
Software Performance-driven Quality Refinement of

MINPHIS: an architectural view

Ishaya Gambo1, Rhoda Ikono2, Olaronke Iroju3, Theresa Omodunbi4 and Abimbola Soriyan5

 1, 2, 4 & 5 Computer Science and Engineering Department, Obafemi Awolowo University

Ile-Ife, Osun State, Nigeria

3 Computer Science Department, Adeyemi College of Education

Ondo, Ondo State, Nigeria

Abstract

Performance is an important attribute of a software system.

The need to use suitable techniques to analyze the

performance characteristics of any software system is

paramount most especially at the architectural level.

Performance as a requirement often originates from the

organization’s business goals. In the case of the Made in

Nigeria Primary Healthcare Information System (MINPHIS)

as a product, the business goal is to enter new and emerging

geographic markets where the system will be expected to

perform effectively. In this paper we considered performance

refinement issues of MINPHIS application from the

architectural point of view. We present the entity-relationship

diagram (ERD) as a role-based quality model of performance

attributes showing the main stakeholder roles of MINPHIS

software system. The performance goal refinement will be to

support regulations that require life system like the MINPHIS

application that keeps patient records and generates various

reports for health management and research purposes. The

paper also presents the module view of MINPHIS architecture,

and show who the major stakeholders are and the performance

refinement characterization.

Keywords: Software Architecture, MINPHIS, Quality

Refinement, Software Quality, Software Performances.

1. Introduction

Software quality attributes should be considered

throughout design, implementation, and deployment in

which software architecture plays major roles. No

quality attribute is entirely dependent on design, nor is it

entirely dependent on implementation or deployment.

Satisfactory results are a matter of getting the big

picture (architecture) as well as the details

(implementation) correct, as in [1]. For example some of

the software qualities like performance involve both

architectural and non-architectural dependencies. It

depends partially on how communication is necessary

among components (architectural), partially on what

functionality has been allocated to each components

(architectural), partially on how shared resources are

allocated (architectural), partially on the choice of

algorithms to implement selected functionality (non-

architectural), and partially on how these algorithms are

coded (non-architectural). Performance is an important

quality attribute of software systems, which can be

determined and ensured by the architecture.

Performance failures can result in damaged customer

relations, lost productivity for users, lost revenue, cost

overruns due to tuning or redesign, and missed market

windows. Clements in his opinion on performance

pointed out that “Performance is largely a function of

the frequency and nature of inter-component

communication, in addition to the performance

characteristics of the components themselves, and hence

can be predicted by studying the architecture of a

system” as in [2]. This further supports Perry and Wolf

in [3], [4] and [2] that says “there is growing recognition

of the role of architecture in determining the quality of a

software system.” In our opinion, performance can be

one among the quality of a software system. More so,

Clements and Northrup in [2] opined that “Whether or

not a system will be able to exhibit its desired (or

required) quality attributes is largely determined by the

time the architecture is chosen.”

Obviously, the role software architecture plays in the

overall system quality has been established in [5]. If the

architecture is not right, the system will not meet its

requirements. In the software engineering community,

software architecture has been identified as an

increasingly important part of software development and

quality control and management need to be carried out

throughout the whole development process to ensure

implementation of required quality characteristics. In

this paper we argue that performance problems in

software systems usually have their roots in poor

architectural and poor design decisions early in the

software life cycle. The software architecture presents

the performance artifacts to be used for decision making

and analysis during evaluation.

However, software performance greatly imposes

conditions on functional requirements such as speed,

efficiency, availability, accuracy, throughput, response

time, recovery time, and resource usage. For the

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 275

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

MINPHIS application, performance attribute quality

attribute is of paramount concern to all stakeholders of

the system. Performance as a requirement often

originates from the organisation’s business goals. In the

case of MINPHIS as a product, the business goal is to

enter new and emerging geographic markets where the

system will be expected to perform effectively. In this

paper we considered performance refinement issues of

MINPHIS application from the architectural point of

view. The performance goal refinement will be to

support regulations that require life system like the

MINPHIS application that keeps patient records and

generates various reports for health management and

research purposes. The paper also presents the module

view of MINPHIS architecture, and show who the major

stakeholders are and the performance refinement

characterization.

