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Abstract 

 Cryptographic hash function is a function that takes an arbitrary length 

as an input and produces a fixed size of an output. The viability of using 

cryptographic hash function is to verify data integrity and sender identity 

or source of information. This paper provides a detailed overview of 

cryptographic hash functions. It includes the properties, classification, 

constructions, attacks, applications and an overview of a selected 

dedicated cryptographic hash functions.  

Keywords-cryptographic hash function, construction, attack, 
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1.  INTRODUCTION  

A cryptographic hash function H is an algorithm that takes an 

arbitrary length of message as an input {0, 1}
*
 and produce a 

fixed length of an output called message digest {0, 1}
n
 

(sometimes called an imprint, digital fingerprint, hash code, hash 

result, hash value, or simply hash). Cryptographic hash functions 

play a fundamental role in modern cryptography practical 

applications, for example, digital signature [1,2], digital 

timestamp [3], message authentication code (or MAC) [4], public 

key encryption [5], tamper detection of files and many others. 

This versatility earned them the nickname ―Swiss army knife of 

cryptography‖.  

2. CLASSIFICATION, PROPORITIES, CONSTRUCTIONS AND 

ATTACKS OF HASH FUNCTIONS 

A. Classification of Hash Functions 

Cryptographic hash functions can be classified as unkeyed 

hash functions and keyed hash functions as Figure 1 shown. 

Unkeyed hash functions that accepts a variable length message as 

a single input and produce a fixed hash digest, H: {0,1}*→{0,1}
n
. 

It is also known as modification detection codes (MDCs). Where, 

keyed hash functions accept a variable length message and a fixed 

length secret key as two inputs to the hash function design to 

produce a fixed length hash digest, HK: {0,1}
k
×{0,1}*→{0,1}

n
. It 

is also known as message authentication codes (MACs). Unkeyed 

hash function is further classified into one-way hash function 

(OWHF), collision resistant hash function (CRHF), universal one 

way hash function (UOWHF) [2]. 

  

 

Figure 1.  Classification of cryptographic hash function 

CRHF usually deals with longer length hash values. An 

unkeyed hash function is a function for a fixed positive integer n 

which has, as a minimum, the following two properties: 

1) Compression: h maps an input x of arbitrary finite bit 

length, to an output h(x) of fixed bit length n.  

2) Ease of computation: given h and an input x, h(x) is easy 

to compute.  

Modification Detection Codes are classified as follows: 

1) One-way hash function is a hash function where finding 

an input which hashes to a pre-specified hash digest is 

difficult.  

2) A collision resistant hash function is a hash function 

where finding any two inputs having the same hash 

digest is difficult. 

3) In a universal one-way hash function, for randomly 

chosen input x, key k and the function Hk, it is hard to 

find y = x such that Hk(x) = Hk(y) [2]. 

A keyed hash function is a function whose specific purpose is 

called message authentication code (MAC) algorithms as shown 

in Figure 1.Keyed hash functions should satisfy the following two 

properties: 

1) Compression: Hk maps an input x of arbitrary finite bit 

length, to an output Hk(x) of fixed bit length n. 

2) Ease of computation: for a known function Hk, given a 

value k and an input x, Hk(x) is easy to compute. The 

result is called MAC value [2]. 

Apart from the classification of keyed and unkeyed hash 

functions, they can be classified into other ways such as hash 

function based on block ciphers, hash function based on modular 

arithmetic and dedicated hash functions.  

B. Proporities of Hash Functions 

Hash functions play a major role in application security today. 

Hash functions provide different security properties depend on the 
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security requirements of the application. The basic security 

properties of hash functions are preimage resistance, second 

preimage resistance and collision resistance. They are explained 

below: 

1. Preimage resistance: for any given code h, it is 

computationally infeasible to find x such that H(x) = h.  

2. Second preimage resistance: for any given input m, it is 

computationally infeasible to find y ≠m with H(y) = 

H(m).  

