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Abstract 
 
A low-power design is an essential and important issue for 
portable or mobile systems.  Network on chip (NoC) will become 
the main communication platform for this kind of Systems. To 
address the problem of an energy efficient design of NoC, we 
must decrease the power consumption of NoC components. To 
reduce NoC consumption, we must reduce the power of NoC 
components such as Network Interface (NI) components. The 
architecture of NIs component must be modular to allow 
intellectual propriety (IP) module and interconnections to be 
designed independently from each other and its power must be 
kept as low as possible. In this paper, we present new modular 
NI architectures between IPs and router with low power 
constraints. The modular design is obtained through two 
separations between data flows and IP side and the network side. 
The low power is obtained by the implementation of a 
mechanism based on stoppable clock technique for power saving. 
The stoppable clock technique allows us to shut down each sub 
module when it is not running. Experimental results show that 
the Modularity and the stoppable clock technique aspects 
integrated in the proposed NI allow a significant reduction in 
terms of power between stoppable and baseline architectures 
while increasing at same time the area and decreasing the speed 
of NIs. 
Keywords: Network on Chip, Network interface, Low power, 
Low latency, stoppable clock. 

1. Introduction 

A big challenge of current and future chip design is 
how to integrate components with millions of 
transistors and make them operate efficiently. System-
on-chip (SoC) designs provide such an integrated 
solution to various complex applications. One of the 
key issues of SoC designs is the communication 
architecture between components. Most of the 
communication architectures in current SoCs are based 
on buses. However, the bus architecture has its inherent 
limitations [1], [2], [3]. For nowadays and the next-
generation SoC design, the wiring delay, noise, power 
dissipation, and synchronization are far more serious 
than ever. A network which delivers packets between 
communicating components has been proposed as a 

solution for SoC design. The network-on-chip (NoC) 
provides a high performance communication 
infrastructure. NoC is a new paradigm for integrating a 
large number of IPs cores to implement a SoC [4-5]. A 
router-based network is used for packet switched 
communication among on chip cores. NoCs are 
composed of routers, which transport the data from one 
node to another and the links between routers and 
Network Interfaces (NI) implement the interface to the 
IP modules. One of the key components for on-chip 
networks is the wrapper for different IP cores in the 
tiles [6]. Since different reusable IP cores may not be 
developed based on the on-chip network, a wrapper is 
required as the interface between the IP core and its 
associated router. This is a key ingredient in achieving 
the decoupling between computation and 
communication [7, 8], which allows IP modules and 
interconnects to be designed independently from each 
other. Many socket specifications exist to this end, such 
as OCP (Open Core Protocol) [9], VCI (Virtual 
component Interface) [10], AMBA AHB [11], and 
AMBA AXI (Advanced extensible Interface) [12]. 
Since most NoCs are message passing by nature, a NI is 
needed. NOCs have to adhere to standardized protocols 
so that they can plug and play with IP blocks that were 
also designed to interface with the same standard. Such 
standardized protocols define the rules for all signaling 
between the IP blocks and the communication fabric, 
while permitting the configuration of specific instances. 
Our NoC offers a shared-memory abstraction to the IP 
modules. Communication is performed using a 
transaction-based protocol, where the master modules 
issue request messages that are executed by the 
addressed slave modules, which may respond with a 
response message. The purpose of NI is the 
synchronization between IP protocol and NoC timings, 
the packaging of IP transactions into NoC flits and vice 
versa, the computation of routing information, and the 
buffering of flits to improve performance in terms of 
latency and throughput. There is a number of works 
published on the design of novel network architectures 
[13], but few publications have addressed particular 
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issues to the design of a NI module. Bhojwani and 
Mahapatra [14] compared three schemes of paketization 
strategy such as software library, on-core and off-core 
implementation, and related costs in terms of latency 
and area are projected, showing tradeoffs in these 
schemes. In [15] a NI ASIC implementing standard 
sockets was presented for the Athereal NoC. Seung [16] 
presents a generic architecture of network interface and 
associated wrappers for a networked processor array. In 
[17] a NI implementing VCI standard interface was 
presented for the SPIN NoC. In [18], an FPGA 
implementation of Network interface for an AHB 
standard was presented for mesh NoC. The NI however, 
has Low latency in forward and backward direction. In 
[19] an OCP compliant NI for the Xpipes NoC was 
touched upon. The NI has a low area but it supports 
only a single outstanding read transaction. In [20] an 
OCP compliant NIs for the mesh NoC was designed. 
These NIs have a low area and a low latency and they 
support only a burst precise mode outstanding read and 
write transaction. In [21] a generic architecture is 
presented to provide any mode of NIs compliant OCP 
for the mesh NoC and it can be used for other 
topologies. In [22] a NI design for Asynchrony NoC 
was presented. In [23] Network Interface Sharing 
Techniques is used for Area Optimized NoC 
Architectures. In [24], an FPGA implementation of a 
shared Network Interface architecture is proposed to 
reduce area and power by sharing the buffering 
resources. In [25], the authors present a low latency and 
power ASIC design of Modular network interface for 
network on chip with pipelined fashion. 
A low-power design is an essential and important issue for 
portable or mobile systems.  Network on chip will become 
the main communication platform for this kind of 
Systems. To address the problem of energy efficient 
design of NoC, we must decrease the power consumption 
of NoC components. To reduce NoC consumption, we 
must reduce the power of NoC components such as NI 
components. The modularity of the architecture is another 
important issue to allow the IPs core and NOC to be 
designed indepdently from each other. In this paper we 
present a generic architecture model OCP compliant for 
low power network interface for the mesh 2D NoC. Our 
contributions include identifying key issues of NI design 
and developing an efficient and Modular NI architecture 
with low power constraint. We propose a new architecture 
of low power network interface that uses the stoppable 
clock technique. In our knowledge, it is the first time that 
the stoppable clock technique is used to reduce the power 
of NI. We evaluate the area, power and performance 
overheads of implementing NI tasks for NoCs that use 
credit based or handshake flow control with and without 