2. MINPHIS Architectural Structures and

Views

The MINPHIS architecture is a 2-tier architecture. There

are four layers, separated from each other by well-

defined interfaces depicted by dotted line. As a 2-tier

architecture, it consists of data server (i.e. the FileMan

database and the M software, the legacy system on

MINPHIS, which can access the database directly) and

the client application. The database server is where the

database serves up data based on queries submitted by

the application using the hierarchical database system as

the case is with MINPHIS, while the application on the

client computer consumes the data and presents it in

readable format. Architecturally, the 2-tier architecture

is intended to improve usability by supporting a form-

based, user-friendly interface. It also improves

scalability by accommodating up to 100 users, and

improves flexibility by allowing data to be shared,

usually within a homogeneous environment. As a

client/server, architecture it reduces network traffic by

providing a query response rather than total file transfer.

It improves multi-user updating through a graphical user

interface (GUI) front end to a shared database. This is

why Schussel in [6] and [7] opined that “in client/server

architectures, Remote Procedure Calls (RPCs) or

standard query language (SQL) statements are typically

used to communicate between the client and server.”

Based on this, in a 2-tier architecture, the user system

interface can be located in the user’s desktop

environment and the database management services in a

server that is a more powerful machine that services

many clients.

However, figure 1 below depicts the module structure of

MINPHIS architectural structure and view where the
elements are modules seen as units of implementation.

The module view represents a code-based way of

considering the system. Here, areas of functional
responsibilities are assigned. The module structure

provides the basis for knowing the primary functional

responsibility assigned to each module. The module

view (which may be subsystems) describes the system's

decomposition of functionality, along with the objects,

procedures, functions that populate these, and the

relations among them. The module structure shows the

elements which are units of implementation. To a

programmer, it shows how the system needs to be

structured as a set of code units. Fig. 1 will actually

allow us to know the primary functional responsibility

assigned to each module, the actual software elements

the module is allowed to use. The module view shows

the relationship existing within each module or layer by

generalisation or specification (i.e., inheritance),

dependency and composition. This information can

further be used for architectural analysis and evaluation.

3. Scenario of MINPHIS Architecture as a

Two-tier Application

Scenarios are used to represent stakeholders’ interests

and to understand quality attribute requirements. They

are a good way of synthesizing individual

interpretations of a software quality into a common

view. This view is more concrete than the general

definition of software quality and it also incorporates the

specifics of a system to be developed (i.e., it is more

context-sensitive, as in [8]. Most of the considered

architecture analysis methods use scenarios. The

existing practices with scenarios are systematized in [9].

For the MINPHIS architecture, the architecture is

client/server architecture and also a two-tier application,

which contains two active components: the client, which

requests data and the server, which delivers data.

Basically, the application's processing is done separately

for database queries and updates and for business logic

processing and user interface presentation. The network

binds the back end to the front end, although both tiers

can be present on the same hardware. In the

architecture, the clients establish connections with the

server, and these connections are kept open until the

clients terminate. The communication protocols are

often proprietary. Both clients and servers use database-

specific libraries to communicate with each other.

Security is entirely managed by the database engine.

Logins are controlled by the database, such as user roles

and permissions on database objects.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 276

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

FileMan Kernel XFIX 1.0
M

Application

-Is-Part-Of1 *

M Software

FileMan

Database

API M Procedure

-Is-Part-Of

1 1

Is-a

Remote Procedure (RP)

RPC Broker

Server

RPC Broker

Client

1

-TCP/IP Communication Protocol

1

Application Specific Software (Delphi App.)