3. Collision resistance: it is computationally infeasible to 

find any pair (m, y) such that H(y) = H(m) [2].  

Figure 2 illustrates the definitions of hash function security 

proprieties. 
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Figure 2.  Hash function security proprieties 

The preimage resistance property can be described as the 

inability to learn about the contents of the input data from its hash 

digest. The second preimage resistance property can be expressed 

as the inability to learn about the content of the second preimage 

from the given first preimage such that both of these preimages 

have same hash digest. The collision resistance property can be 

interpreted when two different and separate contents of inputs 

yield to the same hash digest. 

C. Classification of Hash Functions 

Building hash functions can be achieved by using various 

constructions such as Merkle-Damgård or sponge constructions. 

Merkle-Damgård construction was introduced by R. Merkle‘s 

PhD in 1979. It represents a guidance of building dedicated hash 

functions from compression functions. In 2007, sponge 

construction introduced in SHA-3 competition by Guido Bertoni, 

Joan Daemen, MichealPeeter and Gilles Van Assche. It represents 

the compression function of the new SHA-3 standard (Keccak 

algorithm).  

 The Merkle-Damgård Construction 

Merkle-Damgård construction was described by R. Merklein 

his Ph.D. thesis [6] in 1979. As Figure 3 shows Merkle-Damgård 

(MD) construction that iterates sequentially a chaining 

transformation that takes as input message block and the previous 

chaining value. The input string x is divided into t equal-sized 

fixed-length blocks xi with bit-length r. Bit-length r corresponds 

to input length of desired compression function f.  The algorithm 

steps of Merkle-Damgård construction as follows: 

1) Break the input x into blocks x1, x2…..xt. 

2) Pad the last block xt with 0-bits if necessary to obtain the 

multiple length of r. 

3) Create the length block xt+1 with bit length r to hold the 

right justified binary representation of overall bit-length 

of x (MD strengthen). 

4) Inputting x1, x2…..xt to the compression function 

(iterated processing) to produce an intermediate value of 

Hi.  

5) Hi serves as feedback value to f and is processed with 

xi+1 in the next iteration. This implies the need of an 

initial value (IV) H0 for the first iteration that is often 

provided pre-defined with bit- length r. 

6) After processing all the input blocks, then, function g 

transforms the preliminary result Ht+1 of bit-length r to 

the final hash-value with desired bit-length. Function g is 

often the identity mapping [6]. 

The most distinctive and special part of Merkle-Damgård 

construction is that the problem of designing a collision-resistant 

hash function reduced to designing a collision-resistant 

compression function. This means, if the compression function is 

collision resistant, then, the hash function is collision resistant. So, 

the properties of the compression function will be transformed to 

the hash function.   

 

Figure 3.  Detailed View of Merkle-Damgård Construction 

The well-known Merkle-Damgård construction [6] has 

determined the basic structure of iterated hash functions. Merkle-

Damgård iterates sequentially a chaining of input message blocks 

and the previous chaining value to produce the final hash digest 

h(x). Figure 4 shows the Merkle-Damgård strengthen overall 

design. Padding is an algorithm to extend the input length to 

become a multiple length of r. Padding is obtained by appending a 

single ‗1‘ bit and ‗0‘ bits as many as needed to reach length r. 

This approach called Merkle-Damgård strengthen or length 

padding which makes the construction secure.  

 

Figure 4.  Merkle-Damgård strengthening 

The Merkle-Damgård construction used in designing popular 

hash functions such as MD5, SHA-1 and SHA-2. Also, the 

Merkle-Damgård construction is quite well studied and several 

weaknesses (generic attacks) such as multi-collisions [7], long-

message second preimage and differentiability [8] have been 

shown for this construction. Due to the structural weakness 

founded from these attacks, two intermediate Merkle-Damgård 

construction versions were developed; wide pipe hash 

construction and fast wide pipe construction.  

