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Abstract 

Parkinson Disease (PD) patients suffer from a disabling 

phenomenon called Freezing of Gait (FoG), which can be 

described as if their feet were „frozen‟ or stuck, but that the top 

half of their body was still able to move. In this paper, we make 

a graphical probabilistic modeling study, "Bayesian Belief 

Network (BBN) approach" of a previously collected dataset 

that represents the measurements of acceleration sensors placed 

on the ankle, knee and hip of PD patients during their walk. In 

order to know if this is a traditional BBN model or a causal 

one, we built a FoG Model and tested its causality behavior, 

first by forming an Epidemiological Approach, and then, by 

inferring causal relations based on Additive Noise Models 

(ANM). Consequently, we built a Bayesian Naive Classifier 

Model related to FoG. The Bayesian belief Network classifier 

has the ability to identify the onset of freezing of PD patients, 

during walking using the extracted features. Promising results 

appeared when testing the BNC classifier models. 

Keywords: Parkinson Disease, Freezing of Gait, Bayesian 

Network, Causality, Data Mining, Epidemiology, Classification 

1. Introduction 

Parkinson's Disease (PD) is a common neuro-

degenerative disease. One of PD symptoms is freezing, 

which may occur during gait, speaking or a repetitive 

movement like handwriting. Freezing of Gait (FoG) can 

be defined as “a brief, episodic reduction of forward 

progression of the feet despite the intention to walk”, and 

is often described by patients as if their feet are glued to 

the floor for a short period of time [1]. FoG aspects of 

PD do not respond well to dopaminergic drugs, as it is 

one of the symptoms that often result from non-

dopaminergic pathology [2]. Recent studies investigated 

measuring features that may evaluate patterns of the 

handwriting and speech of PD patients as well as 

handwriting of school children [3, 4], which can be used 

to detect writing and voice freezing episodes for PD 

patients. This study highlights the Freezing of Gait 

phenomenon of PD patients. Our proposal is a modeling 

approach that focuses on a specific class of Probabilistic 

Graphical Model (PGM), the directed
1
one, i.e. Bayesian 

Belief Network (BBN).The followed methodology 

mainly includes assessing the framework of the BBN 

model, we tried to identify if this is a traditional BBN 

case [5, 6] or a causal one [7, 8].The utility of causal 

structure encompasses: (1) a natural expert interfaces, 

and (2) a reliable view to predict the effect of a “change 

in structure” due to an external intervention [32]. 

Moreover, by means of the assessed model, a 

classification tool is built to estimate the FoG episodes of 

PD patients. This classification model can be inferred to 

diagnosis or forecasting issues. The first part of this 

paper discusses the explanation and background of the 

pre-collected dataset. The second part gives a clear 

explanation of the modification done on the dataset. The 

third part explains briefly the formalism of Bayesian 

Belief Networks. Next, we illustrated a brief state of the 

art in theories and concepts surrounding the causality, as 

a background, in order to assess a causal link between 

                                                 
1

The alternative classes of Probabilistic Graphical Model are 

undirected Markov networks and hybrid graphs [9], those families of 
classes are more adapted to statistical physics and computer vision [10]. 
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variables of interest before building our BBN model. The 

machine learning approach is described in the fifth part, 

whereas the obtained results are described and illustrated 

in the sixth part of the paper. Finally the last part sums 

up the general conclusion and some perspectives. 

2. Data Preparation 

2.1 Native Dataset 

In previous studies, Marc Bächlin et al [11] developed a 

wearable assistant for Parkinson‟s disease patients that 

detects FoG by analyzing frequency components 

inherent in the body movements, using measurements 

from on-body acceleration sensors. They used three 

acceleration sensors positioned in different body parts 

(ankle, knee and hip). Each sensor measures three 

components of acceleration(x: horizontal forward axis, 

y: the vertical axis and z: the horizontal lateral 

axis).Their detection algorithm was based on the 

principle illustrated by Moore et al [12] that introduced a 

Freeze Index (FI) to evaluate the gait condition of PD 

patients. The FI is a ratio defined as the power in the 

freeze band [3-8Hz] divided by the power in the 

locomotors band [0.5-3Hz]. The FoG detection is 

performed by defining a freeze threshold, where values 

higher than this threshold are considered as FoG events. 

