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Abstract
The MANET networks (Mobile Ad-hoc Networks)
are known by their dynamicity of nodes and they are
without pre-existing infrastructure. To study this kind of
networks, we modelled them by a Random Geometric
Graphs (RGG). We show that this type of graph is
the best adapted to represent such networks, and this
shows that the RGG are able to catch the dynamicity
properties. We study then the evolution of the network
by a continuous-time birth-death Markov process.
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1. Introduction

A Mobile Ad-hoc Network (MANET) is composed by
a set of stations. Those stations are self-organized and
this with a decentralized manner. Thus, they form an
autonomous dynamic network, witch is without pre-existing
infrastructure. Each station communicates with each other
one via a radio interface. So, only the items covered in the
same transmission range are able to communicate directly
and mutually. Otherwise, the communications between the
remote components take place according to a multi-hop
communication model; i.e. a message is forwarded station-
to-station gradually until the destination is reached. In this
case, it is not easy to find an efficient path between two
remote elements. The mobility of stations and the lack
of infrastructure lead to some worries about the network
connectivity.

Traditionally, a computer network is modelled by a graph
where the network components are represented by vertices
and the edges represent the communication links between
these components. Otherwise and for the reasons of network
dynamism (such as appearance and/or disappearance of

network nodes), it is necessary to represent this new
generation of network by a graph model witch is able to
catch some dynamicity properties.
The random graph model presented in [1], [2] constitutes
a way to describe these networks. However, one of the
problems posed is the generation of the related random
graphs. In the literature, sparsely techniques are available
to meet this purpose (see [3], [4]).
Moreover, in MANET, the communication between two
stations is made only if the distance between them is
less than a definite transmission range. This translate the
presence of the proximity concept between the localization
of these stations in the space. This allows us to give a
geometric meaning to vertices and edges.

The random geometric graphs are proposed to meet the
requirement distance. These graphs are introduced first in
1961 by Gilbert in [5]. Therefore, they served for modelling
many natural and artificial phenomena, for example the
communication between different distributed stations on a
territory [6] and some fundamental algorithmic problems
in networks (ad-hoc, wireless, sensors, etc.). See [7], [8], [9].

Although the static properties of these networks are well
understood mathematically. The additional challenges,
caused by the mobility of nodes, have received so far
relatively little attentions from theorists.

In our work, we are interested to a random geometric
graphs to model and we will study the dynamicity of
MANET. So, The organization of this paper is as follows.
In Section 2, we will present basic notions of random
geometric graphs. Afterwards, in Section 3, we will analyse
the dynamicity of nodes in the network by the birth and
death Markov processes. A detailed study of this process
in different regimes will be presented in this section. In the
end, we will present in Section 4 a conclusion and we will

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 212

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



discuss our future works.

2. Preliminary

2.1 Random geometric graph

In 1961, Edward Gilbert [5] defined the (Random Plane
Networks) as an effective model to study the communication
in the network, of distributed stations, in a wide area. This
model has been used in many disciplines for example
modeling wireless sensor networks [10], statistical physics
and hypothesis testing [11], spread of disease in complex
networks [12], social networks [13]. The reader can see[11]
for more information.

Gilbert’s model is known in graph theory as the Random
Geometric Graph (RGG). In this family graphs, the vertices
are a random points distributed in a same metric space S,
generally a compact subset of a space Rd for d ≥ 1.
An edge between two vertices will be created if the distance
between these two vertices is less than a defined radius r.
This radius represents, in our case, the transmission range. It
specifies the distance over which nodes can send and receive
informations.
Furthermore, the mobility of nodes in a network (physical
move of nodes from one region to another) causes a variation
in the network topology. Hence, network connectivity
changes also, it may be that the network is no longer
connected.
Similarly, when nodes appear or disappear the infrastructure
will be also modified. So, at each appearance, the new links
will be added, and any disappearance links will be deleted.
With these changes over time, it is important to ensure
ownership of the network connectivity.

To describe this dynamic network, we model it by a random
geometric graph.

Mathew Penrose in [11] proposed a static model of random
geometric graph G(Vλ, r) where the points of the Poisson
process, of intensity λ, represent the nodes. The set of these
points is denoted Vλ. The edges are added between each
pair of nodes whose the distance between them does not
exceed r.

For our study, we use the model of mobile random geometric
graphs introduced by Berg and White in [14]. This model
is similar to Penrose’s model, but the difference is that the
nodes are able to move.

