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Abstract 

This paper describes a technique that can be used to 

generate fuzzy rules to extract the features of handwritten 

characters. The feature extraction is a complicated 

problem as different people write the same character in 

different ways. The development of a technique that can 

generate the description of handwritten characters is still a 

challenge for the handwritten recognition systems. The 

fuzzy logic offers a good opportunity to build a rule-based 

feature extraction technique for handwritten characters 

with low computational cost. 
 

Keywords: Feature Extraction, Handwritten Characters, Fuzzy 

Logic. 

1. Introduction 

The term feature extraction consists of two meanings; 

feature detection, and feature selection [1]. The purpose of 

feature detection is to obtain those features, which 

preserve the useful information about the image to the 

largest extent. The aim of feature selection is to determine 

those principal feature components depending on a certain 

classification task in order to achieve an effective 

classification [1, 2].  The above idea shows that the output 

of feature detector reflects the information of the image.  

Feature extraction is responsible for extracting all possible 

features that are expected to be effective in diagnosing all 

information of image, without concerning the 

disadvantages of excessive dimensionality [3]. 

 

The feature after selection may not contain enough 

information about the original image, but it must contain 

the information that is useful to distinguish different 

classes for image classification [2, 3].   Figure 1 shows a 

block diagram of feature extractor for classification system.  

 

In the Handwritten Recognition systems, many tedious 

tasks can be made more efficient by automating the 

process of reading handwritten numerals. In such system 

an optical scanner converts each handwritten numeral to a 

digital image, and computer software classifies the image 

as one of the digits zero through nine. By reducing the 

need for human interaction, numeral-recognition systems 

can speed up jobs such as reading income tax returns, 

sorting inventory, and routing mail. Several steps are 

necessary to achieve this. A recognition system must first 

capture digital image of handwritten numerals. Before 

attempting to classify the numerals, some preprocessing 

image might be necessary. An algorithm must then classify 

each handwritten numeral as one of the ten decimal digits 

[4, 5]. 

 

 

Fig. 1: Block Diagram of Feature Extractor 

 

Although a qualitative description of this process is 

straight forward, it cannot be easily reduced to a few 

simple mathematical rules. The difficulty results from the 

natural variations in human handwritten. A useful 

recognition system must be robust to alterations in size, 

shape, orientation, thickness, etc. Closed-form 

mathematical models tend to be inadequate for such a task 

because of the many possible representations of the same 

image.  The problem presents certain obstacles that make 

pattern matching on a pixel–by–pixel basis impractical. 

For instance, the edge of a character segment can show up 

in two or more data slices (all the pixels along one 

column), depending on where the slices overlap. Further, 

slight variations in printing cause character height and 

width to vary and misfeeding of the document can skew 

the imaged character.  
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Fuzzy logic, which is inherently superior for processing 

imprecise data, is a natural for this application [1, 7]. 

However, a data preprocessor is necessary to simplify the 

problem so that it can be easily described in fuzzy rules. 

Feature extraction is the crucial phase in numeral 

identification as each numeral is unique in its own way, 

thus distinguishing itself from other numerals. Hence, it is 

very important to extract features in such a way that the 

recognition of different numerals becomes easier on the 

basis of the individual features of each numeral [8, 9]. 

 

In the present paper, the authors propose the transition 

calculation and sum of pixels of an image as a feature 

detector, fuzzy logic technique as a feature analyzer, and 

extraction the most useful information as outputs for 

classifier process.  Handwritten numerals recognition 

system has been designed and implemented and a high 

degree of accuracy has been gained using fuzzy logic. 

2. Feature Extraction 

Feature extraction involves simplifying the amount of 

resources required to describe a large set of data 

accurately. Feature extraction is a general term for 

methods of constructing combinations of the variables to 

get around these problems while still describing the data 

with sufficient accuracy.  The literature is replete with 

high accuracy recognition systems for separated 

handwritten numerals and characters [10]. However, 

research into the recognition of characters extracted from 

cursive and touching handwriting has not had the same 

measure of success [11].  One of the main problems faced 

when dealing with segmented, handwritten character 

recognition is the ambiguity and illegibility of the 

characters. Figure 2 illustrates the difficulties a 

programmer encounter when trying to match incoming 

patterns against an idealized pattern, or template. Each of 

the three sections of Figure 2 shows twenty data slices of 

typical read of the character 0.  