Referring to the data obtained by Marc Bächlin et al [11] 

from 10 PD patients, we incorporated these values into 

our probabilistic model in order to predict upcoming 

FoG episodes. The data is composed of separated files 

for each patient, although some patients have multiple 

files for each test done. Each file is composed of a matrix 

that contains measurement data of the three sensors in x, 

y and z directions. The last column contains the 

annotation, weather FoG occurred or not. These 

annotations was labeled by synchronizing the data by a 

video that recorded each patient run, which allowed to 

identify  the exact start times, durations and end times of 

FoG episodes. 

2.2 Employed features 

Starting from the above described dataset, the Freezing 

Index for each acceleration measurement is calculated, 

using a sliding window that calculates the FI of 256 

acceleration samples. So we will map the dataset from 

raw data to normalized data for generalization purposes 

in future work. The second step was to eliminate the data 

which is irrelevant to experiments done (Annotation 0), 

in order to constrain the classification between occurring 

of FoG (Annotation 1) and or NoFoG (Annotation 

2).Then we calculated the magnitude of the three FIs 

components for each sensor. Accordingly, all the 

measurements taken are represented in a low 

dimensional dataset, that it is ready to be introduced to 

our proposed machine learning model. The obtained 

continuous variables have been discretized based on 

Akaike‟s criterion [13], before it was introduced to the 

BBN model. 

3. BBN Formalism 

Bayesian Belief Network is powerful tool for knowledge 

representation and inference under conditions of 

uncertainty [6]. Currently, attractive requests of 

graphical models, particularly in the form of BBN, can 

be found in many disciplines, such as finance (risk 

evaluation), network diagnosis [14], and medical 

applications [15, 16, 17]. BBNs are high-level 

representation of probability distributions over a set of 

variables that are used for building a model of the 

problem domain. It provides a compact and natural 

representation, an effective inference, and efficient 

learning [18, 19]. In addition, BBN can be represented 

by its structure and parameters. The structure is a Direct 

Acyclic Graph (DAG) (Fig. 1), where nodes in the graph 

represent variables of interest, while edges depict a 

correlation between each node. Whereas the parameters 

represented by conditional probability of each node 

given its parents. In general those components are 

estimated (fully or partially) via a learning
2
 process from 

observed data (and/or by expert's knowledge). 

 

 

Fig.1 Direct Acyclic Graph (DAG). 

4. Causality 

4.1 Epidemiological Approach 

Inferring the causal structure of a set of random variables 

                                                 
2
Parameter learning (also called model fitting), and structure learning 

(also called model selection). 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 89

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



is a challenging task. In the causality domain, the 

variables of interest are not just statistically associated 

with each other, yet there is a causal relationship 

between them.  The famous phrase “correlation does not 

imply causation” is recognized and seems approved by 

researchers in empirical and theoretical sciences. For 

example, in analyzing a demographic database, we may 

find that the attributes representing the number of 

hospitals and the number of car thefts in a region are 

correlated. This does not mean that one causes the other. 

Both are actually causally linked to a third attribute, 

namely, population 
3
[20]. Formerly, authors in [21] 

quoted that “one of the common aims of empirical 

research in social sciences is to determine the causal 

relations among a set of variables, and to estimate the 

relative importance of various causal factors”. Recently, 

the philosophical wise of this quote is broadly discussed, 

specifically in the medical and health science, more 

precisely in the context of Symptoms/Disease episodes 

[22, 23, 24, 25]. In particular, Lagiou et al [24] 

mentioned that: “A factor is a cause of a certain disease 

when alterations in the frequency or intensity of this 

factor, without concomitant alterations in any other 

factor, are followed by changes in the frequency of 

occurrence of the disease, after the passage of a certain 

time period (incubation, latency, or induction period 

(page 565)”. 

 In order to highlight the causal trends of our FoG 

problem, and from an epidemiological point of view, 

explicitly we will illustrate the FoG Model  (Fig. 2) by 

applying what so-called Hill's Criteria of Causation [26], 

which is an old approach that outlines the minimal 

conditions needed to establish a causal relationship 

between two items. Hill's work has been recently 

validated by, Kundi [27] as a valuable tool, since both 

mechanistic and probabilistic aspects were considered. 

