

A Fuzzy Based Feature Extraction Approach for Handwritten

Characters

Mahmood K Jasim
 1
, Anwar M Al-Saleh

2
 and Alaa Aljanaby

1

 1 Department of Mathematical & Physical Sciences, College of Arts & Sciences, University of Nizwa, Oman

2 Computer Science Department, College of Sciences, Al-Mustansiriyah University, Iraq

Abstract

This paper describes a technique that can be used to

generate fuzzy rules to extract the features of handwritten

characters. The feature extraction is a complicated

problem as different people write the same character in

different ways. The development of a technique that can

generate the description of handwritten characters is still a

challenge for the handwritten recognition systems. The

fuzzy logic offers a good opportunity to build a rule-based

feature extraction technique for handwritten characters

with low computational cost.

Keywords: Feature Extraction, Handwritten Characters, Fuzzy

Logic.

1. Introduction

The term feature extraction consists of two meanings;

feature detection, and feature selection [1]. The purpose of

feature detection is to obtain those features, which

preserve the useful information about the image to the

largest extent. The aim of feature selection is to determine

those principal feature components depending on a certain

classification task in order to achieve an effective

classification [1, 2]. The above idea shows that the output

of feature detector reflects the information of the image.

Feature extraction is responsible for extracting all possible

features that are expected to be effective in diagnosing all

information of image, without concerning the

disadvantages of excessive dimensionality [3].

The feature after selection may not contain enough

information about the original image, but it must contain

the information that is useful to distinguish different

classes for image classification [2, 3]. Figure 1 shows a

block diagram of feature extractor for classification system.

In the Handwritten Recognition systems, many tedious

tasks can be made more efficient by automating the

process of reading handwritten numerals. In such system

an optical scanner converts each handwritten numeral to a

digital image, and computer software classifies the image

as one of the digits zero through nine. By reducing the

need for human interaction, numeral-recognition systems

can speed up jobs such as reading income tax returns,

sorting inventory, and routing mail. Several steps are

necessary to achieve this. A recognition system must first

capture digital image of handwritten numerals. Before

attempting to classify the numerals, some preprocessing

image might be necessary. An algorithm must then classify

each handwritten numeral as one of the ten decimal digits

[4, 5].

Fig. 1: Block Diagram of Feature Extractor

Although a qualitative description of this process is

straight forward, it cannot be easily reduced to a few

simple mathematical rules. The difficulty results from the

natural variations in human handwritten. A useful

recognition system must be robust to alterations in size,

shape, orientation, thickness, etc. Closed-form

mathematical models tend to be inadequate for such a task

because of the many possible representations of the same

image. The problem presents certain obstacles that make

pattern matching on a pixel–by–pixel basis impractical.

For instance, the edge of a character segment can show up

in two or more data slices (all the pixels along one

column), depending on where the slices overlap. Further,

slight variations in printing cause character height and

width to vary and misfeeding of the document can skew

the imaged character.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 208

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fuzzy logic, which is inherently superior for processing

imprecise data, is a natural for this application [1, 7].

However, a data preprocessor is necessary to simplify the

problem so that it can be easily described in fuzzy rules.

Feature extraction is the crucial phase in numeral

identification as each numeral is unique in its own way,

thus distinguishing itself from other numerals. Hence, it is

very important to extract features in such a way that the

recognition of different numerals becomes easier on the

basis of the individual features of each numeral [8, 9].

In the present paper, the authors propose the transition

calculation and sum of pixels of an image as a feature

detector, fuzzy logic technique as a feature analyzer, and

extraction the most useful information as outputs for

classifier process. Handwritten numerals recognition

system has been designed and implemented and a high

degree of accuracy has been gained using fuzzy logic.

2. Feature Extraction

Feature extraction involves simplifying the amount of

resources required to describe a large set of data

accurately. Feature extraction is a general term for

methods of constructing combinations of the variables to

get around these problems while still describing the data

with sufficient accuracy. The literature is replete with

high accuracy recognition systems for separated

handwritten numerals and characters [10]. However,

research into the recognition of characters extracted from

cursive and touching handwriting has not had the same

measure of success [11]. One of the main problems faced

when dealing with segmented, handwritten character

recognition is the ambiguity and illegibility of the

characters. Figure 2 illustrates the difficulties a

programmer encounter when trying to match incoming

patterns against an idealized pattern, or template. Each of

the three sections of Figure 2 shows twenty data slices of

typical read of the character 0.