stoppable clock technique using different mode of OCP 
IP. The paper is organized as follows: Section 2 presents 
the related works. Section 3 gives an overview of NoC. 
Section 4 describes and details the two architectures of the 
proposed NIs. Section 5 presents the experimental results. 
Section 6 presents a comparison with other works. Finally 
in section 7 we conclude the paper. 

2. Services and functionality provided by 
proposed NoC 

The current SoCs predominantly use buses as the one 
chip interconnects; these standard interfaces have bus 
based semantics where all nodes connected to the 
communication medium are defined as masters or 
slaves, and communicate via transactions. In order to 
interface the NoC with the tile we utilize a NI, which 
has the responsibility of packetizing and depacketizing 
the cores requests and responses. The NI has the 
responsibility of (i) receiving the contents from the IP 
core, preparing the packets and dispatching them to the 
network logic of the tile and (ii) receiving the packets 
from the networking logic and presenting the contents 
to the IP core. We have designed a NoC which is based 
on the mesh 2D topology. We have adopted a 
synchronous router with five input/output ports (North, 
East, Local, South and West), having each a bi-
directional exchange bus suitable for 2D mesh NoC 
architecture. The NoC includes 16 nodes and the 
switching technique used is packet switching. The data 
flow through the network is a wormhole routing. The 
NoC uses credit based flow control strategies and we 
have adopted a determinist routing algorithm called 
source routing. The Source routing algorithm is 
executed to connect the input port data to the correct 
output port.  In this routing, the header of packet opens 
the path between the source and destination units, while 
the successive data spread along the path and nodes. 
When the end-of-packet information is received, the 
packet path is closed and this frees the communication 
resource for following packets. 