 Wide Pipe Hash Construction  
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Stefan lucks [9] introduced the wide pipe hash construction as 

an intermediate version of Merkle-Damgård to improve the 

structural weaknesses of Merkle-Damgård design. Figure 5 shows 

the wide pipe hash construction. The process is similar to Merkle-

Damgård algorithm steps except of having a larger internal state 

size, which means the final hash digest is smaller than the internal 

state size of bit length.  

 
Figure 5. The wide pipe hash construction 

 

Also, the final compression function compresses the internal 

state length (for ex, 2n- bit) to output a hash digest of n-bit. This 

simply can be achieved by discarding the last half of 2n-bit 

output.  

 

 Fast Wide Pipe Construction 

Mridul Nandi and Souradyauti Paul proposed the fast wide 

pipe construction. It is twice faster than the wide pipe 

construction. Figure 6 shows the fast wide pipe construction. As 

the Figure shows, the input (IVs) for each compression function is 

divided into halves.  

 
Figure 6. The fast wide pipe hash construction 

 

The first half is inputted in the compression function and the 

other half is XORed with the output for the same compression 

function. The feed-forward process makes the overall design 

faster. Hence, faster process is obtained. The final output of the 

hash digest can be truncated to the desired digest length using the 

final compression function.  

 The Sponge Construction 

Sponge construction is an iterative construction designed by 

Guido Bertoni, Joan Daemen, MichealPeeter and Gilles Van 

Assche to replace Merkle-Damgård construction. It is a 

construction that maps a variable length input to a variable length 

output. Namely, by using a fixed-length transformation (or 

permutation) f that operates on a fixed number of b = r + c bits. 

Where r is called the bitrate and c is called the capacity as Figure 

7 shown. First, the input is padded with padding algorithm and cut 

into blocks of r bits. Then, the b bits of the state are initialized to 

zero [9]. The sponge construction shown in Figure 7 operates in 

two phases: 

i. Absorbing phase: The r-bit message blocks are XORed with 

the first r bits of the state of the function F. After processing 

all the message blocks, the squeezing phase starts. 

ii. Squeezing phase: The first r bits of the state are returned as 

output blocks of the function F. lastly, the number of output 

blocks is chosen by the user [9]. 

 
 

Figure 7. The sponge construction [9] 

 

The sponge construction has been studied by many researchers 

to prove its security robustness. Bertoni et al. [10] proved that the 

success probability of any generic attack to a sponge function is 

upper bound by its success probability for a random oracle plus 

N
2
/2

c-1
 with N the number of queries to f. Aumasson and Meier 

[11] showed the existence of zero-sum distinguishers for 16 

rounds of the underlying permutation f of Keccak hash function. 

Boura, Canteaut and De Cannière [12] showed the existence of 

zero-sums on the full permutation (24 rounds). 

D. Attacks on Hash Functions 

Attacks on hash functions are a technical strategy(s) an 

adversary may use to defeat the objectives of a hash function. 

These technical strategies may vary and in many cases attacks 

applied to the compression function of a hash function. A high-

level classification of attacks on hash functions is shown in Figure 

8. 

 
Figure 8. Attacks on hash functions 

 

Attacks on hash functions are mainly classified into two 

categories: brute force attacks and cryptanalytical attacks.  

 Brute force Attacks 

Brute force attacks are a particular strategy used to try 

randomly computed hashes to obtain a specific hash digest. 

Hence, these attacks do not depend on the structure of the hash 

function (i.e compression function). The security of any hash 

function lies on the output hash digests length. Which means, the 

longer hash digest the more secure hash function. The brute-force 

attack is a trial and error method to obtain a desired hash function. 

As an example of a brute-force attack is a dictionary attack which 

contain a list of dictionary words to try them all in a consecutive 

manner. These brute-force attacks can always be attempted, 

however they are not considered as a break unless the required 

number of evaluations of the hash function is significantly less 

than both the strength estimated by the designer of the hash 
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function and that of hash functions of similar parameters with 

ideal strength [13].  