Kundi applied Hill‟s criteria to the classic case of 

smoking and lung cancer. The first step for examining 

our causal proposal was to test if our study is consistent 

with Hill's criteria. Table 1 summarizes the nine criteria 

defined by Hill and the observations when applying it on 

the FoG case with respect to freezing index. It can be 

clearly observed that not all of the criteria hold in our 

case, where criteria 4 and 9 weren't applicable. On the 

other hand, the other criteria weren't as satisfactory as 

expected.  
 

 
 

                                                 
3 This example is fully inspired from [20] p. 68 

Table 1: Observations based on Hill's Criteria for FoG 

4.2. Causal BBN 

The controversial debate on causality is still widely 

discussed in machine learning, probability theory and 

artificial intelligence. Several studies proposed causal 

discovery methods in the BBN framework [8, 28, 29, 30, 

31]. In this context, the causality issues have been 

studied by discovering the BBN structure and it needs 

interventional data in cases where purely observational 

data is inadequate [10].The utility of causal structure 

encompasses: (1) a natural expert interfaces, and (2) a 

reliable view to predict the effect of a “change in 

structure” due to an external intervention [32]. The latter 

is explained by [32]: “The ability to predict the effect of 

changes in structures is important for intelligent decision 

support systems that autonomously generate and 

evaluate various decision options (intelligent planners)”. 

In general, the relation between causality and probability 

is based on a set of assumptions that allow the causal 

inference [32], and those assumptions are: (1) Causal 

sufficiency, (2) Markov, and (3) Faithfulness (definition 

of these assumptions are briefly mentioned in [10]). One 

of the known approaches to causal discovery is the So-

called constraint-based approaches [8, 33], that select all 

DAGs which satisfy the second and third assumption. In 

order to evaluate the causal link between our employed 

features we refer to a recent study that infers causal 

relations based on additive noise models (ANM). Jonas 

Criterion FoG correlation with Freezing Index 

1. Strength of 

association 

As FoG episodes occur, the value of the Freezing Index in 

higher than its value during the normal gait of PD patients. 

2.Temporality 
FoG in the vast majority of cases occurs when the 

Freezing Index increases. 

3.Consistency 

Several studies were applied on different patients, which 

produced the same results. The relationship also appeared 

for different genders. 

4.Theoretical 

Plausibility 

We don't have an explained biological theory stating a 

theoretical relationship between Freezing Index and FoG. 

5.Coherence 

The conclusion (that accretion of freezing index causes 

FoG) “made sense” given the knowledge about the 

algorithm for calculating the freezing index with respect 

to FoG occurrence. 

6.Specificity in the 

causes 

Freezing Index is one of the clinical features (not the only 

one) that can be used to predict FoG. 

7.Dose Response 

Relationship 

Extracted data showed that there is a direct relationship 

between the value of the Freezing Index and the 

occurrence of FoG episodes. 

8.Experimental 

Evidence 

The experimental data collected clinically from patients 

made certain that FoG occurs when the freezing index 

increases. 

9.Analogy 

In this case, contrasting similar phenomena could not be 

applied, due to the fact that the approach of detecting 

causality of FoG is novel. 

Fig. 2 FoG causal model 
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et al [34] published an algorithm that able to distinguish 

between cause and effect, for a finite sample of discrete 

variables, and works both on synthetic and real data sets. 

The principle is that whenever the joint distribution P(X; 

Y) admits such a model in one direction, e.g. but does 

not admit the reversed model, one infers the former 

direction to be causal (i.e. X →Y).  Briefly, this 

algorithm tests whether the data admits an additive noise 

model by checking all possible functions and test 

whether they result in independent residuals. 

Furthermore, ANM's method does not give wrong 

results, but answers “I do not know the answer", 

especially the case of binary variable.  

By applying all two by two vectors from our Dataset, 

Jonas et al [34] causal inference method resulted that no 

causal relationships can be applied between any of our 

variables and between FoG. Next, we will build a 

specific BBN, by assuming that a simplest structure exist 

between variables and FoG, and we will study the FoG 

episode via a traditional way of classification using 

Bayesian Naïve Classifier (BNC), which is one of the 

most effective and popular classifiers in data mining 

techniques [20, 35]. 

