
Verification and Validation of MapReduce Program Model for

Parallel Support Vector Machine Algorithm on Hadoop Cluster

Kiran M.1, Amresh Kumar2, Saikat Mukherjee3 and Ravi Prakash G.4

1 Department of Computer Science and Engineering, Christ University Faculty of Engineering

Bangalore, Karnataka, India

2 Department of Computer Science and Engineering, Christ University Faculty of Engineering

Bangalore, Karnataka, India

3 Department of Computer Science and Engineering, Christ University Faculty of Engineering

Bangalore, Karnataka, India

4 Department of Computer Science and Engineering, Christ University Faculty of Engineering

Bangalore, Karnataka, India

Abstract
We currently live in the data age. It’s not easy to measure the

total volume of structured and unstructured data that require

machine-based systems and technologies in order to be fully

analyzed. Efficient implementation techniques are the key to

meeting the scalability and performance requirements entailed in

such scientific data analysis. So for the same in this paper the

Sequential Support Vector Machine in WEKA and various

MapReduce Programs including Parallel Support Vector

Machine on Hadoop cluster is analyzed and thus, in this way

Algorithms are Verified and Validated on Hadoop Cluster using

the Concept of MapReduce. In this paper, the performance of

above applications has been shown with respect to execution

time/training time and number of nodes. Experimental Results

shows that as the number of nodes increases the execution time

decreases. This paper is basically a research study of above

MapReduce applications.

Keywords: Machine Learning, SVM, LIBSVM, WEKA Tool,

MultiFileWordCount, PiEstimator, Parallel SVM, Hadoop,

MapReduce.

1. Introduction

The Machine Learning [1] field evolved from the broad

field of Artificial Intelligence, which aims to mimic

intelligent abilities of humans by machines. It is a scientific

discipline concerned with the design and development of

algorithms that take as input empirical data, such as that

from sensors or databases, and yield patterns or predictions

thought to be features of the underlying mechanism that

generated the data. Machine learning is the body of

research related to automated large-scale data analysis.

Broadly speaking the main two subfields of machine

learning are supervised learning and unsupervised learning.

In supervised learning the focus is on accurate prediction

(support vector machines, kernels, neural networks),

whereas in unsupervised learning the aim is to find

compact descriptions of the data (clustering,

dimensionality reduction, deep learning).

Apache Hadoop [12] is a software framework that

supports data-intensive distributed applications. It enables

applications to work with thousands of computational

independent computers and petabytes of data.

The Hadoop Distributed File System (HDFS) [8] is

designed to store very large data sets reliably, and to

stream those data sets at high bandwidth to user

applications. HDFS is the file system component of

Hadoop.

MapReduce [6] is a distributed data processing or

programming model designed for processing large volumes

of data in parallel by dividing the work into a set of

independent tasks. MapReduce programs are written in a

particular style influenced by functional programming

constructs, specifically idioms for processing lists of data.

This module explains the nature of this programming

model and how it can be used to write programs which run

in the Hadoop environment.

Data Classification, also referred to as pattern

recognition, where one attempts to build algorithms

capable of automatically constructing methods for

distinguishing between different examples, based on their

differentiating patterns. A Support Vector Machine (SVM)

performs classification by constructing an N-dimensional

hyperplane that optimally separates the data into two

categories. This paper covers about Research Clarification:

This includes Machine Learning, Supervised Learning

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 317

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Classification, SVM, LIBSVM, Weka Tool, Hadoop,

HDFS, MapReduce and Cloudera - Cloudera’s Distribution

Including Apache Hadoop version 4 (CDH4). Descriptive

Study I: This includes List of Problems. Prescriptive

Study: This includes Hadoop Architecture, MapReduce

Programming Model and PSVM-MapReduce Algorithm.

Descriptive Study II: Experimental Setup and

Experimental Result & its Analysis.

Fig. 1 Research Plan: Basic means, Stages and Main Outcomes.

2. Research Clarification

This section describes about Machine Learning,

Types of Machine Learning, Supervised Learning

Classification in detail, SVM, LIBSVM, Weka Tool,

Hadoop, HDFS, MapReduce and Cloudera – CDH4.

