

Improved Approach for Exact Pattern Matching

(Bidirectional Exact Pattern Matching)

Iftikhar Hussain1, Samina Kausar2, Liaqat Hussain3 and Muhammad Asif Khan4

 1 Faculty of Administrative Sciences, Kotli, University of Azad Jammu & Kashmir

Muzaffarabad, Azad Kashmir, Pakistan

2 Faculty of Administrative Sciences, Kotli, University of Azad Jammu & Kashmir

Muzaffarabad, Azad Kashmir, Pakistan

3 Faculty of Administrative Sciences, Kotli, University of Azad Jammu & Kashmir

Muzaffarabad, Azad Kashmir, Pakistan

4 Faculty of Commerce, Kotli, University of Azad Jammu & Kashmir

Muzaffarabad, Azad Kashmir, Pakistan

Abstract
In this research we present Bidirectional exact pattern matching

algorithm [20] in detail. Bidirectional (BD) exact pattern

matching (EPM) introduced a new idea to compare pattern with

Selected Text Window (STW) of text string by using two

pointers (right and left) simultaneously in searching phase. In

preprocessing phase Bidirectional EPM algorithm improved the

shift decision by comparing rightmost and mismatched character

of Partial Text Window (PTW) to the left of pattern at same shift

length. The time complexity of preprocessing phase of BD exact

pattern matching is O(m) and searching phase takes O(mn/2).

The proposed Bidirectional EPM algorithm is effective than the

number of existing algorithms in many cases.

Keywords: Algorithm, pattern matching, exact pattern matching,

searching, Bidirectional.

1. Introduction

String matching algorithms, also called string searching

algorithms are a dominant class of the string algorithms

which aim to find one or all occurrences of the string

within a larger group of the text [1]. String matching is

further divided into two classes exact and approximate

string matching. In exact String matching, pattern is fully

compared with the selected text window (STW) of text

string and display the starting index position. In

approximate string matching, if some portion of the pattern

matched with STW then it displays the results.

The purpose of string matching algorithms is to find all

occurrences of the pattern in the text string [1]. In this

paper, we discuss in detail Bidirectional exact pattern

matching algorithm based on window sliding method of

exact string matching problem which will be helpful in

various needs of pattern matching.

Literature review of previous exact string matching

algorithms used to complete this research. After the

publications of Knuth-Morris-Pratt and Boyer-Moore

exact pattern matching algorithms, so for there have

hundreds of papers published related to exact string

matching [19].

According to literature survey, all the authors focus to

reduce the number of character comparisons as [8] and

processing time as [14, 9, 10] in both worst/average cases.

In this paper we compare Bidirectional EPM algorithm's

results with Boyer-Moore [3], BM Horspool [9], Quick

Search [10], and Turbo BM [14] algorithms which

considered efficient in terms of number of character

comparisons and attempts take to complete the processing

of selected text string.

In this paper, we present a brief literature review of some

existing exact string matching algorithms in Section 2.

Section 3 describes the basic concept and working of

Bidirectional algorithm with brief example. Then we

compare the Bidirectional EPM algorithm with some

existing algorithms in terms of their comparison order,

preprocessing space complexity, preprocessing time

complexity and searching time complexity (best, average

and worst). In Section 4, we present experiments that

compare the Bidirectional EPM algorithm with existing

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 59

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

mailto:Iftikhar.iftikhar786@gmail.com
mailto:saminamalik7@yahoo.com
mailto:liaqat_49318@yahoo.com
mailto:khanasif82@hotmail.com

algorithms. Finally, in Section 5, we conclude it on the

bases of experiments results.

2. Literature Review

Brute force (BF) [1] or Naïve algorithm is the logical place

to begin the review of exact string matching algorithms. It

compares a given pattern with all substrings of the given

text in any case of a complete match or a mismatch. It has

no preprocessing phase and did not require extra space.

The time complexity of the searching phase of brute force

algorithm is O(mn).

Knuth-Morris-Pratt (KMP) [2] algorithm is proposed in

1977 to speed up the procedure of exact pattern matching

by improving the lengths of the shifts. It compares the

characters from left to right of the pattern. In case of match

or mismatch it uses the previous knowledge of

comparisons to compute the next position of the pattern

with the text. The time complexity of preprocessing phase

is O(m) and of searching phase is O(nm).