A network packet is composed of successive flits. A 
multi-flit packet is inserted through a header flit, which 
may be followed by one or more data flits (payload). 
The first flit of packet includes header information for 
our case. Each flit is composed of 32 bits data and two 
control bits, where the 34th bit encodes the beginning 
of-packet (BOP) and the 33rd bit encodes the end-of-
packet (EOP). The header is composed of special fields 
for the network and special fields for NI and IP. The 
header of request packet is composed by many fields 
such as:  
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Path to target: specifies the packet routing path from 
one source unit to a destination unit. 
MCmd: presents the type of command (read, write). 
MBlength: presents the burst length. 
BSeq: presents the burst sequence (incremental, 
wrapping, and streaming). 
MBprecise: presents the mode used by the IP (precise, 
imprecise,SRMD). 
MBsingreq: indicates if the Single Request Multiple 
Data mode is used or not. 
Destination address: defines the ‘local address in slave 
IP. 
Source address: defines the global address of the 
source router in NOC.  

3. Proposed Network Interface  

There are two fundamental separations in the NI 
architecture that enable this modularity: a horizontal 
one which distinguishes the injection path from the 
extraction path, and a vertical one which distinguishes 
between the network and the IP core. These two parts 
are referred to as shell and kernel, as proposed in the 
design of Phillips AEthereal NI [15]. The separation 
between injection and extraction functions allows an 
easy reuse of dual components in both master and slave 
NIs, since injection corresponds to packet composition 
and transmission, while ejection corresponds to packet 
reception and decoding. Shell and kernel separation 
through relatively well-defined interfaces is really 
important for minimizing the effort of supporting 
different sockets, while keeping a fixed kernel structure 
and changing only the shell part. Shell supports flow 
control to external bus protocols, while kernel handles 
NoC flow control at hop-by-hop and end to- end level. 
We have designed two types of master Network 
Interface (MNI) for OCP IPs based cores for our 
network-on-chip, named Baseline MNI and Stoppable 
clock MNI both attached to a master IP. The two 
proposed MNIs are additionally split in two sub 
modules, one for the request and the other for the 
response data flow or channel (injection and extraction 
path).  

OCP Protocol functions according to various modes. 
Among these modes, we note the burst precise (BP), 
Burst imprecise (BI) mode or SRMD. The advantage 
gained by using burst transfers is that the bandwidth is 
used more effectively, since it is only necessary to send 
the starting address together with some information 
about the burst. The longer the burst is the better ratio 
between data and overhead it has. Another advantage is 
that the jitter between data flits decreases when adding 

a burst header to the package, since many flits of data 
can be sent in a sequence. 
To take advantage of burst transactions the NI needs to 
package a burst in a package to transmit over the 
network. However, if a very long burst is packaged into 
one package, the burst can block a slave core from 
receiving requests from others cores. 

In OCP there are three different burst models: 
(i) Precise burst: in this model, the burst length is 

known when the burst is sent. Each data-word is 
transferred as a normal single transfer, where the 
address and command are given for each data-word, 
which has been written or read.  

(ii) Imprecise burst: in this model, the burst-length 
can change within the transaction. The MBurstLength 
shows estimation on the remaining data-words that will 
be transferred. Each data-word is transferred as in the 
precise burst model, with the command and address 
sent for every data-word.  

(iii) Single request multiple data burst: In this 
model, the command and address fields are only sent 
once. That is in the beginning of the transaction. This 
means that the destination core must be able to 
reconstruct the whole address sequence based on the 
first address and the MBurstSeq signal. 
 

3.1 Baseline MNI architecture  

The master network interface (MNI) transforms an OCP 
request to a request packet OCP/NoC and a response 
packet NoC/OCP to an OCP response. The tasks of the 
MNI are to receive requests from the master core, 
encapsulate the request into a package, transmit 
packages to the network, receive responses from the 
network, decapsulate responses and transmit responses 
to the master IP cores. Figure 1 illustrates the internal 
architecture diagram of the MNI. The physical division 
of the interface is distributed in two parts: Shell (IP 
master side) and Kernel (NoC router side). The Shell 
part communicates with master IP respecting the OCP 
protocol and it is divided into two parts: (Shell Input 
and Shell Output). The Shell Input Part is composed of 
three modules called respectively: Routing table, 
Header builder and Controller FIFO. This part handles 
the receipt and encapsulation of the request in one 
package. The Shell output Part manages the issue of 
response to the master IP. The shell presents dependent 
parts of the resource that is, the dependent parts of the 
IP master. The kernel part is divided into two parts 
called Kernel Input and Kernel Output. The kernel 
output part manages the issuance of requests and the 
communication with the local port on the router by 
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using specific flow control. The kernel input part 
manages the receipt and decapsulation of responses 
packets. The kernels present the independent part of the 
resource that is, the dependent part of the network. 
Clearly, the proposed architecture of the master 
network interface is built on two data-flows. One data-
flow is the request data flow, where the core is the 
source and the network is the destination.  The second 
data flow is the response data-flow where the network 
is the source and the core is the destination.  
 