Fig. 2: Different Patterns of Character Zero

The leftmost portion of Figure 2 (S1) represents the pattern

associated with an ideal read of a character 0. This portion

of the figure can be considered to be a template for the

read of a character 0. The center and the right portions of

Figure 2 (S2, S3) show some patterns of character 0.

One approach to recognition would have a program

compare scanned characters to templates on a pixel-by-

pixel basis. Clearly, this procedure could often fail (in this

case). For instance, the program would expect a 1 in slice

1, local 3 of a character 0 in pattern S1, and neither S2 nor

S3 characters would satisfy the expectation.

Another approach would have the program sum all the

pixels in each slice and compare the resulting slice totals

to corresponding slice totals from templates. As shown in

table 1 below, this approach also cannot produce a match

in both S2 and S3 case.

Table 1: Slice Totals for the Three Readings of Fig. 1

The data in Table 1 provides a useful insight. It is apparent

in all three cases that the magnitude of the slice total

increases to a high value of approximately 30, decreases to

a low value of approximately 6, increases again to a high

value of approximately 30, and then finally decreases to

zero. It is possible to locates and quantifies these

transitions, or changes of magnitude, in slice totals.

Quantified transitions will form the input to the

handwritten recognition fuzzy system. The fuzzy rules will

look something like this: A very large positive transition,

followed by a large negative transition, followed by a large

positive transition, followed by a very large negative

transition, indicates a character zero. A transition is

defined as the difference between a current local

maximum (or minimum) and the previous local minimum

(or maximum). The data preprocessor takes a data slice,

Slice S1 S2 S3

1 27 23 12

2 29 26 23

3 30 28 27

4 7 9 21

5 6 7 10

6 6 7 6

7 6 6 6

8 6 6 6

9 6 6 6

10 6 6 6

11 6 6 6

12 6 6 6

13 6 6 7

14 6 6 8

15 6 6 8

16 7 7 16

17 30 29 26

18 29 28 25

19 27 26 15

20 0 0 0

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 209

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

obtains its slice total, and compares the magnitude of the

slice total to previous slice total to determine whether it

constitutes a new local maximum or minimum.

3. The Transition Concept

Figure 3 below shows the block diagram of the

preprocessor for Transition Calculation algorithm which

takes in slice data and generates transition outputs. The

variables that are updated during preprocessor operation

are listed in Figure 3. Preprocessor outputs take the form

of a transition number and an associated transition

magnitude. For instance, T1=27 means transition number

1 has a magnitude of 27. The algorithm incorporates

hysteresis in determining a direction change. In other

words, a transition must be of three pixels or greater

magnitude to be recognized. For instance, if a current

reading produce a slice total of 6 and the previous reading

left DIR as (–) and L-min as 4, the current reading would

fail the test CR > PR+2, but would pass the test CR > PR.

Since DIR-, none of the variables are changed. The

preprocessor algorithm has no effect on system throughput

because it can be run during the delay for integration time.

Fig. 3: The Block Diagram of the Preprocessor for Transition Calculation

Algorithm

Table 2 shows how variables are updated after each slice.

The slice data applied is from the S3 case shown in Figure

2. Prior to entering the routine Transition Calculation,

variables are initialized to the values shown in the column

labeled Init. Data slice #1 is defined as the first slice with a

slice total greater than 2. A final transition number

magnitude calculation is forced after the 22nd slice.

Table 2: Translation Calculation for S3 Character Scan

The preprocessor found the following four transitions

while reading this character. T1=27, T2=-21, T3=20, T4=-

26. For Comparison, the preprocessor would return the

following values for both S1 and S2 character 0

(respectively): (S1: T1=30, T2=-24, T3=24, T4=-30) and

(S2: T1=28, T2=-22, T3=23, T4=-29). The visual

representation of Table 2 can be represented by the

following figure 4 below.