 Cryptanalytical Attacks 

A hash function cryptanalysis attempts to attack the properties 

of hash functions such as a preimage attack, second preimage 

attack and collision attack. Due to fixed size of the hash values 

compared to much larger size of the messages, collisions must 

exist in hash functions. However, for the security of the hash 

function they must be computationally infeasible to find. Note 

that collisions in hash functions are much easier to find than 

preimages or second preimages. Informally, a hash function is 

said to be ―broken‖ when a reduced number of evaluations of the 

hash function compared to the brute force attack complexities and 

the strengths estimated by the designer of the hash function are 

used to violate at least one of its properties immaterial of the 

computational feasibility of that effort. For example, assume that 

it requires 290 evaluations of the hash function to find a collision 

for a 256-bit hash function. Though it is impractical to generate 

this amount of computational power today, the hash function is 

said to be broken as this factor is less than the 2
128

 evaluations of 

the hash function required by the birthday attack. This theoretical 

break on the hash function is also termed an ―academic break‖ on 

the hash function. It should be noted that hash functions are easier 

to attack practically than encryption schemes because the attacker 

does not need to assume any secrets and the maximum 

computational effort required to attack the hash function is only 

upper bounded by the attacker‘s resources not users gullibility. 

This is not the case with block ciphers where the maximum 

practical count of executions of the block algorithm is limited by 

how much computational effort the attacker can get the user to do 

[14]. As Figure 8 shows that cryptanalytical attacks on hash 

functions are classified into two categories: generic attacks and 

specific attacks.  

 Generic Attacks (Attacks on Merkle-Damgård construction) 

Generic attacks are technical studies used to attack general 

hash function constructions (i.e Merkle-Damgård construction). 

The word “generic” means that the attack is not designed for a 

specific hash function (i.e SHA-2). For example, if the hash 

function uses a certain block cipher, replacing this block cipher 

with another should not affect the complexity of a generic attack 

of that hash function. The generic attacks are classified into four 

types, discussed in the following sections. 

1) Length Extension Attacks 

An attacker can use the advantage of using the padding 

scheme for the messages in Merkle-Damgård construction by 

applying length extension attack (it is also called extension 

attack). Length extension attack can be used to break secret prefix 

MAC scheme where the attacker computes the authentication tags 

without the knowledge of the secret key.  

2) JouxAttack 

Joux attack or Joux multi-collision attack is an attack on 

Merkle-Damgård hash function, where Antoine Joux shown that 

finding multiple collisions (more than two messages hashing to 

the same digest) in a Merkle-Damgård hash function is not much 

harder than finding single collisions as Figure 9 shown. In his 

multi-collision attack, Joux assumed access to a machine C that 

given an initial state, returns two colliding messages [7]. 

 
Figure 9. Joux Attack [7] 

 

Also, Joux used his multi-collision in Merkle-Damgård hash 

function to produce a collision attack in a concatenation of two 

independent hash functions. Particularly, this attack deemed to be 

the first spark to look forward to start searching for a new 

paradigm of mode of operation of hash function other than 

Merkle-Damgård construction and hence announced SHA-3 

competition.    

3) Long Message second  preimage Attacks 

In the second preimage attacks, the attacker finds a second 

preimage S for a given message M, where M ≠ S and H(M) = 

H(S) with an effort less than 2
t 
computation of H. In the long 

message second preimage attack, the attacker tries to find a 

second preimage for a long target message M of 2
q
+1 message 

blocks. The attacker does this by finding a linking message block 

Mlink. Where, the digest of fIV of the linking message block Mlink 

matches one of the intermediate states Hi obtained in the hashing 

of M. The computation cost of this attack is about 2
t-q 

calls to the 

compression function f. 

4) Herding Attack 

This attack is due to Kelsey and Kohno [15] and is closely 

related to the multi-collision and second preimage attacks 

discussed above. A typical scenario where this attack can be used 

is when an adversary commits to a hash value D (which is not 

random) that he makes public and claims (falsely) that he 

possesses knowledge of unknown events (events in the future) 

and that D is the hash of that knowledge. Later, when the 

corresponding events occur, the adversary tries to herd the (now 

publicly known) knowledge of those events to hash to D as he 

previously claimed [15]. 