Boyer-Moore (BM) [3] algorithm published in 1977 and at

that time it considered as the most efficient string

matching algorithm. It performed character comparisons in

reverse order from right to the left of the pattern and did

not require the whole pattern to be searched in case of a

mismatch. In case of a match or mismatch, it used two

shifting rules to shift the pattern right. The time and space

complexity of preprocessing phase is O(m+|∑|) and the

worst case running time of searching phase is O(nm + |∑|).

The best case of Boyer-Moore algorithm is O(n/m).

Boyer-Moore Horspool (BMH) [9] did not use the shifting

heuristics as Boyer-Moore algorithm used. It used only the

occurrence heuristic to maximize the length of the shifts

for text characters corresponding to right most character of

the pattern. It's preprocessing time complexity is O(m+|∑|)

and searching time complexity is O(mn).

Quick Search (QS) [10] algorithm perform comparisons

from left to right order, it's shifting criteria is by looking at

one character right to the pattern and by applying bad

character shifting rule. The worst case time complexity of

QS is same as Horspool algorithm but it can take more

steps in practice.

Boyer-Moore Smith (MBS) [11] noticed that by

computing the BMH shift, sometimes maximize the shifts

than QS shifts. It uses the bad character shifting rule of

BMH and QS bad character rule to shift the pattern. It's

preprocessing time complexity is O(m+|∑|) and searching

time complexity is O(mn).

Turbo Boyer Moore (TBM) [14] is variation of the Boyer-

Moore algorithm, which remembers the substring of the

text string which matched with suffix of pattern during last

comparisons. It does not compare the matched substring

again; it just compares the other characters of the pattern

with text string.

In Reverse Colussi (RC) [15] algorithm comparisons are

done in specific order given by the preprocessed phase.

The time complexity of preprocessing phase is O(m2) and

searching phase is O(n).

Two Way algorithm (TW) [17] proposed by Crochemore

and Rytter in 2002. The Two Way algorithm uses an idea

related to the short maximal suffix of the pattern to

calculate the shifting lengths of pattern in text string. The

Two Way algorithm's time complexity with the short

maximal suffix is O(n).

Berry Ravindran (BR) [18] algorithm proposed by Berry

and Ravindran in 1999, it performs shifts by using bad

character shifting rule for two consecutive characters to

the right of the partial text window of text string. The

preprocessing time complexity is O(m+(|∑|)2) and the

searching time complexity is O(mn).

3. Bidirectional Exact Pattern Matching

3.1 Basic Idea

Proposed Bidirectional exact pattern matching algorithm

compares a given pattern with selected text window (STW)

from both sides, simultaneously, one character at a time

within the text window. It did not require the whole pattern

to be searched if a mismatch occurs. In case of a mismatch

or a complete match of the pattern, the mismatched and

right pointers scan for the mismatched and rightmost

characters of the STW to the left of the related text

characters in pattern at same shift‟s length. Then align the

pattern to new selected text window of string when

rightmost and mismatched characters matched at same

shifts in left of pattern. A complete match will be found

when the both left and right pointers cross each other at the

middle of the pattern. The comparison order of pattern's

characters with selected text window can be, as shown in

the figure 1.

Text String

Pattern String

Right PointerLeft Pointer

Comparison Order

1
3

5
7

2
4

6
8

Figure 1: Comparison order of pattern's character with STW.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 60

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

3.2 Working of Bidirectional EPM

Bidirectional EPM algorithm is basically based on the bad

character rule of Boyer-Moore algorithm where only one

character is used to identify the shifts.

Bidirectional EPM algorithm has number of cases to shift

the pattern maximum to right of text window. Suppose

T(1…n) is the text string and P(1…m) is the pattern and

we compare P(1…m) with T(i…i+m-1) from both sides of

the pattern, one character at a time, start from right side of

the pattern.

Case 1: If mismatch cause by right pointer at most right

position T(i+j-1) ≠ P(j) or by left pointer at most left

position T(i) ≠ P(1) of the pattern here j = m then scan P(j-

1…1) for character P(j′) which is equal to T(i+j-1). If

character found in the pattern then align character

P(j′)=P(j-1…1) with T(i+j-1) as in Figure 2.

Figure 2: When right most or left most character mismatched.