Let χ0 = {Xi}i the Poisson point process, with intensity
λ, the points are the nodes. The displacement of a node
Xi is made according to a Brownian motion (ξi(t))t≥0
and this independently to other nodes. For any time t, the
set χt = {Xi + ξi(t)}i is a point process obtained after a
displacement nodes of χ0.

3. Dynamicity Analysis

3.1 Evolution of MANET

Among the main characteristics of a MANET, we find the
instability of its topology. The causes are multiples, we
cite:

• displacement nodes, in a given space, rendering their
neighbourhoods unstable. We call this case: node
mobility.

• disconnection of existing nodes (user disconnection,
battery discharge, to be outside the transmission range,
...)

• arrival of new other nodes (connection of new users,
charging of battery, placement of new sensors, ...).
Idem, we call this case: node dynamicity.

The table I below summarizes the behaviour of nodes in
mobile ad hoc networks.

ti ti + ∆t Interpretation State
  the node has not moved mobility
 #y  it is moved
  it is remained in its state
×  it is appeared dynamicity
 × it is disappeared

TABLE I
EVOLUTION OF THE MANETS NETWORKS

 describes a network node.
∆t is the time interval assumed to be very short, sufficient in order
that a single node joins or leaves the network.

3.2 Analysis of the dynamicity

In this section, we model the dynamicity of a MANET
by a process that evolves in the space and the time. The
transitions between states are made through a process of a
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new node appearance or disappearance of an existing node.
Moreover, the future state of the process depends only on the
present state. This process can be seen as a continuous-time
birth-death Markov process.
At each appearance (birth), the process increases by one
and conversely each disappearance (death) decreases it
by one. The times, in which they have appearances or
disappearances, are random. The law that manages those
times is characterized as bellow.

In the sequel, we use both the graph terminology or the
network terminology to mean the same things.

Proposition 1: Let G be a graph and ∆t a very short time.
The probability that a new vertex appears in this graph is
λ∆t, and the probability that an existing vertex disappears
is µ∆t.

Where λ and µ are two parameters strictly positives,
independent either to the size of graph and either to the
time. Those parameters are same for every vertex of the
graph G.

We describe variations in the graph size by a random
process {Xt : t ∈ R+}. We have the following proposition.

Proposition 2: Let Xt the size of the graph at a time t.
For a sufficiently small time interval h, we have:

(i) Pr(Xt+h −Xt = 0) = 1−Xt+h h (λ+ µ) + o(h),

(ii) Pr(Xt+h −Xt = 1) = λ h Xt+h + o(h),

(iii) Pr(Xt+h −Xt = −1) = µ h Xt+h + o(h),

(iv) Pr(|Xt+h −Xt| ≥ 2) = 0.

The equation (i) expresses the fact that from the time t
to the time t + h the size of the graph is not changed; no
appearance or disappearance hasn’t occurred. The equation
(ii) (respectively (iii)) reflects the appearance (resp.
disappearance) of a vertex. The equation (iv) means that
no more than one event is occurred in the interval [t, t+h].

The associated expected size and its variance are:

E(Xt+h −Xt|Xt = n) = h(α− β) + o(h)

V(Xt+h −Xt|Xt = n) = h(α+ β)− (h(α− β))2 + o(h)

Proof:

E(Xt+h −Xt|Xt = n) =1× ((n+ 1)λ h + o(h))

+ 0× (1− n h (λ+ µ) + o(h))

− 1× ((n− 1)µ h + o(h))

=(n+ 1)λ h− (n− 1)µh+ o(h)

=h((n+ 1)λ− (n− 1)µ) + o(h).

If we pose (n+ 1)λ = α et (n− 1)µ = β, then:

E(Xt+h −Xt|Xt = n) = h(α− β) + o(h).

V(Xt+h −Xt|Xt = n) =12 × ((n+ 1)λ h + o(h))

+ 02 × (1− n h (λ+ µ) + o(h))

+ (−1)2 × ((n− 1)µ h + o(h))

− (E(Xt+h −Xt|Xt = n))2

=h(α+ β)− (h(α− β))2 + o(h).

Proposition 3: Let pn(t) the probability to reach a
graph of size Xt = n at time t. We have:

pn(t+ h) = pn(t)× Pr(Xt+h −Xt = 0)

+ pn−1(t)× Pr(Xt+h −Xt = 1)

+ pn+1(t)× Pr(Xt+h −Xt = −1)

+ o(h).