 Specific Attacks (Attacks on Specific Hash Functions) 

Specific attacks on hash functions are based on the hash 

function itself. For example, attacks on MD5 [16], SHA-0 [17] 

and SHA-1 [18] are called multi-block collision attacks. Multi-

Block Collision Attack (MCBA) technique on iterated hash 

function (i.e Merkle-Damgård construction) finds two colliding 

messages each at least two blocks on length. In such attack, 

collisions are found by processing more than one message block. 

In fact, multi-block collisions attack is applicable and valid on 

MD5, SHA-0 and SHA-1, since these hash functions use more 

than a single and collisions are distributed randomly.  

As Figure 8 shows the sub-categories of ―attacks on specific 

hash functions‖ which are (collision attack on MD4, MD5, 

RIPEMD, SHA-0 and SHA-1; near collisions on reduced version 

of SHA-256 and second preimage attack on MD4) are only 

examples of specific attacks on these hash functions. Meaning 

that, attacks can be customized and applied based on the hash 

function behavior and architecture.    

3. APPLICATIONS OF HASH FUNCTIONS 

Hash functions play a major role in application‘s security such 

as certification, data integrity and authentication. The following 

sections illustrate these applications.  
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A. Digital Signature 

Digital Signature is a mathematical scheme used to validate 

the authenticity of the sender, message and signer of the 

document identity as Figure 10 shown. Digital signatures are 

commonly used in Web-commerce, financial transactions and 

other cases where it is crucial to detect alteration of a message or 

a document. It uses private and public keys along with the hash 

digest to create the signature for a document. Digital Signature 

provides signer authentication and authorization of a document. It 

indicates who signed a document, message or record and makes 

difficult for another person to produce the same without 

authorization [29].   

 

 
Figure 10. Digitally signed document 

B. MAC 

A Message Authentication Code (MAC) is similar in usage to 

a message digest. It is designed especially for applications to 

detect message tampering and forgery. MAC accepts a shared 

secret symmetric key (K) as input along with the arbitrary length 

and outputs MAC (sometimes called tag). Figure 11 shows the 

MAC algorithm process.  

 

 
Figure 11. MAC algorithm 

 

As Figure 11 shows the process of the MAC algorithm, sender 

calculates the MAC by first calculating message digest of the 

message or document and then applying secret key K to the 

message digest. Then, the message with the calculated MAC 

sends to the receiver [29]. Independently, the receiver calculates a 

new MAC value by using the symmetric secret key (K) and 

generate new hash digest. If the attached MAC with original 

message matches the new calculated MAC performed by the 

receiver then the message is authenticated and integrity verified.  

MACs differ from digital signature as MAC uses a symmetric 

secret key and digital signature uses asymmetric key (public and 

private keys).  

C. HMAC 

A popular and specific implementation of message 

authentication codes is the HMAC (Hash Message Authentication 

Code). It is a specific construction for calculating a message 

authentication code which involves a secret key and cryptographic 

hash function to ensure secure data transfer over unsecure 

channels. As computers becoming more powerful, the need arises 

for complex hash functions. As a result, HMAC is a preferable to 

use with hash functions other than MAC due to its higher security. 

Cryptographic hash functions such as SHA-1 or MD5 may be 

used to calculate HMAC. In this case, the resulting hash function 

called HMAC-SHA-1 and HMAC-MD5 respectively.  

D. Kerberos 

Kerberos is network authentication protocol. It is designed to 

provide strong authentication and improved security for users and 

between client/server applications. Kerberos was developed at the 

Massachusetts Institute of Technology (MIT) in 1998. Using 

Kerberos, a user can request an encrypted ―ticket‖ from an 

authentication process so it can be used to request a specific 

service from a server.  