2.1 Machine Learning

A major focus of machine learning research is the design

of algorithms that recognize complex patterns and make

predictions/intelligent decisions based on input data.

A learner can take advantage of examples (data) to capture

characteristics of interest of their unknown underlying

probability distribution. Data can be seen as instances of

the possible relations between observed variables.

Fig. 2 Machine Learning.

Machine learning focuses on constructing algorithms for

making predictions from data. A machine learning task

aims to identify (to learn) a function f : X -> Y that maps

input domain X (of data) onto output domain Y (of possible

predictions). The function f is selected from a certain

function class, which is different for each family of

learning algorithms. Elements of X and Y are application-

specific representations of data objects and predictions

respectively.

2.2 Supervised Learning - Classification

An important task in Machine Learning is classification,

also referred to as pattern recognition, where one attempts

to build algorithms capable of automatically constructing

methods for distinguishing between different examples,

based on their differentiating patterns. Supervised learning

algorithms utilize training data to construct a prediction

function f, which is subsequently applied to test instances.

Typically, training data is provided in the form of labeled

examples (x,y) ɛ X x Y, where x is a data instance and y is

the corresponding ground truth prediction for x.

2.3 Support Vector Machine

A Support Vector Machine (SVM) performs classification

by constructing an N-dimensional hyperplane that

optimally separates the data into two categories. In the

reference of SVM literature, a predictor variable is called

an attribute, and a transformed attribute that is used to

define the hyperplane is called a feature. The task of

choosing the most suitable representation is known as

feature selection. A set of features that describes one case

(i.e., a row of predictor values) is called a vector.

So the goal of SVM modeling is to find the optimal

hyperplane that separates clusters of vector in such a way

that cases with one category of the target variable are on

one side of the plane and cases with the other category are

on the other size of the plane. The vectors near the

hyperplane are the support vectors.

An SVM analysis finds the line (or, in general,

hyperplane) that is oriented so that the margin between the

support vectors is maximized. In the figure above, the line

in the right panel is superior to the line in the left panel.

Fig. 3 Margin and Support Vectors.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 318

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

2.4 LIBSVM

LIBSVM [4] is a library for Support Vector Machines

(SVMs). The goal is to help users to easily apply SVM to

their applications. LIBSVM has gained wide popularity in

machine learning and many other areas. A typical use of

LIBSVM involves two steps: first, training a data set to

obtain a model and second, using the model to predict

information of a testing data set. Many extensions of

LIBSVM are available at libsvmtools. SVM formulations

supported in LIBSVM are: C-support vector classification

(C-SVC), v-support vector classification (v-SVC),

distribution estimation (one-class SVM), ɛ-support vector

regression (ɛ-SVR), and v-support vector regression (v-

SVR). LIBSVM implements "one-against-one" multi-class

method, because it results in less training time when

compared to “one-against-all” multi-class method, so there

are k(k-1)/2 binary models, where k is the number of

classes.

2.5 WEKA Tool

WEKA (Waikato Environment for Knowledge Analysis)

[14]: Open-Source Software Tool is a collection of

machine learning algorithms implemented in Java

developed at the University of Waikato, New Zealand.

WEKA consists of a large number of learning schemes for

classification and regression numeric prediction - like

decision trees, support vector machines, instance-based

classifiers, Bayes decision schemes, neural networks etc.

and clustering.

2.6 Hadoop

Apache Hadoop [12] is an open-source software

framework that supports data intensive distributed

applications, licensed under the Apache v2 license. It

enables applications to work with thousands of

computational independent computers and petabytes of

data. Hadoop was derived from Google's MapReduce and

Google File System (GFS) papers. Hadoop was created by

Doug Cutting, the creator of Apache Lucene, the widely

used text search library. Hadoop has its origins in Apache

Nutch, an open source web search engine, itself a part of

the Lucene project. An important characteristic of Hadoop

is the partitioning of data and computation across many

(thousands) of hosts, and executing application

computations in parallel close to their data. A Hadoop

cluster scales computation capacity, storage capacity and

IO bandwidth by simply adding commodity servers.