5. Bayesian Naïve Classifier 

Data mining is the science of extracting useful 

information from large data sets. It covers areas of 

machine learning, pattern recognition, artificial 

intelligence, and other areas [36]. One of data mining 

main objectives is prediction, which involves using some 

variables in data sets in order to predict unknown values 

of other relevant variables (e.g. classification, 

regression, and anomaly detection) [37].We already 

initialized the process of building a BBN model (sections 

4.1 and 4.2) by studying the type of relationship between 

the Freezing Index concept and FoG episode via Hill's 

rule, and among features themselves via (ANM) model. 

Those two methodologies didn‟t validate the causality 

behavior between Freezing Index and FoG.  

Hence, we assume that BBN structure will depict a 

simple correlation between variables and FoG, and we 

will study the FoG episode via the simplest and 

traditional way of Classification Model where the FoG 

can be simply inferred to diagnosis or forecasting issues, 

specifically we tended to use the Bayesian Naïve 

Classifier (BNC), which is broadly used as a popular 

classifiers in data mining techniques [20, 35]. It has been 

successfully applied to the different problem domains of 

classification task such as intrusion detection, image and 

pattern recognition, medical diagnosis, loan approval and 

bioinformatics [38]. BNC assumes the attributes are 

independent given the classification node, is surprisingly 

effective [39]. 

5.1. Classification Rule   

Using the notation of  [19](chapter 6 page 157); Let C be 

a class attribute with a finite domain of m classes, that is, 

let 𝑑𝑜𝑚 𝐶 = {𝑐1 , … , 𝑐𝑛}, and let𝑈 = {𝐴1, … , 𝐴𝑛} be a 

set of other attributes. For a numeric attribute, 

𝑑𝑜𝑚 𝐴𝑘 = ℝ. With this notation a case or an object can 

be described, as usual, by an instantiation (𝑎1 , … , 𝑎𝑛) of 

the attributes{𝐴1, … , 𝐴𝑛}. For a given instantiation 

 (𝑎1 , … , 𝑎𝑛)a naive Bayes classifier tries to compute the 

conditional probability 𝑃(𝐶 = 𝑐𝑖\𝐴1 = 𝑎1 , … , 𝐴𝑛 = 𝑎𝑛) 

for all 𝑐𝑖 , and then it predicts the class 𝑐𝑖  for which this 

probability is highest. Naive Bayes classifiers use Bayes’ 

rule and a set of (naive) conditional independence 

assumptions, where the conditional probabilities are 

inverted. That is, naive Bayes classifiers consider: 

𝑃 𝐶 = 𝑐𝑖|𝐴1 = 𝑎1 , … , 𝐴𝑛 = 𝑎𝑛 

=
𝑓 𝐴1 = 𝑎1 , … , 𝐴𝑛 = 𝑎𝑛  𝐶 = 𝑐𝑖 . 𝑃(𝐶 = 𝑐𝑖)

𝑓(𝐴1 = 𝑎1 , … , 𝐴𝑛 = 𝑎𝑛)
              (1) 

Then we make the crucial (but naive) assumptions that: 

given the value of the class attribute, any attribute 𝐴𝑗  is 

independent of any other.  The latter postulation 

simplifies the formula stated above, since with it we can 

cancel all attributes 𝐴𝑘  appearing in the conditions. Thus 

we get: 

𝑃 𝐶 = 𝑐𝑖|𝐴1 = 𝑎1 , … , 𝐴𝑛 = 𝑎𝑛 = 

𝑃(𝐶 = 𝑐𝑖)

𝑝0

.  𝑓(

𝑛

𝑗=1

𝐴𝑗 = 𝑎𝑗  𝐶 = 𝑐𝑖 .                                (2) 

Therefore, a naive Bayes classifier (Fig. 3) can be seen 

as a special Bayesian network. This becomes 

immediately clear if we rewrite the basic formula of a 

naive Bayes classifier as (equation 2). 