Using the notations of the proposition 2, we obtain:

pn(t+ h) = pn(t)(1− n(λ+ µ) h)

+ pn−1(t)(n− 1)λ h

+ pn+1(t)(n+ 1)µ h+ o(h).

what gives:

pn(t+ h)− pn(t) = −pn(t)n(λ+ µ) h

+ pn−1(t)(n− 1)λ h

+ pn+1(t)(n+ 1)µ h+ o(h).

The division of the two terms of this equation by h gives:
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pn(t+ h)− pn(t)

h
=− pn(t)n(λ+ µ)

+ pn−1(t)(n− 1)λ

+ pn+1(t)(n+ 1)µ

+
o(h)

h
.

When h tends to 0, the previous equation becomes:

lim
h→0

pn(t+ h)− pn(t)

h
=

dpn(t)

dt
= p′n(t)

= −(λ+ µ)npn(t)

+λ(n− 1)pn−1(t)

+µ(n+ 1)pn+1(t),

with lim
h→0

o(h)

h
= 0.

The resolution of this differential equation is, in the general
case particularly complex; i.e. for any initial size n0. In our
study, we fix n0 to the value 1. Thus, we obtain as solution
of this differential equation the solution below:

p0(t) = µg(t)

pn(t) = (1− µg(t))(1− λg(t))(λg(t))n−1,

with:

g(t) =
1− e(λ−µ)t

µ− λe(λ−µ)t
.

3.3 Operational parameters of performance

In order to correctly describe the evolution of a MANET, it is
necessary to specify the mechanisms of arrival and departure
of vertices (nodes). Practically the question which arises this
is: which laws that obey the arrival process and exit process
?
To describe this phenomenon, a first idea is to use the
time interval between a successive arrivals and the time
interval between a successive departures of vertices, or
else the number of arrivals and departures in a given interval.

The arrivals (resp. the departures) of the vertices are done
according to an arrival process (resp. of departure). The

arrival process (resp. of departure ) is described by the
sequence of the successive arrival (resp. of departure ) dates:

a1, a2, . . . , an, an+1, . . . and s1, s2, . . . , sn, sn+1, . . .

Where an and sn are respectively the arrival and
departure of nth vertex.

The difference between two successive arrival dates is
named inter-arrival. Similarly, The difference between two
consecutive departure dates is named inter-departure .
We note generally by An the nth inter-arrival (i.e.
An = an+1 − an) and by Sn the nth inter-departure (i.e.
Sn = sn+1 − sn).

We describe the arrival process by the sequence of inter-
arrivals:

A1,A2, . . . ,An,An+1, . . . .

In the same way, the departure process is described by the
sequence of inter-departures:

S1,S2, . . . ,Sn,Sn+1, . . . .

With the arrival process, it is natural to associate a counting
function that counts the number of arrivals. This function is
defined by:

Na(t) = #{n|an < t} =
∑
n≥1

1an<t,

where # indicates the set cardinal.

Similarly, the counting function which returns the number
of departures is defined by:

Ns(t) = #{n|sn < t} =
∑
n≥1

1sn<t.

The counting function which counts the number of vertices
is defined by:

Xt = N(0) + (Na(t)−Ns(t)).
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3.4 Parameters of performance in transient regime

Consider the behaviour of the graph (network) in a given
period-time, for example, between t = 0 and t = T . Let
Xt the total number of vertices in the graph at time t. To
take an interest in the vertex behaviours during the time
interval [0, T ] come back to consider the transient regime.

Let the following operating parameters:

• Ai: arrival time of the ith node in the network;
• Si: departure time of the ith node in the network;
• Ci: connection time of ith node in the network:

Ci = Ai − Si;

• T : total time of the observation;
• T (n, T ): total time for which the network contains n

nodes; we have: ∑
n≥0

T (n, T ) = T ;

• P (n, T ) =
T (n, T )

T
: proportion of time for which the

network contains n nodes ;
• α(T ): number of arrived nodes in the network during

the period [0, T ];
• δ(T ): number of nodes that have left the network

during the period [0, T ].

From these quantities, we define the performance parameters
in transient regime as follows:

• The average debit of arrival da(T ) is the average
number of nodes entered in the network over time unit.
During the observation period [0, T ], we have:

da(T ) =
α(T )

T
.

• The average debit of departure ds(T ) is the average
number of nodes that have left the network over time
unit. During the observation period [0, T ], we have:

ds(T ) =
δ(T )

T
.

• The average number of present nodes in the network
L(T ) is the temporal average of Xt (or X(t)) during
the observation period [0, T ], so it is the area under the
curve of Xt:

L(T ) =
1

T
∑
n≥0

nT (n, T ) =
∑
n≥0

nP (n, T ).