Basic File entry,

editing, browsing

Transaction

entry functions

Logins,

security, menus
Reports

Functional component interface

XFID

Comp.

FM

Components
PRC

log-in

M Remote Procedure Call API Ready Made components

XFID

Comp.

*

-Interface*

*

-Interface*

*

-Interface*

-Interface*

*

Developer

User

*-Available-to

*

* -Visible-to

*

Depends-on

Depends-on

Key:
Class 1

1

Communicates 1-1 Interface Dependency
Module that

contains class 1 *

Composition (many to one)

Fig. 1 Module View of MINPHIS Architecture

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 277

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

4. MINPHIS Stakeholders and Performance

Quality Characteristics

The quality of a software system is primarily perceived

by its stakeholders because they have the best

impression if the software system meets their

requirements or not. These requirements are based on

the stakeholders' expectations and needs. The software

performance quality requirement of MINPHIS

application specifies the overall quality characteristic

used for the refinement process. In the MINPHIS

system, it was discovered that the different stakeholders

who include the end users, analyst, quality assurance

evaluator (researcher), system administrator, developer,

architect and management have performance quality

expectation in addition to other quality characteristics

towards the system. All the stakeholders are interested

in the performance quality characteristics considering

the time it takes for the system to respond to a particular

request, and from the architectural point of view, we

consider the stimuli that could cause the architecture to

respond to changes.

The main stakeholder roles of MINPHIS application are

end user, administrator and developer. The roles of the

developers and end user or users of the system are the

major concern in this paper. The performance quality

attribute is viewed from how the system functions when

it is being used. From interaction with the system, five

major types of users were identified, namely Doctors,

Medical Record Officers, Lab Technicians, Nurses, and

Pharmacist. All these users have different levels of

access and they perform different operations on the

current MINPHIS. They are all interested in the

performance of the system. Based on the observation

made on the system (MINPHIS), the response time

when the system is being used in handling and

processing of patient records and data was taken into

consideration. The performance issue considered is a

measure of how the system responds e.g. the time to

respond to events or number of events processed in a

time interval. This was checked during system

execution. The entity-relationship diagram (ERD) in

Fig. 2 shows a role-based quality model that means it

shows the main stakeholder roles of MINPHIS software

system assigned to the performance quality attributes

which they demand. Starting from the role-based quality

model in fig. 2, performance quality attribute is

identified for the MINPHIS application. Fig. 3 and 4

illustrate the mentioned refinement to metrics and

quantitative values which can enable the evaluation of

the performance quality attributes, using any software

architectural evaluation technique like the Architecture

Trade-off Analysis Method (ATAM). For the

representation, again the fundamental modeling concept

(FMC) ERD notation is used to show relation between

characteristic and metrics. On the shown fig. 3 for the

refinement of the performance characteristic I, the

qualitative evaluation through scenario is based on the

analysis of the response time and resource utilization.

5. MINPHIS Performance Scenarios

According to the work of Bass et al. in [1], “A scenario

is a precise system-independent specification of a type

of quality attribute requirement that consists of”:

 A stimulus: a condition that needs to be

considered when it arrives at the system

 A response: the activity undertaken after the

arrival of the stimulus

 A source of the stimulus: the entity (e.g., a

human or computer system) that generated the

stimulus

 An environment: the conditions under which

the stimulus occurs, for example, when the

system is in an overloaded condition.

 A stimulated artefact: some artefact is

stimulated. It could be the whole system or

pieces of it.

 A response measure: the attribute-specific

constraint that must be satisfied by the

response.

With this, we have the performance scenario used for

MINPHIS application as:

“A data from patient form is required to arrive every

10milliseconds (ms) at the patient master database under

normal condition. The system has to process the

stimulus within 1ms.”