E. Key Derivation 

A key derivation function (KDF) is an algorithm to derive a 

key of a given size from a secret value or other known 

information. That is used to derive keys from a secret value such 

as a value obtained by Diffie-Hellman key establishment. Keyed 

cryptographic hash function can be used for key derivation. 

F. One Time Password 

Cryptographic hash functions are used to compute one time 

password (OTP). OTP is a password that is valid for a single login 

or transactions. By using cryptographic hash functions, hashed 

passwords are saved instead of keeping the password itself. So 

that, if the file of passwords are revealed then the passwords still 

protected if the hash function is preimage resistance.  

G. Pseudorandom generator 

A cryptographic hash function can be used to generate 

pseudorandom generator (PRG). PRGs are used to generate 

pseudorandom bits from a short random seed, which can then be 

used in place of truly random bits that most cryptographic 

schemes rely on. On the foundational side, PRGs can be used as a 

building block for more complex cryptographic objects like 

pseudorandom function (PRF), bit commitment, etc [19]. 

H. Pretty Good Privacy 

Pretty Good Privacy or PGP is a popular program that is used 

to encrypt/decrypt and authenticate e-mails over the internet. PGP 

uses a hash function to ensure the integrity of e-mail message.  

I. Secure Socket Layer/Transport Layer Security 

Secure Socket Layer (SSL) and Transport Layer Security 

(TLS) protocols are used to authenticate servers and clients over 

an untrusted network. SSL/TLS can help to secure data 

transferred using encryption. Also, SSL/TLS can authenticate 

servers as well as clients through secure communication.   

4. AN OVERVIEW OF A SELECTED HASH FUNCTIONS 

A. MD4 and MD5 

The cryptographic hash function MD4 (Message Digest 4) 

was introduced by Ronald Rivestin 1990. MD4 was a novel 

design, which compresses an arbitrary input length and produce 

128-bits as a hash digest. Later, other hash algorithms such as 

MD5, SHA-0, SHA-1 and HAVAL were derived and influenced 

by MD4. In 1991, hash function Message Digest 5 or MD5 was 

designed by Ronald Rivest as a strengthen version of MD4. MD5 

is widely used algorithm in a variety of security applications.  
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Working of MD5 is almost similar to MD4 but some changes 

have been made to MD4. One extra round is added in MD5. MD5 

also compresses arbitrary bit-length input into a 128-bit hash 

value [29]. 

B. RIPLEMD 

RIPEMD is a cryptographic hash function developed by Hans 

Dobbertin, Antoon Bosselaers and Bart Preneel, and first 

published in 1996. Its design is based on MD4. Which is consists 

of two parallel versions of the MD4 compression function. 

RIPEMD produce 160-bits as a hash digest. Dobbertin found a 

collision attack on two rounds of RIPEMD. Strengthen versions 

of RIPEMD were developed due the weakness founded in 

RIPEMD-160 bits [29]. These versions are RIPEMD-128, 

RIPEMD-256 and RIPEMD-320. RIPEMD produce 128-bits of 

hash digest. The extended version of RIPEMD-128 is RIPEMD-

256, which produce 256-bits as a hash digest. Also, the extended 

version of RIPEMD-160 is RIPEMD-320, which produce 320 bits 

as a hash digest.  

C. SHA-x Family 

 Secure Hash Algorithm-0 

National Institute of Standard and Technology (NIST) along 

with National Security Agency (NSA) published the Secure Hash 

Algorithm (SHA) in 1993. At present, SHA is commonly referred 

to SHA-0. SHA-0 is an algorithm that produces a 160-bits hash 

digest. SHA-0 was developed to replace MD4 but it was 

withdrawn shortly after publication due to security issues.  