 

Fig.1 Baseline Master Network interface architecture. 

 
The request data flow called also injection path 
performs the transformation of the OCP request into a 
request packet for our NoC. The response data flow 
called also extraction path performs the transformation 
of the response packet provided by our NoC into a 
response for the OCP IP master. 

1) Injection path 
We split the design of injection path into the following 

parts: the shell input, the kernel output, and payload 
memory. In this part we will present all the modules 
that perform the services provided by the injection path 
to allow the transmission of the request packet flits to 
the network. We have designed for each mode of the 
burst, a specific implementation of header builder and 
control FIFO but we use the same implementation for 
the two types of flow control. For the request data flow 
using credit-based control flow, the kernel output 
implementation is the same for the three burst modes. 
Also for the request data flow using handshake control 

flow, the kernel output implementation is the same for 
the three burst modes. 
Routing table: it is a local memory in the MNI. It 
stores the route paths to other slave cores in the NoC. 
This route path is needed as part of the packet header, 
since all packets are source-base routed. This means 
that all the routing information is stored in the path to 
target field which shows the routing nodes where to 
route the packet at each hop. The Routing table is not 
globally memory mapped and cannot be addressed by 
other cores. The table is configured and the entries are 
set at NI instantiation time.  
Header builder: It takes in entry some essential OCP 
signals during the transfer and the field provided from a 
routing table which shows the path to the target. It 
encapsulates this information for building two header 
flits. If the command in the request is a write command, 
a payload should be added to the package. After the 
creation of the two header flits, the header builder 
module sends these flits to the kernel output Module 
using a simple module protocol.  
Control FIFO: This module is responsible for the 
management of FIFO writing. It can also put an end or 
suspend the writing if it receives a high state on the 
signal full of FIFO. When a data is well written in the 
FIFO and FIFO is not full, then the controller is ready 
to accept any request, so it asserts SCmdAccept signal.  
Or gate: This component takes in entry two signals. 
The first comes from the controls FIFO module (in the 
case of a write request) and the second is that of the 
header builder (in the case of a read request). 
Payload memory: It is designed for the temporary 
storage of the data flits. The writing command in the 
payload memory is performed by the controller FIFO 
module. The reading commands from payload memory 
are performed by the kernel output. 
Kernel output: It is the synchronizer between the NI 
and the network. It receives package flits from the 
Header builder or from the payload memory and sends 
it out from the NI to the network. Then it transmits the 
flits to the network using the four handshake phases or 
credit based flow control. It makes a packet transfer to 
the destination router. A network packet is composed of 
successive flits. A packet is always composed of header 
flits, which may be followed by one or more data flits. 
Whenever the header builder has two flits ready by the 
activation of validate signal, the kernel output module 
receives the header flits and informs the source router 
that the flit is ready on the data bus by asserting the Req 
signal, it puts the same signal BOP to a high level 
indicating the start of sending a new package with 
header as first flit. The module then waits for the 
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issuance acknowledgment signal (Ack or Credit) from 
the router to start sending data flits. Sending the last 
data flit (tail) will be joined by the set of EOP signal 
indicating the end of the transfer package.  