Fig. 4: Visual Representation of Table 2 Transition

Slice CR PR DIR T L_min L_max Tmag.

Init 0 0 + 0 0 0

1 12 0 + 0 12 0

2 23 12 + 0 23 0

3 27 23 + 0 27 0

4 21 27 - T1 21 27 27

5 10 21 - 10 27 0

6 6 10 - 6 27 0

7 6 6 - 6 27 0

8 6 6 - 6 27 0

9 6 6 - 6 27 0

10 6 6 - 6 27 0

11 6 6 - 6 27 0

12 6 6 - 6 27 0

13 7 6 - 6 27 0

14 8 7 - 6 27 0

15 8 8 - 6 27 0

16 16 8 + T2 6 16 -21

17 26 16 + 6 26 0

18 25 26 + 6 26 0

19 15 25 - T3 15 26 20

20 0 15 - 0 26 0

21 0 0 - 0 26 0

22 0 0 - T4 0 26 -26

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 210

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

4. Fuzzifying Transition Inputs

The transition visualized in figure 3 above make it very

easy to write a fuzzy rule that recognizes a character 0: If

T1 is Very_Large_Positive and T2 is Large_Negative and

T3 is Large_ Positive and T4 is Very_ Large_ Negative,

then character is 0. A similar visualization of all ten

characters is required to write the remaining rules. Table 3

below represents the range of transition magnitudes for all

ten characters. This data was obtained by unconstrained

images represented handwritten numeral. The number of

transitions per character varies from two (characters 1, 3,

and 7) to four (characters 2, 4, 5, 6, 8, 9, and 0).

The first step in fuzzifying this data is to establish a

universe of discourse that defines the range of possible

values for fuzzy input. Once the universe of discourse is

defined, fuzzy sets can be created within it. In this case,

T1, T2, T3, and T4 are fuzzy inputs. From Table 3 below,

transition magnitudes, measured in pixels, vary from -28

to +28, since a slightly over sized character or stray marks

on the document can cause more pixels to be counted, the

universe of discourse is represented by the range of value

from –30 to +30. There are actually two universes of

discourse: a positive one associated with T1 and T3, and a

negative one associated with T2 and T4. The positive

universe of discourse is defined as the range of values

from 5 to 28 pixels, and the negative universe of discourse

is defined as the range of values from –3 to –28 pixels.

Table 3: Transition Magnitude Ranges for All Ten Characters

Char

T1

(LO,HI)

T2

(LO,HI)

T3

(LO,HI)

T4

(LO,HI)

0 21 25 -14 -20 14 20 -21 -25

1 13 13 -13 -13 --- --- --- ---

2 17 19 -6 -9 5 10 -17 -20

3 23 27 -23 -27 --- --- --- ---

4 15 19 -15 -19 12 16 -15 -19

5 16 19 -6 -10 5 9 -14 -20

6 21 24 -12 -16 6 8 -12 -17

7 25 28 -25 -28 --- --- --- ---

8 20 22 -7 -11 13 17 -23 -27

9 13 16 -3 -8 17 21 -23 -28

The distribution of transition values across the universe

discourse label denotes each character and transition

number, putting in graphical representation of transition

range, from Table 3 above.

It is obvious from Figure 5 that there is some clumping of

transition data could be used to create fuzzy sets that apply

all four transition inputs. Based on the natural grouping of

data, fuzzy sets are assigned and labeled. At this point,

transition inputs and fuzzy sets are defined.

Fig. 5: Distribution of Transitions across the Universe of Discourse

Figures 6, 7, 8 and 9 show the fuzzy set distribution for

T1, T2, T3 and T4. Unfortunately, transition inputs alone

are not adequate to classify characters. Consider the

characters 3 and 7. Each has only two transitions, T1 and

T2. The rule for character 3 is: if T1 is Large and T2 is

Small then character is 3. The rule for character 7 is: if T1

is large and T2 is Small then character is 7. Thus, from

transition data, 3 and 7 are indistinguishable.