Case 2: If mismatch cause by right pointer at position

T(i+j-1) ≠ P(j) where 1≤j≤m and it is not the right most

character of the pattern then scan P(j-1…1) for character

P(j″) which is equal to T(i+j-1). And also scan P(m-1…1)

for the character P(j′) which is equal to T(i+m-1). If

characters found in the pattern then align character

P(j″)=P(j-1…1) with T(i+j-1) and P(j′)=P(m-1…1) with

T(i+m-1), if shift‟s length of both characters are equal as

shown in Figure 3.

Figure 3: Mismatch by right pointer other than rightmost character.

Case 3: If mismatch cause by left pointer at position T(i+j-

1) ≠ P(j) where 1≤j≤m and it is not the left most character

of the pattern then scan P(j-1…1) for character P(j″) which

is equal to T(i+j-1). And also scan P(m-1…1) for the

character P(j′) which is equal to T(i+m-1). If characters

found in the pattern then align character P(j″)=P(j-1…1)

with T(i+j-1) and P(j′)=P(m-1…1) with T(i+m-1) if shifts

of both characters are at equal length as shown in Figure 4.

Figure 4: Mismatch by left pointer other than left most character.

Case 4: If equal shifts of mismatched (either cause by

right or left pointer) and right most characters are not

found, and P(j′)= T(m-1) is found at the left of mismatched

character P(j) of the pattern, then align P(j′) with T(m-1) as

in Figure 5.

Figure 5: Mismatched character did not find in pattern.

Case 5: If equal shifts of mismatched (either cause by

right or left pointer) and right most characters, did not find

at the left of mismatched character P(j) of the pattern then

align left most character of pattern with T(i+m) as shown

in Figure 6.

Figure 6: Maximum shift; if rightmost character did not find.

3.3 Example of Bidirectional EPM

Here we give a short example of proposed algorithm,

where T=”ABCDGHDBDHABABBADBHBBBDABH

DBABDABBADBH” and P=”ABDCGHDB”.

Attempt 1:

6 comparisons

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 61

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

In first attempt, mismatch caused by left pointer and it is

not the leftmost character of the pattern. So, Case 3 should

be applied to perform shift to the right of text window.

Attempt 2:

Comparisons 2:

Again mismatch caused by left pointer but it is leftmost

character of the pattern. Here Case 1 should be applied to

perform shift by considering rightmost character of the

text window.

Attempt 3:

Comparisons 3:

Mismatch caused by right pointer now and it is not the

rightmost character. Here Case 4 should be applied

because the mismatched and rightmost characters are not

found in the pattern on equal shifts.

Attempt 4:

Comparisons 2:

Here Case 1 should be applied because mismatch cause by

left pointer at leftmost position of pattern.

Attempt 5:

Comparisons 2:

This example takes 15 comparisons in 5 attempts.

3.4 Implementation of Bidirectional EPM

Comparison Phase

Preprocessing phase finds occurrences of the rightmost

and the mismatched characters of text string in the left of

the pattern, when a mismatch caused at any position of the

pattern. This phase helps to take decision of moving

pattern to the right of the selected text window. As

algorithm 1 show, preprocess function pass a pattern string,

rightmost and the mismatched characters of the text string,

and the index of mismatched character. For loop, of this

phase scans pattern from second last to leftmost character

of the pattern string by decrementing the indexes of pattern.

Inside for loop, if rightmost character found in the pattern

then check for the mismatched character at same distance

as in the selected text window then returns the index of

text string where the rightmost character of pattern will

align. If mismatched character did not find in the left of

pattern at same distance, then return the index value

according to rightmost character found otherwise return

index where shift of whole pattern take place.

Algorithm 1: Pseudocode of preprocessing phase

Similarly, the flowchart of Algorithm 1 is shown in Fig. 7.

Start

k←1, shift←P.length;

For P.length > 0;

If P[j] = T[i+m-1]

If j-dif ≥ 0 and

P[j-dif] = T[(i+m-dif)-1]
If j-dif < 0

shift ← k; Break;shift ← k; Break;k ← k+1

Return shift

End

False

False

False

True

True

TrueTrue

Figure 7: Flowchart of Algorithm 1.

Searching Phase

Searching will be performed between the pattern and the

selected text window of the text string. Algorithm 2 shows,

the searching phase of bidirectional exact pattern matching

algorithm; as external while loop which is used to shift the

pattern to right of the text window.

Input: Pattern string of length m.