  

 
Fig. 2:  Different Patterns of Character Zero 

The leftmost portion of Figure 2 (S1) represents the pattern 

associated with an ideal read of a character 0.  This portion 

of the figure can be considered to be a template for the 

read of a character 0. The center and the right portions of 

Figure 2 (S2, S3) show some patterns of character 0. 

 

One approach to recognition would have a program 

compare scanned characters to templates on a pixel-by-

pixel basis. Clearly, this procedure could often fail (in this 

case). For instance, the program would expect a 1 in slice 

1, local 3 of a character 0 in pattern S1, and neither S2 nor 

S3 characters would satisfy the expectation. 

 

Another approach would have the program sum all the 

pixels in each slice and compare the resulting slice totals 

to corresponding slice totals from templates. As shown in 

table 1 below, this approach also cannot produce a match 

in both S2 and S3 case.  

 

Table 1: Slice Totals for the Three Readings of Fig. 1                                                                                                                                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The data in Table 1 provides a useful insight. It is apparent 

in all three cases that the magnitude of the slice total 

increases to a high value of approximately 30, decreases to 

a low value of approximately 6, increases again to a high 

value of approximately 30, and then finally decreases to 

zero.  It is possible to locates and quantifies these 

transitions, or changes of magnitude, in slice totals. 

Quantified transitions will form the input to the 

handwritten recognition fuzzy system. The fuzzy rules will 

look something like this: A very large positive transition, 

followed by a large negative transition, followed by a large 

positive transition, followed by a very large negative 

transition, indicates a character zero. A transition is 

defined as the difference between a current local 

maximum (or minimum) and the previous local minimum 

(or maximum). The data preprocessor takes a data slice, 

Slice S1 S2 S3 

1 27 23 12 

2 29 26 23 

3 30 28 27 

4 7 9 21 

5 6 7 10 

6 6 7 6 

7 6 6 6 

8 6 6 6 

9 6 6 6 

10 6 6 6 

11 6 6 6 

12 6 6 6 

13 6 6 7 

14 6 6 8 

15 6 6 8 

16 7 7 16 

17 30 29 26 

18 29 28 25 

19 27 26 15 

20 0 0 0 
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obtains its slice total, and compares the magnitude of the 

slice total to previous slice total to determine whether it 

constitutes a new local maximum or minimum. 

3. The Transition Concept 

Figure 3 below shows the block diagram of the 

preprocessor for Transition Calculation algorithm which 

takes in slice data and generates transition outputs. The 

variables that are updated during preprocessor operation 

are listed in Figure 3. Preprocessor outputs take the form 

of a transition number and an associated transition 

magnitude. For instance, T1=27 means transition number 

1 has a magnitude of 27. The algorithm incorporates 

hysteresis in determining a direction change. In other 

words, a transition must be of three pixels or greater 

magnitude to be recognized. For instance, if a current 

reading produce a slice total of 6 and the previous reading 

left DIR as (–) and L-min as 4, the current reading would 

fail the test CR > PR+2, but would pass the test CR > PR. 

Since DIR-, none of the variables are changed. The 

preprocessor algorithm has no effect on system throughput 

because it can be run during the delay for integration time. 

 

 
Fig. 3: The Block Diagram of the Preprocessor for Transition Calculation 

Algorithm 

Table 2 shows how variables are updated after each slice. 

The slice data applied is from the S3 case shown in Figure 

2. Prior to entering the routine Transition Calculation, 

variables are initialized to the values shown in the column 

labeled Init. Data slice #1 is defined as the first slice with a 

slice total greater than 2. A final transition number 

magnitude calculation is forced after the 22nd slice.  

 
Table 2: Translation Calculation for S3 Character Scan 

 

The preprocessor found the following four transitions 

while reading this character. T1=27, T2=-21, T3=20, T4=-

26.  For Comparison, the preprocessor would return the 

following values for both S1 and S2 character 0 

(respectively): (S1: T1=30, T2=-24, T3=24, T4=-30)   and                                        

(S2: T1=28, T2=-22, T3=23, T4=-29). The visual 

representation of Table 2 can be represented by the 

following figure 4 below. 

 

 

Fig. 4: Visual Representation of Table 2 Transition 

         

Slice CR PR DIR T L_min L_max Tmag. 