Hadoop is a top-level Apache project being built and used

by a global community of contributors, written in the Java

programming language. The Apache Hadoop project and

its related sub-projects (Core, Avro, MapReduce, HDFS,

Pig, HBase, Zookeeper, Hive and Chukwa) have many

contributors from across the ecosystem.

2.7 The Hadoop Distributed File System (HDFS)

HDFS [8] is a distributed, scalable, and portable file

system written in Java for the Hadoop framework. It is the

file system component of Hadoop. It stores file system

metadata and application data separately. As in other

distributed file systems, like PVFS, Lustre and GFS, HDFS

stores metadata on a dedicated server, called the

NameNode. Application data are stored on other servers

called DataNodes. All servers are fully connected and

communicate with each other using TCP-based protocols.

By default, HDFS stores three separate copies of each

data block to ensure reliability, availability, and

performance. In large clusters, the three replicas are spread

across different physical racks, so HDFS is resilient

towards two common failure scenarios: individual

datanode crashes and failures in networking equipment that

bring an entire rack offline. Replicating blocks across

physical machines also increases opportunities to co-locate

data and processing in the scheduling of MapReduce jobs,

since multiple copies yield more opportunities to exploit

locality.

2.8 MapReduce

In MapReduce, records are processed in isolation by tasks

called Mappers. The output from the Mappers is then

brought together into a second set of tasks called Reducers,

where results from different mappers can be merged

together.

Problems suitable for processing with MapReduce must

usually be easily split into independent subtasks that can be

processed in parallel. The map and reduce functions are

both specified in terms of data is structured in key-value

pairs. The power of MapReduce is from the execution of

many map tasks which run in parallel on a data set and

these output the processed data in intermediate key-value

pairs. Each reduce task only receives and processes data

for one particular key at a time and outputs the data it

processes as key-value pairs.

The Hadoop MapReduce engine consists of a

JobTracker and one or many TaskTrackers. A MapReduce

job must be submitted to a job tracker which then splits the

job into tasks handled by the task trackers. JobTracker

dispatches jobs and assigns splits (splits) to mappers or

reducers as each stage completes. TaskTracker executes

tasks sent by the JobTracker and reports status to

JobTracker.

"Map" step: The master node takes the input, divides it

into smaller sub-problems, and distributes them to worker

nodes. A worker node may do this again in turn, leading to

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 319

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

a multi-level tree structure. The worker node processes the

smaller problem, and passes the answer back to its master

node. "Reduce" step: The master node then collects the

answers to all the sub-problems and combines them in

some way to form the output – the answer to the problem it

was originally trying to solve.

Fig. 4 MapReduce Design Illustration.

2.9 Cloudera – CDH4

Cloudera Inc. [18] is a software company that provides

Apache Hadoop-based software, support and services

called CDH. CDH has version of Apache Hadoop patches

and updates. It provides how to install and configure

version 4 of Cloudera's Distribution Including Apache

Hadoop (CDH4) as a Yum, Apt, or zypper/YaST

repository. It also describes how to deploy in standalone

mode, pseudo-distributed mode, and on a cluster.

CDH4 introduces a new version of MapReduce:

MapReduce 2.0 (MRv2) built on the YARN framework.

Here, refer to this new version as YARN. CDH4 also

provides an implementation of the previous version of

MapReduce, now referred to as MRv1.

3. Descriptive Study – I

SVMs suffer from a widely recognized scalability problem

in both memory use and computational time.

To improve scalability, a parallel SVM Algorithm is

developed, which reduces memory use through parallel

computation.

PSVM cannot achieve linear speedup when the number

of machines continues to increase beyond a data-size-

dependent threshold. This is expected because of

Communication & Synchronization Overheads.

Communication Time is incurred when message passing

takes place between machines. Synchronization Overhead

is incurred when the Master node waits for the task

completion on the slowest machine.

By using Hadoop Cluster with the same versions of

Software (CentOS 6.2) and same hardware configurations,

linear speedup can be achieved.

4. Prescriptive Study

This section includes Hadoop Architecture, MapReduce

Programming Model & Structure and flow of PSVM

algorithm using MapReduce.