Fig. 6: T1 Fuzzy Set Distribution

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 211

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 7: T2 Fuzzy Set Distribution

Fig. 8: T3 Fuzzy Set Distribution

Fig. 9: T4 Fuzzy Set Distribution

Table 4 shows the fuzzy magnitude of each transition

presented by character. The conflict column shows the

other characters which present the same fuzzy magnitude.

Several conflicts occur, so it is necessary to introduce

input variables in addition to transition magnitude.

Table 4: Transition Magnitudes for Each Character

5. Sums Of Pixels (SOP)

Some of the conflicts shown in Table 4 can be resolved by

considering the total dark area in each character. Total

dark area is measured as a sum of pixels of the image, or

SOP. The image is divided into four equal quarters and

computes the sum of pixels for each quarter. The sub

image 1 is the sub image in the top left of the original

image (character image), and its size is (15×10), as shown

in Figure 10 bellow.

Fig. 10: SOP1 and SOP2

SOP1, represent sum of pixels of sub image 1, will be the

fifth fuzz input. Table 5 shows the range of SOP1 values

for each character.

Table 5: SOP1 Range for Each Character

Char. 0 1 2 3 4 5 6 7 8 9

SOP1

(low)
56 12 47 50 42 58 53 27 73 47

SOP1

(high)
61 12 65 56 50 84 68 30 80 70

SOP1

(avg.)
59 12 56 53 53 71 61 29 77 59

Figure 11 shows how the conflicts shown in Table 4 are

resolved by the addition of the SOP1 input variable.

Consider the conflict between characters 1 and 4. The

value of SOP1 for the character 1 is always produces a

degree of membership of 1 in the fuzzy set SOP1 Small

and a degree of membership of 0 in the fuzzy set SOP1

Large, so that a 1 is never recognized as a 4. Conversely,

as long as the possible range of SOP1 values for 4 always

produces a higher degree of membership in the fuzzy set

Large than in the fuzzy set Small, a 4 is recognized as a 4

Char T1 T2 T3 T4 Conflict

0 Large Med Large Small ---

1 Small Med --- --- 4

2 Small Large Small Large 5

3 Large Small --- --- 7

4 Small Med Large Large 1

5 Small Large Small Large 2

6 Large Med Small Large ---

7 Large Small --- --- 3

8 Large Large Large Small ---

9 Small Large Large Small ---

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 212

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

rather than as a 1. SOP1 for character 4 ranges from 42 to

50 (Table 5). Figure 11 shows that any value of SOP1

from 42 to 50 produces a degree of membership of 1 in the

fuzzy set SOP1 Large. The conflict is completely resolved.

Each character appears exclusively within a fuzzy set with

no overlap.

Fig. 11: SOP1 Fuzzy Set Distribution

The input variable SOP1 also resolved the conflict

between the two characters 3 and 7. As long as the

possible range of SOP1 values for 3 always produces a

higher degree of membership in the fuzzy set Large than in

the fuzzy set Med, a 3 is recognized as a 3 rather than as a

7. SOP1 for character 3 ranges from 50 to 56 (Table 5).

Figure 11 shows that any value of SOP1 from 50 to 56

produces a degree of membership of 1 in the fuzzy set

SOP1 Large. Values from 40 to 35 produce declining

degrees of membership. Since the minimum value of

SOP1 from character 3 is 50, the character 3 always

produces some degree of membership in the fuzzy set

SOP1 Large and none in the fuzzy set SOP1 Med.

Therefore, a 3 is never recognized as a 7. Conversely, the

range of SOP1 values for the character 7 is always

produces a degree of membership of 1 in the fuzzy set

SOP1 Med and a degree of membership of 0 in the fuzzy

set SOP1 Large, so that a 7 is never recognized as a 3. The

conflict is completely resolved between characters 3 and 7.

Each character appears exclusively within a fuzzy set with

no overlap.

Notice that the lowest value of SOP1 for 5 produces a

higher degree of association with Large than with Max,

preventing a resultant 5 for low values of SOP1. Then

because of the interaction of its SOP1 ranges with multiple

fuzzy sets, SOP1 should not be used as a qualifier for

character 5. So the range of SOP1 values for character 5 is

not adequately represented by either SOP1 Large or Max.