Init 0 0 +  0 0 0 

1 12 0 +  0 12 0 

2 23 12 +  0 23 0 

3 27 23 +  0 27 0 

4 21 27 - T1 21 27 27 

5 10 21 -  10 27 0 

6 6 10 -  6 27 0 

7 6 6 -  6 27 0 

8 6 6 -  6 27 0 

9 6 6 -  6 27 0 

10 6 6 -  6 27 0 

11 6 6 -  6 27 0 

12 6 6 -  6 27 0 

13 7 6 -  6 27 0 

14 8 7 -  6 27 0 

15 8 8 -  6 27 0 

16 16 8 + T2 6 16 -21 

17 26 16 +  6 26 0 

18 25 26 +  6 26 0 

19 15 25 - T3 15 26 20 

20 0 15 -  0 26 0 

21 0 0 -  0 26 0 

22 0 0 - T4 0 26 -26 
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4. Fuzzifying Transition Inputs 

The transition visualized in figure 3 above make it very 

easy to write a fuzzy rule that recognizes a character 0: If 

T1 is Very_Large_Positive and T2 is Large_Negative and 

T3 is Large_ Positive and T4 is Very_ Large_ Negative, 

then character is 0. A similar visualization of all ten 

characters is required to write the remaining rules.  Table 3 

below represents the range of transition magnitudes for all 

ten characters. This data was obtained by unconstrained 

images represented handwritten numeral. The number of 

transitions per character varies from two (characters 1, 3, 

and 7) to four (characters 2, 4, 5, 6, 8, 9, and 0). 

 

The first step in fuzzifying this data is to establish a 

universe of discourse that defines the range of possible 

values for fuzzy input. Once the universe of discourse is 

defined, fuzzy sets can be created within it. In this case, 

T1, T2, T3, and T4 are fuzzy inputs. From Table 3 below, 

transition magnitudes, measured in pixels, vary from -28 

to +28, since a slightly over sized character or stray marks 

on the document can cause more pixels to be counted, the 

universe of discourse is represented by the range of value 

from –30 to +30. There are actually two universes of 

discourse: a positive one associated with T1 and T3, and a 

negative one associated with T2 and T4. The positive 

universe of discourse is defined as the range of values 

from 5 to 28 pixels, and the negative universe of discourse 

is defined as the range of values from –3 to    –28 pixels. 

 
Table 3: Transition Magnitude Ranges for All Ten Characters 

 

Char 

T1 

(LO,HI) 

T2 

(LO,HI) 

T3 

(LO,HI) 

T4 

(LO,HI) 

0 21 25 -14 -20 14 20 -21 -25 

1 13 13 -13 -13 --- --- --- --- 

2 17 19 -6 -9 5 10 -17 -20 

3 23 27 -23 -27 --- --- --- --- 

4 15 19 -15 -19 12 16 -15 -19 

5 16 19 -6 -10 5 9 -14 -20 

6 21 24 -12 -16 6 8 -12 -17 

7 25 28 -25 -28 --- --- --- --- 

8 20 22 -7 -11 13 17 -23 -27 

9 13 16 -3 -8 17 21 -23 -28 

 
The distribution of transition values across the universe 

discourse label denotes each character and transition 

number, putting in graphical representation of transition 

range, from Table 3 above. 

 

It is obvious from Figure 5 that there is some clumping of 

transition data could be used to create fuzzy sets that apply 

all four transition inputs. Based on the natural grouping of 

data, fuzzy sets are assigned and labeled. At this point, 

transition inputs and fuzzy sets are defined. 

 

 

 

 
Fig. 5:  Distribution of Transitions across the Universe of Discourse 

 

 

Figures 6, 7, 8 and 9 show the fuzzy set distribution for 

T1, T2, T3 and T4. Unfortunately, transition inputs alone 

are not adequate to classify characters. Consider the 

characters 3 and 7. Each has only two transitions, T1 and 

T2. The rule for character 3 is: if T1 is Large and T2 is 

Small then character is 3. The rule for character 7 is: if T1 

is large and T2 is Small then character is 7. Thus, from 

transition data, 3 and 7 are indistinguishable. 

 

 

 

Fig. 6: T1 Fuzzy Set Distribution 
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Fig. 7: T2 Fuzzy Set Distribution 

 

 

Fig. 8: T3 Fuzzy Set Distribution 

 

 
Fig. 9: T4 Fuzzy Set Distribution 

 

Table 4 shows the fuzzy magnitude of each transition 

presented by character. The conflict column shows the 

other characters which present the same fuzzy magnitude. 