Output: Return index „k‟ where last character of „P‟ aligns.

Preprocessor (P[], char rm, char mm, int Mindex) {

k ← -1;

y ← length[P] - 2;

for i ← y to 0

if P[i] = rm

if mm ≥ 0 AND P[mm] = mm

k ← i;

i ← -1;

else if mm < 0

k ← i;

i ← -1;

else Break;

return k;

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 62

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Algorithm 2: Pseudocode of searching phase

Two pointers are used to compare pattern with the selected

text window within the second while loop. A complete

match will be found, if both pointers cross each other at

middle of the pattern. Else, if mismatch caused by left or

right pointers, then preprocess function will be executed to

calculate the shifts where next attempt will be performed.

Start

n←T.length, m←P.length;

while i ≤ n-m

P[right] = T[i+right] and

P[left] = T[i+left]

j = (m+1)/2 -1;P[right] != T[i+right]

"Pattern matched at:”, i;

End

False

False

False

True

True

True

i ← 0, j ← 0;

left ← 0, right ← m-1;

True

while j < (m+1)/2
False

left ← left+1;

right ← right-1;

i←i+preprocessing

function;i←i+preprocessing

function;

i←i+preprocessing

function;

False

True

Figure 8: Flowchart of Algorithm 2.

The flowchart of searching phase of bidirectional exact

pattern matching is shown above in Figure 8.

3.5 Analysis of Bidirectional EPM

Preprocessing Phase

The worst case time complexity of preprocessing phase of

proposed algorithm is O(m), because only one loop is used

to scan the pattern to find the rightmost and mismatched

characters.

Searching Phase

The inner while loop runs at most 'm/2' times so, its worst

case complexity is O(m/2) because two pointers are used

within loop. The worst case time complexity to shift

pattern to right of the text is O(n) because the external

while loop runs 'n' times at most. The total time

complexity of searching phase is O(m/2).O(n), because the

inner loop runs within external while loop. It can be

written as O(mn/2).

Bidirectional algorithm requires O(m) extra memory space

in worst case to execute in addition with the text and

pattern string.

Table 1: Complexities of Bidirectional and other algorithms

The table 1 shows the preprocessing, searching and space

complexities of some existing and Bidirectional EPM

algorithm in asymptotic notations. The searching phase of

Bidirectional algorithm takes O(mn/2) time to execute

which is considered efficient than existing algorithms. The

comparison order of Bidirectional EPM algorithm is from

both sides of the pattern string.

Input: Text string of length „n‟ and Pattern of length „m‟.

Output: One or all occurrences of pattern in text

string.

BidirectionalPatternM (String T, String P) {

n ← T.length;

m ← P.length;

i ← m-1;

while i < n

 left ← 0;

 right ← m-1;

 while left < right
if P[right] = P[i - left] AND P[left] = T[i-right]

if (left + 1) ≥ right

 "We have match at:" (i+1) - m;

 i←i+((m-1) - preprocessor

index);

left ← left+1;

right ← right-1;

else if P[left] ≠ T [i-right]

i ← i+((m-1)-(preprocessor index);

 else

i ← i+((m-1)-(preprocessor index);

 Break Inner While;

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 63

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

4. Results and Discussions

In order to assess the efficiency of the Bidirectional exact

pattern matching algorithm with existing techniques, we

compare proposed technique with existing four techniques

(which are considered fastest in practice) named as Boyer-

Moore [3], BM Horspool [9], Quick Search [10], and

Turbo BM [14]. We pass a text string of 1125 characters

and compare patterns of different sizes as 4, 6, 8, 10, 12,

14 and 16 respectively from all these algorithms. Boyer-

Moore [3], BM Horspool [9], Quick Search [10], and

Turbo BM [14] and Bidirectional algorithms are

implemented in java and results are shown in the form of

graphs in figure 7 and 8.

4.1 Shift Based Comparisons

Total numbers of shifts made by each algorithm using

different pattern lengths are shown in graph form in figure

9. As results in the graph shows that Bidirectional

algorithm took minimum shifts as compare to other four

algorithms. Results also shows that in short pattern length,

number of shifts is closer to other algorithm but when

pattern length is increased Bidirectional algorithm

becomes more and more efficient as compare to other

algorithms.

Figure 9: Shift Base Comparison

4.2 No. of Character Based Comparison

Total number of characters compare by each algorithm

using different pattern lengths are shown in graph form as

in figure 10.

