptographic hash function developed by Hans

Dobbertin, Antoon Bosselaers and Bart Preneel, and first

published in 1996. Its design is based on MD4. Which is consists

of two parallel versions of the MD4 compression function.

RIPEMD produce 160-bits as a hash digest. Dobbertin found a

collision attack on two rounds of RIPEMD. Strengthen versions

of RIPEMD were developed due the weakness founded in

RIPEMD-160 bits [29]. These versions are RIPEMD-128,

RIPEMD-256 and RIPEMD-320. RIPEMD produce 128-bits of

hash digest. The extended version of RIPEMD-128 is RIPEMD-

256, which produce 256-bits as a hash digest. Also, the extended

version of RIPEMD-160 is RIPEMD-320, which produce 320 bits

as a hash digest.

C. SHA-x Family

 Secure Hash Algorithm-0

National Institute of Standard and Technology (NIST) along

with National Security Agency (NSA) published the Secure Hash

Algorithm (SHA) in 1993. At present, SHA is commonly referred

to SHA-0. SHA-0 is an algorithm that produces a 160-bits hash

digest. SHA-0 was developed to replace MD4 but it was

withdrawn shortly after publication due to security issues.

 Secure Hash Algorithm-1

SHA-0 was replaced by SHA-1 in 1995. Secure Hash

Algorithm-1 or SHA-1 is a message digests algorithm, which is

regarded the world‘s most popular hash function, which takes

input a message of arbitrary length and produce output a 160 bits

―fingerprint‖ of the input. However, the security level of this

standard is limited to a level comparable to an 80-bit block cipher

[20]. It is based on the design principle of MD4, and applies the

Merkle-Damgård model of compression function.

 Secure Hash Algorithm-2

In August, 2002, NIST has published three additional hash

functions, SHA-256, SHA-384 and SHA-512. These new hash

functions family known as Secure Hash Algorithm-2 or simply

SHA-2. SHA-2 was introduced due to the need of a larger key of

a hash function to match the new Advanced Encryption Standard

(AES) which introduced in 2001. In February 2004, another hash

function SHA-224 was added to the SHA-2 family. SHA-224 and

SHA-384 are the truncated versions of SHA-256 and SHA-512

respectively. The proposed system architecture of SHA-2 hash

family can support efficiently the security needs of modern

communication applications such as WLANs, VPNs and firewall

[29].

 Secure Hash Algorithm-3

In October 2012, NIST announced the winner of SHA-3

competition which started in 2008. Keccak was the winner of

NIST competition and become the new SHA-3 standard. Keccak

is a cryptographic hash function designed by Guido Bertoni, joan

Daemen, Michael Peeters, and Gilles Van Assche. Keccak has

completely different construction than SHA-0, SHA-1 and SHA-2

families. It supports at least four different output lengths n {224,

256, 384, and 512}in a high security levels [21]. According to

[22] and [23] the construction of Keccak sponge design is

building the compression function from different permutation f

operates components in the following:

1. Signify the length of message bitstring by |M|, as a

sequence of blocks in fixed length x, when calculated the

ranges from 0 to |M|x -1.

2. Pad the message M in a sequence of x-bit blocks to

signify by M|| pad [x] (|M|). Thus, padding rules have

append a bitstring to determined the bit length of M and

the block length x.

3. It is a sponge hash functions to construct a function of [f,

pad, r] where the permutation f has different length in

input and fixed length of output, a padding rule ―pad‖

and a bitrate r. The permutation f operates has seven set

of bits, which denoted as Keccak-f [b] wherethe b= 25w.

Keccak-f [b] is a permutation over, when the bits are

figured from 0 to b-1. Thus, the different versions of

Keccak-f permutation have limited output values in {25,

50, 100, 200, 400, 800, 1600} to represent the hypercube

of sponge construction of three dimensional array, and c

= b –r is the capacity of absorbing phase of the

compressing state (Bertonet al. 2011). Figure 12 from

depicts the sponge construction of Keccak-f [r + c].

Figure 12. The sponge construction of Keccak [22]

4. The permutation is a sequence of operations on the three-

dimensional array of elements of GF(2), specifically

a[5][5][w], with w = 2
ℓ
, where w {1,2,4,8,16,32,64}.