2) Extraction path 
The extraction path is divided into three stages. The 

first stage is where the data are received by the kernel 
input Module from the network via the NI. The second 
stage is the FIFO response where the data are 
temporary stored. The third stage is where the data are 
transmitted to the master core by the Shell output 
Module. Within the extraction path presented in Figure 
2, several communications between modules proceed; 
the modules constituting this entity are described as 
follows: 

Kernel input: it is the synchronizer between the NI 
and the network. It receives flits from the network using 
the four phase handshake or credit based protocol, and 
writes the response flits to a FIFO. At the time of the 
reception of the data on the bus Data, this module starts 
to make a temporary storage of these flits in the FIFO 
response to be read by the Shell output Module. The 
writing of the data is controlled by two signals write 
and Full. If the FIFO is full then this module does not 
assert the Ack signal from low to high for the router 
(Credit must be put at a low level for credit based). For 
the writing of the last data in the FIFO, the signal Last 
Data emitted towards the Shell output Module is put at 
a high level so that this latter knows the number of data 
remaining in the FIFO. 

Shell output: its task is to transmit the response back 
to the master core. This module handles the response 
phase of the IP protocol. This module reads the data 
from FIFO, and then transmits it to the master IP. The 
Shell output module implementation is the same for the 
three burst modes and for the two implementations 
using handshake and credit based flow control. 
 

3.2. Stoppable MNI architecture 

The difference between baseline and stoppable 
architecture is the insertion of a stoppable clock module 
in the injection and the extraction path. In the injection 
path, the stoppable clock module can transfer or stop 
the local input clock to the two sub modules control 
FIFO and header builder as described in Figure 2. This 
module’s role is to distinguish the type of command 
issued by the IP for a given transaction. Then, it allows 
the transfer of the input clock to the output clock (clk 
header, clk controller FIFO) respectively for the two 
sub modules header builder and control FIFO. Indeed, 
through OCP signal (Mcmd, Mdatalast) and signal 

generated by the Kernel output (validate) the formalism 
of local Stoppable clock is achieved:  

 

 

Fig. 2 stoppable clock Master Network interface architecture. 

a) The Mcmd signal (Idle coded 000, Write coded 001, 
Read coded 010) can identify the type of request.  
b) Mdatalast signal indicates whether the current write 
data transfer is the last in a burst.  
c) validate is a signal that is provided by the kernel 
output to indicate the reception of the header by the 
local router port . 

The sequences of phases of transfer or the stopping 
of the clock for a reading or writing operation are: 

i) The first phase represents the beginning of transfer 
and the building of header flits for a read or write 
request. For a write transaction, the activation of control 
FIFO module is necessary to allow writing data in the 
FIFO.  

ii) Once the header flits are received by the NI, 
validate will be activated until the two flits header will 
be transmitted to the local port of the router.  

iii) Once done, a read transaction is completed by 
disabling the validate signal. In this phase, Clk header 
will be stopped for a read or a write transaction. On the 
other hand for a write transaction, control FIFO module 
continues its execution while Mdatalast is not asserted. 

iiii) The desertion of OCP signal Mdatalast leads to 
the deactivation of clk header and clk controller FIFO.  
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In the extraction path, the Stoppable clock module 
detects the presence of response packet when BOP=1. It 
activates the kernel input module by transferring the 
clock of transmitter router if the used flow control is 
credit based. On the other side if the used flow control 
is handshake, it transfers the clock of the OCP IP. For 
the activation of the Shell output module, it transfers 
the clock of the OCP IP. (Handshake or credit based) 
when the presence of the first data placing in the FIFO. 
Upon detection the end of the transaction through 
SrespLast signal (SrespLast=1), it stops clocks of the 
Kernel input and Shell output modules if there is not a 
new response packet. 