Several conflicts occur, so it is necessary to introduce 

input variables in addition to transition magnitude. 

 

Table 4: Transition Magnitudes for Each Character 

5. Sums Of Pixels (SOP) 

Some of the conflicts shown in Table 4 can be resolved by 

considering the total dark area in each character. Total 

dark area is measured as a sum of pixels of the image, or 

SOP. The image is divided into four equal quarters and 

computes the sum of pixels for each quarter. The sub 

image 1 is the sub image in the top left of the original 

image (character image), and its size is (15×10), as shown 

in Figure 10 bellow. 

  

 

                                            
Fig. 10: SOP1 and SOP2 

 

SOP1, represent sum of pixels of sub image 1, will be the 

fifth fuzz input. Table 5 shows the range of SOP1 values 

for each character.  
 

Table 5: SOP1 Range for Each Character 

Char. 0 1 2 3 4 5 6 7 8 9 

SOP1 

(low) 
56 12 47 50 42 58 53 27 73 47 

SOP1 

(high) 
61 12 65 56 50 84 68 30 80 70 

SOP1 

(avg.) 
59 12 56 53 53 71 61 29 77 59 

 

Figure 11 shows how the conflicts shown in Table 4 are 

resolved by the addition of the SOP1 input variable. 

Consider the conflict between characters 1 and 4. The 

value of SOP1 for the character 1 is always produces a 

degree of membership of 1 in the fuzzy set SOP1 Small 

and a degree of membership of 0 in the fuzzy set SOP1 

Large, so that a 1 is never recognized as a 4. Conversely, 

as long as the possible range of SOP1 values for 4 always 

produces a higher degree of membership in the fuzzy set 

Large than in the fuzzy set Small, a 4 is recognized as a 4 

Char T1 T2 T3 T4 Conflict 

0 Large Med Large Small --- 

1 Small Med --- --- 4 

2 Small Large Small Large 5 

3 Large Small --- --- 7 

4 Small Med Large Large 1 

5 Small Large Small Large 2 

6 Large Med Small Large --- 

7 Large Small --- --- 3 

8 Large Large Large Small --- 

9 Small Large Large Small --- 
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rather than as a 1. SOP1 for character 4 ranges from 42 to 

50 (Table 5). Figure 11 shows that any value of SOP1 

from 42 to 50 produces a degree of membership of 1 in the 

fuzzy set SOP1 Large. The conflict is completely resolved. 

Each character appears exclusively within a fuzzy set with 

no overlap. 

 

 
Fig. 11:  SOP1 Fuzzy Set Distribution 

 

The input variable SOP1 also resolved the conflict 

between the two characters 3 and 7. As long as the 

possible range of SOP1 values for 3 always produces a 

higher degree of membership in the fuzzy set Large than in 

the fuzzy set Med, a 3 is recognized as a 3 rather than as a 

7. SOP1 for character 3 ranges from 50 to 56 (Table 5). 

Figure 11 shows that any value of SOP1 from 50 to 56 

produces a degree of membership of 1 in the fuzzy set 

SOP1 Large. Values from 40 to 35 produce declining 

degrees of membership. Since the minimum value of 

SOP1 from character 3 is 50, the character 3 always 

produces some degree of membership in the fuzzy set 

SOP1 Large and none in the fuzzy set SOP1 Med. 

Therefore, a 3 is never recognized as a 7. Conversely, the 

range of SOP1 values for the character 7 is always 

produces a degree of membership of 1 in the fuzzy set 

SOP1 Med and a degree of membership of 0 in the fuzzy 

set SOP1 Large, so that a 7 is never recognized as a 3. The 

conflict is completely resolved between characters 3 and 7. 

Each character appears exclusively within a fuzzy set with 

no overlap. 

 

Notice that the lowest value of SOP1 for 5 produces a 

higher degree of association with Large than with Max, 

preventing a resultant 5 for low values of SOP1. Then 

because of the interaction of its SOP1 ranges with multiple 

fuzzy sets, SOP1 should not be used as a qualifier for 

character 5. So the range of SOP1 values for character 5 is 

not adequately represented by either SOP1 Large or Max. 

In this case, it is best to leave the SOP1 input variable out 

of the fuzzy equation for character 5. Therefore an 

additional input variable is required. SOP1 is only 

resolving the conflict between characters 1 and 4 and 

between characters 3 and 7. However, it makes sense to 

assign the remaining characters to fuzzy sets in the SOP1 

universe of discourse. The minimal additional code that 

required for these rule additions produces better-qualified 

results and a more robust classification system. 