The expression a[x][y][z] with x, y ∈Z5 and z ∈Zw,

signifies the bit in position (x, y, z), follows by indexing

starts from zero. The mapping between the bits of s and

those of a is s[w(5y + x) + z] = a[x][y][z]. That terms in

the x and y coordinates should be taken modulo 5 and

expressions in the z coordinate modulo w. The source

state has a fixed value and should never consider as an

input [24].

5. CONCLUSION

This paper presented an extensive study of cryptographic hash

functions. The presented study surveys cryptographic hash

functions from various aspects. It included the properties,

classification, constructions, attacks, applications and an overview

of a selected dedicated cryptographic hash functions. Practically,

MD4, MD5 and SHA-0 considered broken hash functions.

Theoretically, SHA-1 considered a broken hash function. But

SHA-2 considered secure one. SHA-3 was presented due to the

need for a long term security hash function which has a new

promising sponge construction.

6. REFERENCES

[1] S. Goldwasser, S. Micali and R. Rivest. A Digital Signature

Scheme Secure Against Adaptive Chosen-Message Attacks,

SIAM Journal of Computing, vol 17, No. 2, pp. 281-308,

April 1998.

[2] M. Naor and M. Yung. Universal one-way hash functions

and their cryptographic applications, Proceedings of the

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 244

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Twenty First Annual ACM Symposium on Theory of

Computing, ACM Press, pp 33-43, 1989.

[3] S. Haber and W. S. Stornetta. How to timestampting a digital

document. Journal of Cryptology 3(2), pp. 99-111, 1991.

[4] H. Krawczyk, M. Bellare and R. Canetti. HMAC: Keyed-

Hashing for Message Authentication. Internet RFC 2104,

February 1997.

[5] V. Shoup. Design and analysis of practical public-key

encryption schemes secure against adaptive chosen

ciphertext attack. SIAM Journal of Computing 33:167-226,

2003.

[6] I. Damgård. A design principle for hash functions. In G.

Brassard, editor, Advances in Cryptology - CRYPTO ’89, 9th

Annual International Cryptology Conference, Santa

Barbara, California, USA, August 20-24, 1989, Proceedings,

volume 435 of Lecture Notes in Computer Science, pages

416– 427. Springer, 1990.

[7] Antoine Joux. Multicollisions in Iterated Hash Functions.

Application to Cascaded Constructions. In Matt Franklin,

editor, Advances in Cryptology- CRYPTO 2004, volume

3152 of Lecture Notes in Computer Science, pages 306–316.

Springer, August 15–19 2004.

[8] U. Maurer, R. Renner, and C. Holenstein. Indifferentiability,

Impossibility Results on Reductions, and Applications to the

Random Oracle Methodology. In M. Naor, editor, Theory of

Cryptography, First Theory of Cryptography Conference,

TCC 2004, Cambridge, MA, USA, February 19-21, 2004,

Proceedings, volume 2951 of Lecture Notes in Computer

Science, pages 21–39. Springer, 2004.

[9] Lucks, S. (2004). Design principles for iterated hash

functions, Cryptology ePrint Archive, Report 2004/253,

2004, http://eprint. iacr. org.

[10] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. On

the indifferentiability of the sponge construction. Advances

in Cryptology - EUROCRYPT 2008, 27th Annual

International Conference on the Theory and Applications of

Cryptographic Techniques, Istanbul, Turkey, April 13-17,

2008. Proceedings, 4965:181–197, 2008.

[11] J.-P. Aumasson and W. Meier. Zero-sum distinguishers for

reduced Keccak-f and for the core functions of Luffa and

Hamsi. NIST mailing list, 2009.

[12] C. Boura, A. Canteaut, and C. D. Canniére. Higher-order

differential properties of Keccak and Luffa. Cryptology

ePrint Archive, Report 2010/589, 2010.

http://eprint.iacr.org/2010/589.pdf.

[13] Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault,

Christophe Lemuet, and William Jalby. Collisions of SHA-0

and Reduced SHA-1. In Ronald Cramer, editor, Advances in

Cryptology - EUROCRYPT 2005, vol- ume 3494 of Lecture

Notes in Computer Science, pages 36–57. Springer, 2005.