4. Experimental results 

In this section the synthesis results will be 
presented, and a cost analysis of area and power 
consumption will be made based on the synthesis 
results. The MNI’s performance and SNI’s performance 
will be evaluated in terms of speed, latency, and 
throughput. We will present a comparative study of 
different implementations for NI. On the IP side the 
three implementations use OCP IP protocol. The first 
implementation of NI uses a handshake 4 phases flow 
control and the second uses the credit based. Master 
and slave network interfaces with 32 bit OCP data 
fields and 32 bit network ports have been modeled with 
VHDL language on RTL level for baseline and 
stoppable MNI architectures. They were simulated and 
synthesized respectively by using the ModelSim tool 
and ISE tool from Xilinx. The synthesis result of the 
MNIs was done with FIFO data and FIFO response 
having a depth of 4 words of 32 bits. Each used FIFO 
has an adjustable depth and width.  For master network 
interfaces, the Finite States Machine of kernel output 
and kernel input sub module for each type of control 
flows is different. The other used sub modules are the 
same for the two NI versions. Table 1, Table 2 and 
Table 3 show the area of baseline and stoppable MNIs 
using different flow control and OCP modes. The 
power consumption results are shown in Table 4. The 
maximum operating frequency obtained for these NIs 
implementations are shown in Table 5. The result of 
latency measurement by the simulation of MNIs is 
presented in Table 6. Table 7 shows the measurement 
of throughput obtained by the simulation of the two 
versions of the NIs. 

4.1. Area of Network Interfaces 

As a Master NI should be instantiated for each IP 
core connected to the network, it is desired that the area 
is smaller than the IP cores. An exploration of the 
area/frequency trade off was performed for three NI 
implementations with 32 bit OCP data fields and 32 bit 
network ports using respectively credit based and 
handshake flow control. Tables 1, 2, and 3 present the 
area produced by the synthesis of baseline and 
stoppable MNI architectures for the three modes used 
by the OCP IPs using Handshake and Credit-Based 
flow control and showing the FPGA resources used. 
NSR presents the number of slice registers and 
NSLUTs present the number of slice LUTs. Table 1 
presents MNI that uses the PB mode for Baseline and 
stoppable clock architecture using Handshake and 
Credit-Based flow control.  

Table 1: BP area results and overhead 
BP  Baseline Stoppable Overhea

d 
Handshake 

 
NSR 601 743 -23.6% 

NSLUTs 336 398 -18.4% 
Credit 
Based 

NSR 590 602 -2% 
NSLUTs 395 382 +3.3% 

We show from these results that the resource used 
for Baseline MNI using handshake and Credit-Based 
are approximately equal.  The resource used for 
stoppable architecture using Handshake mode is greater 
than Credit-Based architecture. Experimental results 
show that the overhead in terms of NSR and NSLUTs 
between Baseline and stoppable architecture is 
important between handshake implementations and 
poor between Credit-Based implementations. Table 2 
and table 3 present MNI that uses the BI and SRMD 
modes for Baseline and stoppable clock architecture 
using Handshake and Credit-Based flow control. 

Table 2: BI area results and overhead 
BI  Baseline Stoppable Overhead 

Handshake 
 

NSR 692 661 +4.4% 
NSLUTs 399 378 +5.5% 

Credit 
Based 

 

NSR 697 707 -1.4% 
NSLUTs 432 416 +3.7% 

The use of stoppable clock technique allows a 
little gain in area saving compared to Baseline 
architecture. This reduction is obtained because the 
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synchronization between the kernel and shell part is 
performed by the stoppable clock module which 
reduces the complexity of kernel and shell parts. 

Table 3: SRMD area results and overhead 
SRMD  Baseline Stoppable Overhead 

Handshake 
 

NSR 566 575 -1.6% 
NSLUTs 300 305 -1.6% 

Credit-
Based 

 

NSR 587 596 -1.5% 
NSLUTs 338 327 +3.2% 

We conclude that the use of the stoppable clock 
introduces an important overhead in BP mode and a 
little overhead in SRMD mode. For BI mode, the use of 
the stoppable clock architecture introduces a little gain 
in terms of area or resource used. 