 

An additional characteristic that may resolve the remaining 

conflicts is by considering the sum of pixels in each 

character sub image 2, or SOP2, where sub image 2 is a 

sub image of character image with Size (15 x 10) as shown 

in Figure 6. Table 6 shows the range of SOP2 values for 

each character. Figure 7 shows the universe of discourse 

and fuzzy sets for SOP2. 

 

Table 6: SOP2 Range for Each Character 

 

 
Fig. 12: SOP2 Fuzzy Set Distribution 

 

 

Figure 12 shows how the conflict between characters 2 and 

5 is resolved by the addition of the SOP2 input variable. 

As long as the possible range of SOP2 values for 2 always 

produces a degree of membership in the fuzzy set Large 

than in the fuzzy set Med, a 2 is recognized as a 2 rather 

than as a 5.  Conversely, the range of SOP2 values for the 

character 5 is always produces a degree of membership of 

1 in the fuzzy set SOP2 Med and a degree of membership 

of 0 in the fuzzy set SOP2 Large, so that a 5 is never 

recognized as a 2. The conflict is completely resolved 

Char 0 1 2 3 4 5 6 7 8 9 

SOP2 

(low) 
59 14 61 18 45 32 78 0 72 30 

SOP2 

(high) 
63 14 70 30 67 52 90 5 82 42 

SOP2 

(avg.) 
61 14 66 24 56 42 84 3 77 36 
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between characters 2 and 5. Each character appears 

exclusively within a fuzzy set with no overlap. Fuzzy rules 

create associations between specific inputs and desired 

outputs. Here, the six input variables are T1, T2, T3, T4, 

SOP1 and SOP2. Ten valid output variables, one for each 

of the ten characters to be recognized, are defined. Table 7 

shows the relationship between fuzzy input variables and 

fuzzy output variables. 

 
Table 7: Fuzzy Set Association 

 

 

 

With the relationship information summarized in Table 7, 

the fuzzy rules can be written as:  

 

Rule 1: if  T1  is  Large  and  T2  is  Med  and  T3  is  

Large  and  T4  is  Small  and  SOP1  is  Large  

and  SOP2  is  Large  then  Character  is  Zero. 

 

Rule 2: if  T1  is  Small  and  T2  is  Med  and  SOP1  is  

Small  and  SOP2  is  Small  then  Character  is  

One. 

 

Rule 3: if  T1  is  Small  and  T2  is  Large  and  T3  is  

Small  and  T4  is  Large  and  SOP1  is  Large  

and  SOP2  is  Large  then  Character  is  Two. 

 

Rule 4: if  T1  is  Large  and  T2  is  Small  SOP1 is Large  

SOP2  is  Med  then  Character  is  Three. 

 

Rule 5: if  T1  is  Small  and  T2  is  Med  and  T3  is  

Large  and  T4  is  Large  SOP1  is Large  then  

Character  is  Four. 

 

Rule 6: if  T1  is  Small  and  T2  is  Large  and  T3  is  

Small  and  T4  is  Large  and  SOP2  is  Med    

then  Character  is  Five. 

 

Rule 7: if  T1  is  Large  and  T2  is  Med  and  T3  is  

Small  and  T4  is  Large  and  SOP1  is  Large  

and  SOP2  is  Max  then  Character  is  Six. 

 

Rule 8: if  T1  is  Large  and  T2  is  Smell  and  SOP1  is  

Med  and  SOP2  is  Small  then  Character  is  

Seven. 

 

Rule 9: if  T1  is  Large  and  T2  is  Large  and  T3  is  

Large  and  T4  is  Small  and  SOP1  is  Max and  

SOP2  is  Max  then  Character  is  Eight. 

Rule 10: if  T1  is  Small  and  T2  is  Large  and  T3  is  

Large  and  T4  is  Small  and  SOP1  is  Large  

and  SOP2  is  Med  then  Character  is  Nine. 

6. Conclusion 

The method presented in this paper is a reliable and 

relatively simple method for generating the fuzzy rule-

based description of handwritten characters. Even though 

this method is not deemed to be the ultimate solution for 

the recognition of handwritten characters but it is a 

solution which is extremely simple to implement and use. 

Testing results will be considered in a forthcoming paper 

incorporating the presented technique in a complete online 

handwritten recognition system. 
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