4.1 Hadoop Architecture

Hadoop [16] consists of the Hadoop Common which

provides access to the file systems supported by Hadoop.

The Hadoop Common package contains the necessary JAR

files and scripts needed to start Hadoop. The package also

provides source code, documentation, and a contribution

section which includes projects from the Hadoop

Community. Putting everything together, the Architecture

of a complete Hadoop cluster is shown in Figure below:

Fig. 5 Hadoop Cluster Architecture.

The HDFS namenode runs the NameNode daemon. The

job submission node runs the JobTracker, which is the

single point of contact for a client wishing to execute a

MapReduce job. The JobTracker monitors the progress of

running MapReduce jobs and is responsible for

coordinating the execution of the mappers and reducers.

Typically, these services run on two separate machines,

although in smaller clusters they are often co-located. The

bulk of a Hadoop cluster consists of slave nodes (only

three of which are shown in the figure) that run both a

TaskTracker, which is responsible for actually running

user code, and a DataNode daemon, for serving HDFS

data.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 320

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Hadoop MapReduce jobs are divided up into a number of

map tasks and reduce tasks. TaskTrackers periodically

send heartbeat messages to the JobTracker that also

doubles as a vehicle for task allocation. If a tasktracker is

available to run tasks (in Hadoop parlance, has empty task

slots), the return acknowledgment of the tasktracker

heartbeat contains task allocation information. The number

of reduce tasks is equal to the number of reducers specified

by the programmer. The number of map tasks, on the other

hand, depends on many factors: the number of mappers

specified by the programmer serves as a hint to the

execution framework, but the actual number of tasks

depends on both the number of input files and the number

of HDFS data blocks occupied by those files. Hadoop

requires JRE 1.6 or higher. The standard start-up and

shutdown scripts require ssh to be set up between nodes in

the cluster. In a larger cluster, the HDFS is managed

through a dedicated NameNode server to host the file

system index, and a secondary NameNode that can

generate snapshots of the namenode's memory structures,

thus preventing filesystem corruption and reducing loss of

data. Similarly, a standalone JobTracker server can

manage job scheduling. In clusters where the Hadoop

MapReduce engine is deployed against an alternate

filesystem, the NameNode, secondary NameNode and

DataNode architecture of HDFS is replaced by the file

system-specific equivalent.

4.2 MapReduce Programming Model

MapReduce computing model consists of two functions,

Map and Reduce. The Map and Reduce functions are both

defined with data structure of (key1; value1) pairs. Map

function is applied to each item in the input dataset

according to the format of the (key1; value1) pairs; each

call produces a list (key2; value2). All the pairs which have

the same key in the output lists are put to reduce function

which generates one (value3) or an empty return. The

results of all calls from a list, list (value3).

Fig. 6 Process of MAP and REDUCE is illustrated.

4.3 Structure and Flow of PSVM Algorithm using

MapReduce

Fig. 7 Flow Diagram of PSVM Algorithm using MapReduce.

Algorithm:

1. Training Dataset: Having Instances, Attributes and

Class-Labels are provided by user.

2. Map: In map step, map tasks processes an associated

data chunk in its space. The output of each map process

is the localized SVM weight vector (wj)

3. Reduce: To compute the global weight vector (Wglobal)

by summing the individual maps’ weight vectors.

4. Output: Results with a Model having Global W and SV

(support vectors).

Description of PSVM Algorithm using MapReduce:

In general, A Map-Reduce job usually splits the input data-

set into independent chunks which are processed by the

map tasks in a completely parallel manner. The framework

sorts the outputs of the maps, which are then input to the

reduce tasks.

Mapper: Each MapReduce map processes an associated

data chunk in its space. The output of each map process is

the localized (per data chunk) SVM weight vector (wj).

Reducer: Again, the primary role of the associated reduce

phase is to compute the global weight vector (wglobal) by

summing the individual maps’ weight vectors.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 321

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

No. of Instances

Training Time (in sec)

150

57

846

265.75

2310

3024.35

4601

5256.29

10992

12556.35

20000

22846.34

5. Descriptive Study – II

This section includes Experimental Setup and

Experimental Result & its Analysis.