4.2. Power estimation of Network Interfaces 

In power consumption there are two main 
components; dynamic and static. The following 
equation shows the dynamic power component: 

     Pd= α CL Vdd
2 f                  (1) 

The first term denotes the dynamic power, α is the 
activity of the circuit, CL is the parasitic capacitance, 
Vdd is the power supply and f is the operating 
frequency. By reducing Vdd one can drastically reduce 
the dynamic component, but unfortunately this is at the 
expense of speed degradation.  The power consumption 
results are from ISE tool from Xilinx (XPower) and are 
based on an estimate where the clock frequency is set to 
200MHz and the switching activity estimation is done 
by using vcd file simulation. The first exploration was 
performed for three NI implementations with 32 bits 
OCP data fields and 32 bits network ports using 
respectively credit based, handshake 4 phases with 
Baseline architecture. The second exploration was 
performed for three NI implementations with 32 bits 
OCP data fields and 32 bits network ports using 
respectively credit based, handshake 4 phases with 
stoppable clock based architecture. We display in table 
4 the power estimation of baseline and stoppable MNI 
architectures for the three modes used by the OCP IPs 
using Handshake and Credit-Based flow control. When 
using the Handshake flow control for Base line and 
stoppable architectures, the BI mode is the lowest while 
the BP mode is the greatest. When using the Credit-
Based flow control for Baseline architecture,   the 
SRMD mode is the lowest while the BP mode is the 

greatest. When using the Credit-Based flow control for 
stoppable architecture, the SRMD mode is the lowest 
while the BP and BI mode is the greatest and are equal. 
The results show also that the power of handshake 
implementations is lower than the Credit-Based 
implementations for the modes of OCP IPs and for 
Baseline and stoppable architectures. 

Table 4: power estimation of baseline and stoppable MNI architectures 
Power (mW) Baseline Stoppage Gain 

BP Handshake 35 26 25.7% 
Credit-Based 95 40 57.8% 

BI Handshake 12 7 41.6% 
Credit-Based 81 40 50.6% 

SRMD Handshake 25 11 56% 
Credit-Based 36 32 11.1% 

  Experimental results show that the power 
consumed by the stoppable architecture is lower than 
base line architecture. For the Handshake 
implementations, the gain obtained between the MNI 
Baseline architecture and the MNI stoppable 
architecture are 25%, 41%, and 56% respectively for 
BP, BI, and SRMD modes. For the Credit-Based 
implementations, the gain obtained between the MNI 
Baseline architecture and the MNI stoppable 
architecture are 57%, 50%, and 11% respectively for 
BP, BI, and SRMD modes. These results show that the 
use of the stoppable clock technique was benefic for 
designing a low power network interface. The use of 
gated clock technique reduces the activity of the MNI 
(α parameter) which reduces the dynamic power of this 
latter. 

4.3. Speed of Network Interfaces 

The speed results are obtained from the ISE tool 
from Xilinx and prototyped with Xilinx Virtex5 FPGA 
device XCVLX30. We present in table 5 the speed 
results of the Baseline and the stoppable clock based 
architectures for the three modes used by the OCP IPs 
using Handshake and Credit-Based control flow. We 
show that for any mode used by OCP IPs, the 
Handshake implementation is faster than Credit-Based 
implementation. This is true for Baseline and stoppable 
implementations. For Baseline or stoppable clock 
architectures, the BI implementation is faster than other 
implementations using Handshake or Credit-Based flow 
control. For Baseline and stoppable architectures, we 
see also that BP and SRMD speeds are the same. 
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Table 5: Speed results and degradation between baseline and stoppable 
MNI  

Speed (MHz) Baseline Stoppage degradation 
BP Handshake 444 372 16.2% 

Credit-Based 328 264 19.5% 
BI Handshake 459 407 11.3% 

Credit-Based 377 277 26.5% 
SRMD Handshake 444 372 16.2% 

Credit-Based 328 264 19.5% 

For Baseline architecture, the maximum operating 
frequency obtained for these MNI implementations is 
about 459MHz in BI mode using the Handshake flow 
control. The stoppable clock architectures are slower 
than the Baseline architectures. For BP and SRMD 
modes, the speed degradation between Baseline and the 
stoppable clock architecture in Handshake and Credit-
Based flow control are respectively 16% and 19%. For 
BI mode, the speed degradation between Baseline and 
the stoppable clock architecture in Handshake and 
Credit-Based flow control are respectively 11% and 
26%. This study shows that the use of the stoppable 
clock technique reduces the maximum operating 
frequency of the Design.  