The above performance scenario is an event which is

initiated with resource demands specified and the event

must be completed within a time interval. We divided

our performance quality attribute characterization into

three categories: external stimuli, architectural

decisions, and responses. The external stimuli (or

stimuli) are the events that cause the architecture to

respond or change. The architectural decisions are those

aspects of the architecture, which includes the

components, connectors and their properties. The

architectural decisions have direct impact on achieving

attributes responses. A typical example of this could be

the external stimuli for performance, which can be the

events such as messages, interrupts, or user keystrokes

that result in computation being initiated. In the case of

the above generated scenario, the patient form is the

external stimuli. Performance architectural decisions

include processor and network arbitration mechanisms;

concurrency structures including processes, threads, and

processors; and properties including process priorities

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 278

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

and execution times. Responses are characterised by

measurable quantities such as latency and throughput.

The performance architectural decisions are represented

in the performance tactics.

The goal in presenting performance attribute

characterizations is to suggest a framework for thinking

about quality attributes. The attribute characterizations

help to ensure attribute coverage as well as offering a

rationale for asking elicitation questions. For example,

irrespective of the style being analyzed, the latency (a

measure of response) is a function of resources such as

CPUs and LANs, resource arbitration such as

scheduling policy, resource consumption such as CPU

execution time, and external events such message

arrivals, as in [1].

For the MINPHIS system that keeps electronic patients

record, the response is the number of patients records

entered through the patient registration form that can be

processed in a minute for the patients database to be

updated within a given time frame and the variation in

the arriving time. The performance scenario begins with

a request for some service arriving at the system.

Satisfying the request requires resources to be

consumed. While this is happening the system may be

simultaneously serving other requests. In [1] it was

opined that “the response of the system to a stimulus can

be characterised by latency (the time between the arrival

of the stimulus and the system's response to it),

deadlines in processing, the throughput of the system

(e.g., the number of transactions the system can process

in a second), the jitter of the response (the variation in

latency), the number of events not processed because

the system was too busy to respond, and the data that

was lost because the system was too busy.” This was

actually articulated in the MINPHIS application.

6. Performance issues on the Patient Data

On the patient data, a form as shown in fig. 5 was made

available which serves dual purpose of collecting data

about a patient coming to the hospital for the patient and

finding existing patient in the hospital. This form is an

important form in that it provides the required data

needed by other modules of the application. The

information provided through this form is used to:

 Identify a patient by the Hospital Number

which is unique to every patient coming to the

hospital

 Provide an avenue to know the previous

medical history for the patient

 Enable access to other aspects of the

application by the patient

The Patient master database stores the information that

is entered through this form. The performance generated

can be to register a patient using the patient registration

form, and let the record be updated in the patient

database for use by all other modules.

7. MINPHIS Performance Tactics

Performance is about timing. Events (interrupts,

messages, requests from users, or the passage of time)

occur, and the system must respond to them. There are a

variety of characterisations of event arrival and the

response but basically performance is concerned with

how long it takes the system to respond when an event

occurs. One of the things that make performance

complicated is the number of event sources and arrival

patterns. Events can arrive from user requests, from

other systems, or from within the system. For example,

the MINPHIS application as an example is a system

based on powerful servers running Microsoft NT,

Intersystems Cache, the VA Kernel and FileMan, and

the FixIT software developed in Finland. The system,

having spanned through a thorough Information System

Development Process with clinical and patient

information well taken care of via a wide range of

reports that could aid health policy and decision makers,

handles patients requests by producing different output

for the Obafemi Awolowo University Teaching Hospital

Complext (OAUTHC) management, and other tertiary

hospital where the system is deployed for used. This

system gets events from its users (possibly numbering in

the tens or hundreds of thousands), the response might

be the number of patients information that can be

processed in a minute. In this case, the pattern of events

arriving and the pattern of responses can be

characterised, and this characterisation forms the

language with which performance scenarios are

constructed. The goal of the performance tactics is to

generate a response to an event arriving at the system

within some time constraint. The event can be single or

a stream and is the trigger for a request to perform

computation. It can be the arrival of a message, the

expiration of a time interval, the detection of a

significant change of state in the system's environment,

and so forth. The system processes the events and

generates a response. Performance tactics control the

time within which a response is generated.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 279