5.1 Experimental Setup

The experiments were carried out in WEKA and on the

Hadoop cluster. The WEKA version used is v3.6,

Operating System: 64-bit Windows 7 Ultimate with Intel

Core i3-2310M CPU @ 2.10 GHz and 4GB of RAM. The

Hadoop infrastructure consists of one cluster having four

nodes distributed in one single lab. For the series of

experiments, the nodes in the Hadoop cluster, with Intel

Core 2 Duo CPU@ 2.53 GHz, 2 CPUs and 2GB of RAM

for each node has been used. With a measured bandwidth

for end-to-end TCP sockets of 100 MB/s, Operating

System: CentOS 6.2 (Final) and SUN JAVA jdk 1.6.0_33.

5.2 Experimental Result and its Analysis

Experiment 01: Sequential SVM using LIBSVM in

WEKA

Table 1: Sequential SVM using LIBSVM in WEKA

Experiment 02: MultiFileWordCount

Table 2: MultiFileWordCount – No. of Files Increasing & Nodes Constant

No. of

Files
Execution Time

(in min)

No. of Nodes

2 3.13 2

3 4.45 2

4 6.9 2

Fig. 9 Results of MultiFileWordCount - No. of Files Increasing & Nodes

Constant.

In this experiment, size of 2 Files is 512MB

(256MB+256MB), size of 3 Files is 768MB

(256MB+256MB+256MB) and size of 4 Files is 1GB

(256MB+256MB+256MB+256MB).

Table 3: MultiFileWordCount – No. of Files Constant & Nodes Increasing

No. of Files
Execution Time

(in min)

No. of Nodes

4 6.09 2

4 5.18 3

4 4.14 4

Fig. 8 Results of Sequential SVM using LIBSVM in WEKA.

Fig. 10 Results of MultiFileWordCount - No. of Files Constant & Nodes

Increasing.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 322

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

No. of Maps

Execution Time (in sec)

No. of Nodes

15 31.271 4
20 37.977 4
25 37.142 4

Table 4: MultiFileWordCount – No. of Files Increasing & Nodes

Increasing

No. of Files
Execution Time

(in min)

No. of Nodes

2 3.13 2

3 4.05 3

4 4.14 4

Fig. 11 Results of MultiFileWordCount - No. of Files Increasing &

Nodes Increasing.

Experiment 03: PiEstimator

Table 5: PiEstimator – No. of Maps Constant & Nodes Increasing

No. of Maps
Execution Time

(in sec)

No. of Nodes

10 36.179 2

10 24.839 3

10 20.827 4

Fig. 12 Results of PiEstimator - No. of Maps Constant & Nodes

Increasing.

Table 6: PiEstimator – No. of Maps Increasing & Nodes Constant

Fig. 13 Results of PiEstimator - No. of Maps Increasing & Nodes

Constant.

Table 7: PiEstimator – No. of Maps Increasing & Nodes Increasing

No. of Maps
Execution Time

(in sec)

No. of Nodes

15 36.179 2
20 24.839 3
25 20.827 4

Fig. 14 Results of PiEstimator - No. of Maps Increasing &

Nodes Increasing.

Experiment 04: Parallel SVM

Table 8: Parallel SVM – Data Size Constant & Nodes Increasing

Data Size

(in MB)

Training Time (in sec)

No. of Nodes

1 50.621 2
1 42.025 3
1 40.345 4

Fig. 15 Results of Parallel SVM – Data Size Constant & Nodes Increasing.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 323

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Table 9: Parallel SVM – Data Size Increasing & Nodes Constant

Data Size

(in MB)
Training Time

(in sec)

No. of Nodes

1 50.621 2

2

52.127

2

4

52.528

2

8

53.065

2

16

53.342

2

Fig. 16 Results of Parallel SVM – Data Size Increasing &

Nodes Constant.

Table 10: Parallel SVM – Data Size Increasing & Nodes Increasing

Data Size

(in MB)
Training Time

(in sec)

No. of Nodes

4 52.528 2

8 50.916 3

16 44.022 4

Fig. 17 Results of Parallel SVM – Data Size Increasing &

Nodes Increasing.