4.4. Latency of Network Interfaces 

For Master Network Interface, the latency for a 
write or a read request transaction is defined as the 
number of cycles needed by the injection path when the 
request is presented at the OCP interface to the time 
when the first flit of the packet leaves the NI. The 
latency for a read response transaction is defined as the 
number of cycles needed by the extraction path when 
the response packet is presented at the local port of the 
router to the time when the first response appears at the 
OCP interface. 

Table 6: Latency results 
Latency (cycles) BP BI SRMD 
Handshake Write request 3 3 3 

Read request 3 5 3 
Read response 7 7 7 

Credit-Based Write request 3 3 3 
Read request 3 5 3 

Read response 3 3 3 

The MNI designs are tested and verified in two 
phases. In the first phase, the communication from the 
IP to the router was tested. In the second phase, the 

communication from the router to the IP was tested. 
The number of clocks to transfer a flit from an OCP IP 
to the router is calculated at different stages and the 
results are presented in table 6. Therefore, the time to 
transfer a complete packet from IP to the router and 
vice versa is:  

Packet Delay = FD + M(N-1) clocks / packet     (2) 
FD: flit delay indicated in table 6. 
M: time in cycle to forward a new flit. 
N: packet length. 
For 4ph handshake flow control M is equal to 4 and for 
credit based M is equal to 1. 

For example, for write request of MNI with the 
packet length is equal to 8. 

Packet Delay (cb) =3+1(8-1) clocks/packet 
                              = 10 clocks/packet 

4.5. Throughput of Network Interfaces 

The NI is a bridge between the IP and the NoC. 
Therefore, the throughput for the NI can be in two 
directions: the forward direction, from the core to the 
NoC, and the reverse direction, from the NoC to the 
core. It depends on the Latency and the maximal clock 
frequency of each design. The throughput for NI in 
forward direction or reverse direction is defined as the 
total number of flits processed by NI per second. 

Throughput = 1 / latency (Flits / Clock)      (3) 
Throughput = 1 / FD (1 / Fmax)))                               (4) 

Where FD presents the flit delay or latency 
indicated in table 6 and Fmax presents the maximal 
operating frequency. 

Example: The flit throughput for Baseline MNI in 
forward direction using Handshake flow control and BI 
mode can be calculated as follows: 

Throughput = 1 / (3*(1/(459*106)))  
                     = 153 MFlits / Second 
                     =4,896 Gbits / Second 

Table 7 shows the throughput in forward and 
reverse direction with maximal clock frequency for 
Baseline MNI and stoppable MNI for the three modes 
used by the OCP IPs using Handshake and Credit-
Based control flow. The experimental results show that 
the throughput of stoppable clock MNI is lower than 
the throughput of the Baseline MNI. 
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Table 7: minimal throughput results 
Throughput(Gbit/s) Direction BP or SRMD BI 
Baseline Handshake Forward 4.736 4.896 

Reverse 2.029 2.098 
Credit 
Based 

 

Forward 3.498 4.021 
Reverse 3.498 4.021 

Stoppable Handshake Forward 3.968 4.341 
Reverse 1.7 1.860 

Credit 
Based 

 

Forward 2.816 2.954 
Reverse 2.816 2.954 

This is due mainly to the fact that the maximal 
speed of Baseline MNI is greater than Stoppable MNI 
and the latency or flit delay is the same for the two 
types of architectures. 

5. Conclusion 

In order to reduce power dissipation in a NoC, we 
have presented VLSI architecture of a new network 
interface. This architecture is based on a stoppable 
clock technique that allows   shutting down each sub 
module when it is not running. The advantage of the 
proposed architecture relatively to the baseline 
architecture is that the power reduction is performed 
with the same latency and the speed degradation is 
between 11.3% and 16.2% using handshake and 
between 19.5% and 26.5% using credit based mode. 
The stoppable clock architecture allows 41.6% and 
50.6% of gain in terms of power reduction for MNI 
respectively in Handshake and Credit-Based compared 
to baseline architectures. 
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