 

 Secure Hash Algorithm-1 

SHA-0 was replaced by SHA-1 in 1995. Secure Hash 

Algorithm-1 or SHA-1 is a message digests algorithm, which is 

regarded the world‘s most popular hash function, which takes 

input a message of arbitrary length and produce output a 160 bits 

―fingerprint‖ of the input. However, the security level of this 

standard is limited to a level comparable to an 80-bit block cipher 

[20]. It is based on the design principle of MD4, and applies the 

Merkle-Damgård model of compression function.  

 Secure Hash Algorithm-2 

In August, 2002, NIST has published three additional hash 

functions, SHA-256, SHA-384 and SHA-512. These new hash 

functions family known as Secure Hash Algorithm-2 or simply 

SHA-2. SHA-2 was introduced due to the need of a larger key of 

a hash function to match the new Advanced Encryption Standard 

(AES) which introduced in 2001. In February 2004, another hash 

function SHA-224 was added to the SHA-2 family. SHA-224 and 

SHA-384 are the truncated versions of SHA-256 and SHA-512 

respectively. The proposed system architecture of SHA-2 hash 

family can support efficiently the security needs of modern 

communication applications such as WLANs, VPNs and firewall 

[29].  

 Secure Hash Algorithm-3 

In October 2012, NIST announced the winner of SHA-3 

competition which started in 2008. Keccak was the winner of 

NIST competition and become the new SHA-3 standard. Keccak 

is a cryptographic hash function designed by Guido Bertoni, joan 

Daemen, Michael Peeters, and Gilles Van Assche. Keccak has 

completely different construction than SHA-0, SHA-1 and SHA-2 

families. It supports at least four different output lengths n {224, 

256, 384, and 512}in a high security levels [21]. According to 

[22] and [23] the construction of Keccak sponge design is 

building the compression function from different permutation  f  

operates components in the following: 

1. Signify the length of message bitstring by |M|, as a 

sequence of blocks in fixed length x, when calculated the 

ranges from 0 to |M|x -1. 

2. Pad the message M in a sequence of x-bit blocks to 

signify by M|| pad [x] (|M|). Thus, padding rules have 

append a bitstring to determined the bit length of M and 

the block length x.  

3. It is a sponge hash functions to construct a function of [f, 

pad, r] where the permutation f has different length in 

input and fixed length of output, a padding rule ―pad‖ 

and a bitrate r. The permutation f operates has seven set 

of bits, which denoted as Keccak-f [b] wherethe b= 25w. 

Keccak-f [b] is a permutation over, when the bits are 

figured from 0 to b-1. Thus, the different versions of 

Keccak-f  permutation have limited output values in {25, 

50, 100, 200, 400, 800, 1600} to represent the hypercube 

of sponge construction of three dimensional array, and c 

= b –r is the capacity of absorbing phase of the 

compressing state (Bertonet al. 2011). Figure 12 from 

depicts the sponge construction of  Keccak-f [r + c]. 

 
Figure 12. The sponge construction of Keccak [22] 

 

4. The permutation is a sequence of operations on the three-

dimensional array of elements of GF(2), specifically 

a[5][5][w], with w = 2
ℓ
, where w {1,2,4,8,16,32,64}. 

The expression a[x][y][z] with x, y ∈Z5 and z ∈Zw, 

signifies the bit in position (x, y, z), follows by indexing 

starts from zero. The mapping between the bits of s and 

those of a is s[w(5y + x) + z] = a[x][y][z]. That terms in 

the x and y coordinates should be taken modulo 5 and 

expressions in the z coordinate modulo w. The source 

state has a fixed value and should never consider as an 

input [24]. 

5. CONCLUSION 

This paper presented an extensive study of cryptographic hash 

functions. The presented study surveys cryptographic hash 

functions from various aspects. It included the properties, 

classification, constructions, attacks, applications and an overview 

of a selected dedicated cryptographic hash functions. Practically, 

MD4, MD5 and SHA-0 considered broken hash functions. 

Theoretically, SHA-1 considered a broken hash function. But 

SHA-2 considered secure one. SHA-3 was presented due to the 

need for a long term security hash function which has a new 

promising sponge construction. 
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