In this case, it is best to leave the SOP1 input variable out

of the fuzzy equation for character 5. Therefore an

additional input variable is required. SOP1 is only

resolving the conflict between characters 1 and 4 and

between characters 3 and 7. However, it makes sense to

assign the remaining characters to fuzzy sets in the SOP1

universe of discourse. The minimal additional code that

required for these rule additions produces better-qualified

results and a more robust classification system.

An additional characteristic that may resolve the remaining

conflicts is by considering the sum of pixels in each

character sub image 2, or SOP2, where sub image 2 is a

sub image of character image with Size (15 x 10) as shown

in Figure 6. Table 6 shows the range of SOP2 values for

each character. Figure 7 shows the universe of discourse

and fuzzy sets for SOP2.

Table 6: SOP2 Range for Each Character

Fig. 12: SOP2 Fuzzy Set Distribution

Figure 12 shows how the conflict between characters 2 and

5 is resolved by the addition of the SOP2 input variable.

As long as the possible range of SOP2 values for 2 always

produces a degree of membership in the fuzzy set Large

than in the fuzzy set Med, a 2 is recognized as a 2 rather

than as a 5. Conversely, the range of SOP2 values for the

character 5 is always produces a degree of membership of

1 in the fuzzy set SOP2 Med and a degree of membership

of 0 in the fuzzy set SOP2 Large, so that a 5 is never

recognized as a 2. The conflict is completely resolved

Char 0 1 2 3 4 5 6 7 8 9

SOP2

(low)
59 14 61 18 45 32 78 0 72 30

SOP2

(high)
63 14 70 30 67 52 90 5 82 42

SOP2

(avg.)
61 14 66 24 56 42 84 3 77 36

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 213

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

between characters 2 and 5. Each character appears

exclusively within a fuzzy set with no overlap. Fuzzy rules

create associations between specific inputs and desired

outputs. Here, the six input variables are T1, T2, T3, T4,

SOP1 and SOP2. Ten valid output variables, one for each

of the ten characters to be recognized, are defined. Table 7

shows the relationship between fuzzy input variables and

fuzzy output variables.

Table 7: Fuzzy Set Association

With the relationship information summarized in Table 7,

the fuzzy rules can be written as:

Rule 1: if T1 is Large and T2 is Med and T3 is

Large and T4 is Small and SOP1 is Large

and SOP2 is Large then Character is Zero.

Rule 2: if T1 is Small and T2 is Med and SOP1 is

Small and SOP2 is Small then Character is

One.

Rule 3: if T1 is Small and T2 is Large and T3 is

Small and T4 is Large and SOP1 is Large

and SOP2 is Large then Character is Two.

Rule 4: if T1 is Large and T2 is Small SOP1 is Large

SOP2 is Med then Character is Three.

Rule 5: if T1 is Small and T2 is Med and T3 is

Large and T4 is Large SOP1 is Large then

Character is Four.

Rule 6: if T1 is Small and T2 is Large and T3 is

Small and T4 is Large and SOP2 is Med

then Character is Five.

Rule 7: if T1 is Large and T2 is Med and T3 is

Small and T4 is Large and SOP1 is Large

and SOP2 is Max then Character is Six.

Rule 8: if T1 is Large and T2 is Smell and SOP1 is

Med and SOP2 is Small then Character is

Seven.

Rule 9: if T1 is Large and T2 is Large and T3 is

Large and T4 is Small and SOP1 is Max and

SOP2 is Max then Character is Eight.

Rule 10: if T1 is Small and T2 is Large and T3 is

Large and T4 is Small and SOP1 is Large

and SOP2 is Med then Character is Nine.

6. Conclusion

The method presented in this paper is a reliable and

relatively simple method for generating the fuzzy rule-

based description of handwritten characters. Even though

this method is not deemed to be the ultimate solution for

the recognition of handwritten characters but it is a

solution which is extremely simple to implement and use.

Testing results will be considered in a forthcoming paper

incorporating the presented technique in a complete online

handwritten recognition system.