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Architectural attribute requirements

Non-functional

Quality characteristic

Performance

Time behaviour

(Response time)

Resource behaviour

Main stakeholder

roles

End user

Administrator

Client

stakeholders

Service

providers

Developer

Architect

Wants,

demands &

needs

is aware of capacity

constrains

Wants fast & quality

patient records

Architecture
defines

 Fig. 2 MINPHIS Role-based quality model in FMC ER-diagram notation

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 280

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Performance

efficiency scalability

Performance sub-characteristics

throughput response latency

Mechanisms increasing Performance

characteristics

Scenario-based Analysis method

 Fig. 3 Refinement process for quality characteristics performance I

Implemented by

Refined

Qualitative &

Quantitative evaluated

responsiveness

Performance

Time behaviour Resource behaviour

Latency Throughput

Capacity

Utilization

Space capacity

Quantitative

determined

Quantitative

determined

Quantitative

determined

External metrics

Refined Refined

Fig. 4 Refinement process for quality characteristics performance II

Space capacity

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 281

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 5 The Patient Registration Form

8. Conclusion

In conclusion, quality driven refinement of software

system is very necessary for a proper characterization of

quality attributes. The performance refinement process

as a quality characteristic of MINPHIS application

further gave the metrics and quantitative values which

can enable the evaluation of the performance quality

attributes using an architectural evaluation method like

ATAM. The characterization is a way of showing what

exactly need to be considered in a given quality

attribute. This implies that quality control and

management must be carried out through the whole

development process of software systems to ensure the

implementation of required quality characteristics.

Acknowledgment

I will like to appreciate Paul C. Clement (Ph.D) who

was formally at the Software Engineering Institute

(SEI), Carnegie Mellon University (CMU), Pittsburgh in

USA for comments, research materials and guidance

during the period of my research from which this paper

is written. Your hospitable spirit really gave me

confidence to come closer and to have more confidence

in the subject area of software architecture and software

quality research. You made me feel proud of what I

have done and what I will yet do.

References
[1] Bass, L., Clements, P., and Kazman, R. (2003).

Software Architecture in Practice, second ed. Addison-

Wesley, Reading, MA.

[2] Clements, P., and Northrop, L. (1996). Software

Architecture: An Executive Overview. CMU/SEI-96-

TR-003.

[3] Perry and Wolf (1992): Perry, D., and Wolf, A. (1992).

"Foundations for the Study of Software Architecture,"

ACM SIGSOFT Software Engineering Notes, Vol. 17,

No. 4, pp. 40-52.

[4] Garlan and Shaw (1996): Garlan, D., and Shaw, M.

(1996). Software Architecture: Perspective on an

emerging discipline. Prentice Hall.

[5] Clements, P., Kazman, R., and Klein, M. (2002).

Evaluating Software Architecture. Methods and Case

Studies: Addison-Wesley, Reading MA, Boston.

[6] Schussel, George,(1996):Client/Server Past, Present,

and Future (online). Available WWW <URL:

http://www.dciexpo.com/geos/> (1995).

 [7] Edelstein, Herb. (1994) "Unraveling Client/Server

Architecture." DBMS 7, 5 (May 1994): 34(7).

 [8] Barbacci, M., Ellison, R., Lattanze, A., Stafford, J.,

Weinstock, C., and Wood, W. (2003). Quality Attribute

Workshops (QAW), third ed. (CMU/SEI-2003-TR-016).

Software Engineering Institute, Carnegie Mellon

University, Pittsburgh, PA

[9] Kazman, R., Klein, M., and Clements, P. (2000).

ATAM: A Method for Architecture Evaluation.

Technical Report CMU/SEI-2000-TR-004, Software

Engineering Institute, Carnegie Mellon University,

Pittsburgh PA.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 282

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