 

Fig.3 Bayesian Naive Classifier structure 

6. Classification protocol 

6.1 Learning Methodology 

The first step of our learning protocol was to split the 

obtained data, some for training our classifier and others 

for testing it. For the training data we chose nine 

different datasets for nine different patients, in order to 

build for each patient a BNC model. Each BNC model 

(Fig. 4) holds the class node (FoG), which is the parent 

of the three FI nodes (e.g. FI1 node represents the 
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freezing index magnitude of the acceleration sensor 

placed on the ankle).The difference between the nine 

BNC models is the conditional probability that will be 

learned according the training set introduced to the BNC 

model. Some of the testing data corresponds to new 

patients (different from the nine patients used for 

learning), and others correspond to same patients but in a 

different run of the experiment. 

The learning experiments were conducted with a random 

10-fold validation; each fold takes a random 70% from 

the data set for learning and the remaining 30% for 

testing. 

 

Fig. 4 Nine BNC models for nine PD patients 

Furthermore, we made another learning approach where 

we mixed all the patients' datasets in one large dataset, 

except three datasets that were left for testing purposes. 

Data samples in the large dataset were multiplied 

diversely so that the existence of FoG in the dataset is 

equal to the existence of NoFoG. In consequence, one 

BNC model was made and learned by the large dataset.  

6.2 Testing Methodology 

After learning each fold, a confusion matrix was 

calculated (Table 2) using the test data, the table 

represents the true positives (TP), false positives(FP), 

false negatives(FN) and the true negative (TN). 

Table 2: Confusion matrix calculated for each random fold. 

 Model classification 

Real 

classification 

FoG True False 

True TP FN 

False FP TN 

From the confusion matrix, we evaluated three important 

values: 

 FoG-precision: the number of true positives 

divided by the total number of elements labeled 

as belonging to the true FoG class. 

 NoFoG-precision: the number of true negatives 

divided by the total number of elements labeled 

as belonging to the NoFoG class. 

 Accuracy: the number of TP added to the 

number of TN divided by all elements. 

Subsequently, and after calculating the above listed 

values for each fold, we choose the learning that holds 

the highest three values by referring to the priority of 

each value (starting by FoG-precision as highest priority 

followed by NoFoG-precision and finally Accuracy). 

After learning nine BNC models for nine different 

patients, the rest datasets was introduced to each BNC 

model as testing datasets, for the purpose of testing the 

degree of generalization of our models. Also from each 

test dataset the confusion matrix, FoG-precision, 

NoFoG-precision and Accuracy were evaluated. In 

addition we made another testing approach, which is to 

enter each data sample as a parallel input to every one of 

the 9 BNC models, and the final decision that classifies 

whether a FoG or NoFoG is occurring, is based on the 

most likely decision made by all BNC models 

individually. For example, if five models decide that this 

sample is FoG and the rest do not, the final decision is 

taken as FoG. 

7. Results: 

According to the followed approach that aimed to detect 

causal links in our case, the results showed that no causal 

relationships can be applied between any of our variables 

and between FoG. Thus, following our learning and 

testing protocol, the FoG data were introduced to BNC 

models. The BNC classifier precision was evaluated 

using four datasets that were left for testing purposes. 

Figure 5 summarizes the obtained result as function of 

FoG precision and NoFoG precision. Datasets were 

named by "S<patient number>R<test or run number>" 

(e.g. S05R02 stands for the data acquired during the 

second run of patient number five). It is noticed when 

testing S01R01 the FoG precision value was apparently 

high in all nine classifiers. Although the NoFoG 

precision values were low for some patients, this result 

showed that our classifier was able to detect every FoG 

episode with high precision with average of FoG 

precision (79.5%). In addition, if we take into account 

both FoG and NoFoG precision values, we can see that 

the best results were for datasetsS01R02: FoG 

precision=70.67% and NoFoG precision=84.74% and 

S03R01: FoG precision=73.68% and NoFoG 

precision=79.13%, where the first dataset is for the same 

patient but on a different run while the second dataset is 

for another patient, this shows that both patients maybe 

correlated in freezing behavior. As for dataset S02R02, 

some results had low FoG precision; this may be due to 

the different walking behavior of patients, knowing that 

S02R01 (same patient but different run) showed an 

acceptable result for NoFoG precision and a very high 

result for FoG precision (92.85%). 
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Fig. 5 FoG precision vs. NoFoG precision results for testing 