Results in the graph shows that Bidirectional algorithm

compares more characters, when pattern length is short.

There are two reason first it use two pointers one compare

from left and other from right simultaneously and other

reason is the prefix and suffix of the pattern string are

matched in text string. If prefix or suffix of the pattern

early find mismatches in the text then it produce much

more efficient result as compare to other algorithms.

Figure 10: No. of characters compare base Comparison.

Results also shows that when long pattern is used then

number of characters compare by Bidirectional EPM

algorithm are less than other algorithms.

5. Conclusion

This research presents a new idea to compare pattern with

selected text window from both sides of the pattern

simultaneously by using right and left pointers. The

preprocessing phase of Bidirectional EPM Algorithm

improves shift decision by scanning rightmost and

mismatched (either caused by right or left pointer)

character of the selected text window to the left of pattern

at same shift‟s length. Asymptotic analysis shows that the

time complexity of Bidirectional EPM algorithm is

O(mn/2) in searching phase and O(m) in preprocessing

phase. Shift base comparison results show that

Bidirectional algorithm is faster than existing algorithms.

Numbers of characters compare by Bidirectional algorithm

are also less than existing especially when long pattern is

used.

References
[1] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Introduction to

Algorithms, Chapter 34, MIT Press, 1990, pp 853-885.

[2] Knuth, D., Morris, J. H., Pratt, V., "Fast pattern matching in

strings," SIAM Journal on Computing, Vol. 6, No. 2, doi:

10.1137/0206024, 1977, pp.323–350.

[3] R.S. Boyer, J.S. Moore, "A fast string searching algorithm,"

Communication of the ACM, Vol. 20, No. 10, 1977, pp.762–

772.

[4] Rami H. Mansi, and Jehad Q. Odeh, "On Improving the

Naïve String Matching Algorithm," Asian Journal of

Information Technology, Vol. 8, No. 1, ISSN 1682-3915,

2009, pp. 14-23.

[5] Ziad A.A. Alqadi, Musbah Aqel, & Ibrahiem M. M. El

Emary, "Multiple Skip Multiple Pattern Matching

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 64

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Algorithm," IAENG International Journal of Computer

Science, Vol. 34, No. 2, IJCS_34_2_03, 2007.

[6] Ababneh Mohammad, Oqeili Saleh and Rawan A. Abdeen,

"Occurrences Algorithm for String Searching Based on

Brute-force Algorithm," Journal of Computer Science, Vol.

2, No. 1, ISSN 1549-3636, 2006, pp.82-85.

[7] A. Apostolic and R. Giancarlo, "The Boyer-Moore-Galil

string searching strategies revisited," SIAM J. Computer.

Vol. 15, No. l, 1986, pp.98–105.

[8] L. Colussi, Z. Galil, and R. Giancarlo, „On the exact

complexity of string matching,‟ 31st Symposium an

Foundations of Computer Science I, IEEE (October 22-24

1990), pp.135–143.

[9] R. N. Horspool, "Practical fast searching in strings,"

Software—Practice and Experience, Vol. 10, No. 3, 1980,

501–506.

[10] Sunday, D.M., "A very fast substring search algorithm,"

Communications of the ACM, Vol. 33, No. 8, 1990, pp. 132-

142.

[11] Smith, P.D., "Experiments with a very fast substring search

algorithm," Software-Practice and Experience, Vol. 21, No.

10, pp.1065-1074.

[12] Karp, R.M., Rabin, M.O., "Efficient randomized pattern

matching algorithms," IBM Journal on Research

Development, Vol. 31, No. 2, 1987, pp. 249-260.

[13] Apostolico, A. Crochemore, M., "Optimal canonization of

all substrings of a string," Information and Computation,

Vol. 95, No. 1, 1991, pp.76-95.

[14] Crochemore, M., Czumaj, A., Gasieniec, L., Jarominek, S.,

Lecroq, T., Plandowski. W., Rytter, W., "Speeding up two

string matching algorithms," Algorithmica, Vol. 12, No. 4/5,

1994, pp.247-267.

[15] Colussi, L., "Fastest pattern matching in strings," Journal of

Algorithms, Vol. 16, No. 2, 1994, pp.163-189.