References

[1] Bandara G.E, Pathirana S.D., Ranawana R. M. “Use of

Fuzzy Feature Descriptions to Recognize Handwritten

Alphanumeric Characters”, 1st
 Conference on Fuzzy Systems

and Knowledge Discovery, Singapore, November 2002.

[2] Belal K. Elfarra and Ibrahim S. I. Abuhaiba. “New Feature

Extraction Method for Mammogram Computer Aided

Diagnosis”, International Journal of Signal Processing, Image

Processing and Pattern Recognition, Vol. 6, No. 1, February,

2013.

[3] Rajashekararadhya, S. and Ranjan, P. “Zone based feature

extraction algorithm for handwritten numeral recognition of

kannada script”, In Advance Computing Conference, 2009.

IACC 2009. IEEE International, pages 525–528, 2009.

[4] L. M. Lorigo and V. Govindaraju, ”Offline Arabic

handwriting recognition: a survey", IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 28, no. 5, pp.

712 - 724, 2006.

[5] Bandara G.E., Pathirana S.D., Ranawana R. M., “A Short

Method for On-line Alphanumeric Character Recognition”,

NAFIPS – FLINT 2002, New Orleans, USA, June 2002.

[6] Pal, U., Sharma, N., Wakabayashi, T., and Kimura, F.

“Handwritten character recognition of popular south indian

scripts”, In Doermann, D. and Jaeger, S., editors, Arabic and

Chinese Handwriting Recognition, volume 4768 of Lecture

Notes in Computer Science, pages 251–264, Springer Berlin /

Heidelberg, 2008.

Char T1 T2 T3 T4 SOP1 SOP2

0 Large Med Large Small Large Large

1 Small Med ------- ------- Small Small

2 Small Large Small Large Large Large

3 Large Small ------ ------- Large Med

4 Small Med Large Large Large -------

5 Small Large Small Large ------- Med

6 Large Med Small Large Large Max

7 Large Small ------ ------- Med Small

8 Large Large Large Small Max Max

9 Small Large Large Small Large Med

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 214

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

[7] Jan J. “Tutorial on fuzzy logic”, Technical University of

Denmark of Automation, Report No. 98-E868, 19 Aug. 1998.

 [8] Yadana T. and San S. Y. “High Accuracy Myanmar

Handwritten Character Recognition using Hybrid approach

through MICR and Neural Network”, International Journal of

Computer Science Issues (IJCSI), Vol. 7, Issue 6, November

2010.

[9] Muthumani .I , Uma Kumari C.R. “Online Character

Recognition of Handwritten Cursive Script”, International

Journal of Computer Science Issues (IJCSI), Vol. 9, Issue 3,

No 2, May 2012.

[10] Lauer, F., Suen, C. Y., and Bloch, G. “A trainable feature

extractor for handwritten digit recognition”, Pattern

Recognition, 40(6):1816–1824, 2007.

[11] Pal, U., Sharma, N., Wakabayashi, T., and Kimura, F.

“Handwritten character recognition of popular south indian

scripts”, In Doermann, D. and Jaeger, S., editors, Arabic and

Chinese Handwriting Recognition, volume 4768 of Lecture

Notes in Computer Science, pages 251–264, Springer Berlin /

Heidelberg, 2008.

Mahmood K Jasim is an Associate Professor and head of the
Department of Mathematical and Physical Sciences, College of
Arts and Sciences, University of Nizwa, Oman. His research
interests are Mathematical Modeling, Mathematical Physics,
Differential Equations and its application, Numerical Analysis,
Artificial Neural Networks and Fuzzy logic.

Anwar M Al-Saleh is a Lecturer at Computer Science Department,
College of Sciences, Al-Mustansiriyah University, Baghdad,
IRAQ. Her research interests are Fuzzy Logic and Image
processing.

Alaa Aljanaby is an IEEE member, Assistant Professor and head
of the Computer Science Section, Department of Mathematical
and Physical Sciences, College of Arts and Sciences, University of
Nizwa, Oman. His research interests are soft computing, bio-
inspired optimization algorithms, combinatorial optimization
problems, persuasive technology, opinion mining and image
processing.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 215

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