• The average connection time is the arithmetic average
of the connection times of arrived nodes in the network
during the time interval [0, T ]:

C(T ) =
1

α(T )

α(T )∑
i=1

Ci.

3.5 Parameters of performance in permanent
regime

All previous parameters define the network performance
in transient regime (after a finite time T ). In transient
regime, we are interested to the existence of limits and their
convergence values when T tends to infinity, and this for
all these parameters:

da = limT→+∞ da(T ); ds = limT→+∞ ds(T );
L = limT→+∞ L(T ); C = limT→+∞ C(T ).

Stability case:

A network is stable if and only if the average asymptotic
debit of departure of nodes in the network is equal to the
average debit of input nodes:

lim
T→+∞

da(T ) = lim
T→+∞

ds(T ) = d.

According to the previous relations, this implies that α(T )
(total number of node arrivals during the interval [0, T ]) does
not grow more faster than the total number of nodes having
left the network δ(T ). So, when T tends to infinity we have:

lim
T→+∞

δ(T )

α(T )
= 1.

In term of complexity we note: δ(T ) = Θα(T )

Ergodicity:

The ergodicity is a very important notion in the stochastic
processes field. On the one hand, the operational analysis
focuses on a particular evolution of a network between two
instants t = 0 and t = T . We have seen that when T tends
to infinity and also when we consider the limitations of all
operational performance parameters, this reverts to focus
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on permanent regime of the network. In fact, it reverts
to focus on permanent regime of a particular evolution
of the network. It is then possible to study different
network evolutions. In fact, it reverts to focus on permanent
regime of a particular evolution of the network. It is then
possible to study different network evolutions. Furthermore
and on other hand, the stochastic analysis will associate
at the network of random variables and stochastic processes:

• VAi : random variable measuring the arrival time of the
ith node in the network;

• VSi
: random variable measuring the departure time of

the ith node;
• VCi

: random variable measuring the connection time of
the ith node:

VCi = VAi−VSi
.

• (αt): processes measuring the number of arrival nodes
in the network at time t.

• (δt): processes measuring the number of nodes having
left the network at time t.

• (Xt): stochastic processes measuring the number of
nodes in the network at time t.
For a given time t, we have:

Xt = αt − δt.

• pn(t): probability for that the network contains n nodes
at instant t: pn(t) = P ([Xt = n]).

We can then, as that was done within the framework of the
operational analysis, calculate all the stochastic parameters
of performances, in transient regime and in permanent
regime. The average number of nodes present in the network
at the moment t is calculated as follows:

L(t) =
+∞∑
n=0

npn(t).

The notion of ergodicity enables us to define a class
of network for which all the particular realizations of
the network evolution are asymptotically and statistically
identical.
A network is ergodic if and only if for any studied particular
realization of the stochastic process we have:

lim
T→+∞

+∞∑
n=0

nkP (n, T ) = lim
t→+∞

+∞∑
n=0

nkpn(t),

That implies that all the operational parameters of
performances in permanent regime are equal to the
stochastic parameters of performances in permanent regime.

We can therefore consider this property as the ergodicity
definition.

Choosing as performance parameters the proportions of time
spent by the network in the state where its size Xt = n and
the associated probabilities for that the network contains n
nodes, we obtain in the case where the network is ergodic
the following equality:

lim
T→+∞

P (n, T ) = lim
t→+∞

pn(t).

Moreover, the proportions of time spent in a state Xt = n
and the probabilities of being in this state can be confused
in permanent regime.

Let us note however that it exists networks not ergodic. For
example, An irreducible Markov chain constitutes a network
not-ergodic (some realizations lead to a absorbent sub-chain
while others lead to other realizations). A periodic chain is
another example of a not-ergodic network. The stationary
probabilities do not exist but we are able to determine the
proportions of time spent in each state of the chain.

Let us note finally that a unstable network is not also a
ergodic network, and this since the limit of the median
number of nodes L(T ) does not exist when T tends to the
infinity.

4. Conclusion

In this paper, we have studied the evolution of MANET
networks. Those networks are different from static networks
by their mobility and their dynamicity. We have represented
them by random geometric graphs and we have modelled
their evolution by a Markov birth and death process.

Our perspectives to this work are to finalize, in first, the
mobility part of nodes to complete our study on the evolution
of MANETs, and to integrate and study, in second, the
routing functions that incorporate the management of the
node localizations.
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