datasets,(a)S01R01,(b)S02R01,(c)S05R02 and(d)S06R01 

Results for S05R02 showed that this patient may have a 

unique freezing behavior among the other learned 

patients, that's why none of the nine BNC models were 

able to differentiate this patient's freezing episodes from 

normal gait with high precision. Finally, for the dataset 

S06R01, some results had very good FoG precision 

about 89%. The best results were for S07R02 and 

S05R01 since they have moderate FoG and NoFoG 

precision. This may be due to the similarity in FoG 

behavior between the two patients. The testing results of 

each dataset can be summarized by calculating the 

average for Accuracy, FoG precision and NoFoG 

precision (Table 3). We can see that our system's 

accuracy is about 66.87 % with FoG precision 59.34% 

and NoFoG precision 69.24%. 

Table 3:  First approach averaged system accuracy 

Accuracy 

(%) 

FoG 

precision 

(%) 

NoFoG 

precision (%) 
Average  

60.10 81.20  59.07  S01R01 

80.87  50.31  85.22  S02R02 

65.10  39.20 71.42 S05R02 

61.40  66.66 61.23  S06R01 

66.87 59.34 69.24 
System 

Average 

 

As for the second testing approach, which is making the 

final decision based on the most likely one made by all 

BNC models individually (Table 4). The results show 

that the accuracy and NoFoG precision increased and the 

FoG precision slightly decreased. 

Table 4:  Second approach averaged system accuracy 

Accuracy 

(%) 

FoG 

precision 

(%) 

NoFoG 

precision (%) 
Average 

66.16 85.71 65.21 S01R01 

88.58 43.65 94.97 S02R02 

73.36 33.74 83.03 S05R02 

69.13 67.85 69.23 S06R01 

74.31 57.74 78.11 
System 

Average 

Finally using the large dataset learning approach, the 

results show improvements of the classifier decision. It 

can be clearly seen that as the number of records in the 

learning dataset increase, the classifier maintained close 

proximity between FoG and NoFoG precision with 

acceptable accuracy (65 %) as shown in (Fig. 6). 

 

Fig.6 Variation of FoG precision, NoFoG precision and Accuracy 

percentages as function of increasing the number of records in test 
datasets, (a) S01R01, (b) S05R02, (c) S06R01 

8. Conclusion 

We have described a way for modeling Freezing of Gait 

phenomena of PD patients, based on BBN formalism. 

We used a dataset available online extracted from real 

PD patients while walking and having freezing episodes. 

The first approach, was studying the causality in the 

FoG/Freezing Index system, this was done by making an 

epidemiological study followed by causal inference one.  

This approach resulted in weak or no answers of 

causality in FoG/Freezing Index system with respect to 

the ANM approach. Although, this can be further 

evaluated in future by calculating more features that may 

define FoG better, or by applying different causality 

search model in BBN formalism, this can be combined 

with an epidemiological study to assess the causation. In 
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this perspective we may construct an influence diagram 

that fits the expert‟s causal model in the framework of 

FoG, hence we possibly will generate understandable 

explanations of the FoG causal structure. 

In the second approach which was applying Bayesian 

Naive Classifier (BNC) model to represent the datasets, 

we built nine different BNC models for different 

patients, and the remaining datasets were introduced to 

each BNC model as testing datasets. This approach 

showed a fluctuating percentage of accuracy, FoG 

precision and NoFoG precision. Our classifier had the 

ability to detect FoG up to 99 %( FoG precision) if tested 

on the nine BNC models locally, and up to 86% if tested 

globally. Some testing results were not as good as 

expected, we assume this was because of the different 

freezing behaviors for different patients, knowing that 

when testing a specific BNC model related to a specific 

patient, with a dataset extracted from the same patient 

the result was significantly improved. Upon creating a 

large dataset, the final testing procedure showed 

promising results, where our classifier sustained 

concurrence between FoG and NoFoG precision with 

satisfactory accuracy.   
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