[16] Hume, A., Sunday, D. M., "Fast string searching," Software

Practice & Experience, Vol. 21, No. 11, 1991, pp.1221-

1248.

[17] Crochemore, M. and Rytter, W., "Jewels of Stringology,"

World Scientific, Singapore, 2002.

[18] Berry, T. Ravindran, S., "A fast string matching algorithm

and experimental results, in proceeding of the Prague

Stringology," Club Workshop-99, Collaborative report DC-

99-5, Czech Technical University, Prague, Czech Republic,

1999, pp.16-26.

[19] Frantisek Franek, Christopher G. Jennings, W. F. Smyth, "A

simple fast hybrid matching algorithm," Journal of Discrete

Algorithms, Vol. 5, 2007, pp. 682-695.

[20] Iftikhar Hussain, Muhammad Zubair, Jamil Ahmed and

Junaid Zaffar, “Bidirectional Exact Pattern Matching

Algorithm,” TCSET’2010, Feb. 2010, pp. 293 (Abstract).

[21] Charras, C. and T. Lecroq, Hand Book of Exact String-

Matching Algorithms, Publication 2004, First Edition,

ISBN: 978-0-7546-64.

[22] T. Lecroq, “Experimental Results on Exact String

Matching,” Software-Practice & Experience, Vol. 25, pp.

727-765, 1995.

[23] A. Sleit, W. AlMobaideen, A. H. Baarah and A. H. Abusitta,

“An Efficient Pattern Matching Algorithm,” Journal of

Applied Sciences, Vol. 7, no. 18, pp. 269-2695, 2007.

[24] M. Ahmed, M. Kaykobad and R. A. Chowdhury, “A New

String Matching Algorithm,” International Journal

Computer and Maths, Vol. 80, no. 7, July 2003, pp. 825-834.

[25] A. Hudaib, R. Al-Khalid, D. Suleiman, M. Itriq and A. Al-

Anani, “A Fast Pattern Matching Algorithm with Two

Sliding Windows (TSW),” Journal of Computer Science,

Vol. 4, no. 5, pp. 393-401, 2008.

[26] Iftikhar Hussain, Imran Ali, Muhammad Zubair and Nazarat

Bibi, “Fastest Approach to Exact Pattern Matching,”

ICIET’2010, 2010.

[27] Muhammad Zubair, Fazal Wahab, Iftikhar Hussain and

Muhammad Ikram, “Text Scanning Approach for Exact

String Matching,” ICNIT’2010, PP. 118-122, 2010.

[28] Muhammad Zubair, Fazal Wahab, Iftikhar Hussain and

Junaid Zaffar, “ Improved Text Scanning Approach for Exact

String Matching,” ICIET’2010, 2010.

Iftikhar Hussain is working as lecturer at Faculty of Administrative
Sciences, Kotli, University of Azad Jammu & Kashmir since 2010.
He also worked at Savethechildren US, an international NGO. He
has completed his MS in computer science, specialized in
software engineering from Iqra University, Islamabad Campus in
2009. Before MSCS he has passed his BS in Information
Technology from University of Azad Jammu and Kashmir in 2007.
He has lot of research experience in software engineering,
algorithm and internet banking.

Samina Kausar has been working as lecturer at Faculty of
Administrative Sciences, Kotli, UAJK since 2007. She has
completed her MS in Computer Science, specialized in database
and distributed database systems, from INTERNATIONAL
ISLAMIC UNIVERSITY (IIU), Islamabad Campus in 2007. Before
MSCS she got the degree of MIT from University of AJ&K in 2004.
She has worked as project coordinator in university of Azad
Jammu and Kashmir. She has research experience in data mining
and algorithms.

Liaqat Hussain is serving as Lecturer Statistics, Faculty of
Administrative Sciences Kotli, University of Azad Jammu &
Kashmir since 2006.He is an MSc in computer science and
Statistics and recently he is performing the duties of Deputy
Director Students Affairs (DDSA) at Faculty of Administrative
Sciences Kotli. He is the former chairman Department of
Computer Science and Information Technology.

Muhammad Asif Khan is serving as Lecturer at Faculty of
Commerce Kotli, University of Azad Jammu & Kashmir since
2006.His higher degree is M.Phil and he is planning to go for PhD
from abroad. He has first position in M.Sc Commerce and M.Phil.
His research interests are in the area of E-banking, finance and IT.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 65

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