[14] [24] Yuliang Zheng, Josef Pieprzyk, and Jennifer Seberry,

1993.‖ HAVAL – A One-Way Hashing  Algorithm with

Variable Length of Output‖, Lecture Notes in Computer

Science, Volume 718,  Advances in Cryptology – Auscrypt

‘92, pp. 83–104.

[15] J. Kelsey and T. Kohno. Herding hash functions and the

nostradamus attack. In S. Vaudenay, editor, Advances in

Cryptology - EUROCRYPT 2006, 25th Annual International

Conference on the Theory and Applications of

Cryptographic Techniques, St. Petersburg, Russia, May 28 -

June 1, 2006,Proceedings, volume 4004 of Lecture Notes in

Computer Science, pages 183–200. Springer, 2006.

[16] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and

Other Hash Functions. In Ronald Cramer, editor, Advances

in Cryptology - EUROCRYPT 2005, volume 3494 of

Lecture Notes in Computer Science, pages 19–35. Springer,

2005.

[17] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Efficient

collision search attacks on SHA-0. In Victor Shoup, editor,

Advances in Cryptology— CRYPTO ‘05, volume 3621 of

Lecture Notes in Computer Science, pages 1–16. Springer,

2005, 14–18 August 2005.

[18] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding

collisions in the full SHA-1. In Victor Shoup, editor,

Advances in Cryptology— CRYPTO ‘05, volume 3621 of

Lecture Notes in Computer Science, pages 17–36. Springer,

2005, 14–18 August 2005.

[19] Blum, M. and S. Micali (1984). "How to generate

cryptographically strong sequences of pseudorandom bits."

SIAM journal on Computing 13(4): 850-864.

[20] Vincent Rijmen and Elisabeth Oswald, 2005.‖ Update on

SHA-1‖. In Alfred Menezes, editor,  Topics in Cryptology -

CT-RSA 2005, The Cryptographers‘ Track at the RSA

Conference  2005, San Francisco, CA, USA, volume 3376

of LNCS, pp. 58–71.

[21] E. Andreeva, B. Mennink, B. Preneel & M. Skrobot (2012),

Security Analysis and Comparison of the SHA-3 Finalists

BLAKE, Grostl, JH, Keccak, and Skein. from Katholieke

Universiteit Leuven, Belgium.

[22] G. Bertoni, J. Daemen, M. Peeters, & G. V. Assche (2012),

Keccak An update. Retrieved March 22-23, 2012, from

Third SHA-3 candidate conference, Washington DC.

[23] E. B. Kavun & T. Yalcin (2012), On the Suitability of SHA-

3 Finalists for Lightweight Applications. from Horst Görtz

Institute, Ruhr University, Chair of Embedded Security,

Germany. Website: http://csrc.nist.gov/groups/ST/hash/sha-

3/Round3/March2012/ documents /papers

/KAVUN_paper.pdf

[24] Imad Fakhri Al-shaikhli, Mohammad A. Alahmad and

Khansaa Munther. The "Comparison and analysis study of

sha-3 finallists." International Conference on Advanced

Computer Science Applications and Technologies(26-28

Nov 2012): 7.

[25] Mohammad A. Ahmad, I. F. A. S., Hanady Mohammad

Ahmad (2012). "Protection of the Texts Using Base64 and

MD5." JACSTR Vol 2, No 1 (2012)(1): 12.

[26] Imad F. Alshaikhli, M. A. Ahmad. (2011). "Security Threats

of Finger Print Biometric in Network System Environment."

Advanced Computer Science and Technology Research 1(1):

15.

[27] Al-Kuwari, S. and Davenport, J.H. and Bradford, R.J.

Cryptographic hash functions: recent design trends and

security notions. Science Press of China,2010.

[28] Sobti, R. and G. Geetha (2012). "Cryptographic Hash

Functions: A Review." IJCSI International Journal of

Computer Science Issues 9(2): 461-479.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 245

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://eprint.iacr.org/2010/589.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/March2012/%20documents
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/March2012/%20documents

[29] Tiwari, H. and A. Krishna (2010). "Cryptographic hash

function: an elevated view." European Journal of Scientific

Research 43: 452-465.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 246

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