6. Conclusions

SVM classifier depends on the number of support vectors

required. In SVM classification, the required memory to

store the support vectors is directly proportional to the

number of support vectors. Observations and Result

analysis show that in Sequential SVM - as the number of

instances increases, training time also increases. Also, in

the Hadoop Cluster – it has been verified and validated

that as the number of nodes increases, with respect to large

size of Input Data, execution time decreases. From this, it

is shown that Parallel SVM using MapReduce Model

performs efficiently. An advantage of using HDFS &

MapReduce is the data awareness between the NameNode

& DataNode and also between JobTracker & TaskTracker.

Till now, in this paper, Hadoop MapReduce has being

observed in all i.e. Standalone, Pseudo-distributed and

Fully Pseudo-distributed mode. This Hadoop cluster

contains four nodes i.e. one Master (NameNode) and three

Slaves (DataNode).

In the future work, Scaling up the Hadoop Cluster-

having Client and Secondary NameNode [8]. Further study

and research of various concepts related with hadoop.

Ex: - hadoop – streaming [12]. Performance Evaluation of

Parallel SVM Algorithm by introducing different Kernel

Methods. Ex: - vector space kernel [21].

References
[1] Gunnar Ratsch, “A Brief Introduction into Machine

Learning”, Friedrich Miescher Laboratory of the Max

Planck Society, 2004.

[2] Cortes and V. Vapnik. “Support-vector network”, Machine

Learning, 20:273-297, 1995.

[3] Chih-Wei Hsu and Chih-Jen Lin. A Comparison of Methods

for Multi-class Support Vector Machines, 13 (2): 415-425,

2002.

[4] C. C. Chang and C. J. Lin, “LIBSVM: A Library for

Support Vector Machines”, National Taiwan University,

Taipei, Taiwan, 2001.

[5] Chang, E. Y., Zhu, K., Wang, H., Bai, H., Li, J., Qiu, Z. and

Cui, H. Parallelizing “Support Vector Machines on

Distributed Computers”, 2007.

[6] Jeffrey Dean and Sanjay Ghemawat. MapReduce:

Simplified data processing on large clusters.

Communications of the ACM, 51(1):107–113, 2008.

[7] Mahesh Maurya and Sunita Mahajan. “Performance analysis

of MapReduce Programs on Hadoop cluster”, World

Congress on Information and Communication Technologies

2012.

[8] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert

Chansler. Yahoo! Sunnyvale, California USA “The Hadoop

Distributed File System”, IEEE, 2010.

[9] David Barber, “Bayesian Reasoning and Machine Learning”,

Cambridge; New York: Cambridge University Press, 2011.

[10] Ron Bekkerman, Mikhail Bilenko, John Langford, “Scalable

Machine Learning”, Cambridge University Press, 2012.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 324

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

[11] Jimmy Lin and Chris Dyer, “Data-Intensive Text

Processing with MapReduce”, University of Maryland,

College Park, April 2010.

[12] Tom White, “Hadoop: The Definitive Guide”, Published by

O‟Reilly Media, Inc., 1005 Gravenstein Highway North,

Sebastopol, CA 95472, 2009.

[13] http://www.csie.ntu.edu.tw/~cjlin/libsvm

[14] http://www.cs.waikato.ac.nz/~ml/weka/

[15] http://ieeexplore.ieee.org/

[16] http://hadoop.apache.org/

[17] http://books.dzone.com/books/hadoop-definitive-guide-

TomWhite

[18] http://www.cloudera.com/hadoop-support

[19] http://www.dzone.com

[20] http://www.chem.unl.edu/zeng/joy/mclab/mcintro/

[21] http://www.kernel-methods.net

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 325

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.cs.waikato.ac.nz/~ml/weka/
http://ieeexplore.ieee.org/
http://hadoop.apache.org/
http://books.dzone.com/books/hadoop-definitive-guide-%20TomWhite
http://books.dzone.com/books/hadoop-definitive-guide-%20TomWhite
http://www.cloudera.com/hadoop-support
http://www.dzone.com/
http://www.chem.unl.edu/zeng/joy/mclab/mcintro/
http://www.kernel-methods.net/

