

Enterprise-Wide Logging Through Software Life-Cycle

Sharil Tumin1 and Sylvia Encheva2

 1 IT Department, University of Bergen,

Bergen, 5020, Norway

2 Faculty of Technology, Business and Maritime Education, Stord/Haugesund University College

Haugesund, 5528, Norway

Abstract
A software has distinctive phases; design, development, testing,

deployment and retirement. Logging helps developers, testers,

maintainers, and managers to effectively acting, reacting, and

interacting with the planned and unplanned events during a

program execution. A software gets input from and puts output to

its dynamically changing operating environments. Logging helps

to record historical events to be used for error-correction,

capacity planning, and general value added amendments to its

functions.

Keywords: Software engineering, events logging,

proactive modeling, reactive planning, distributive

collaborative reporting.

1. Introduction

Computer programs P are designed, developed,

and maintained to provide solutions S for some very

specific problems Q within their executing environments

E , in another words,)(= EQPS . More often than

not, these environments are changing constantly. What is

more difficult to developers and maintainers of computer

programs is that these changing parameters are in fact

constraints that define initial functions and operational

boundaries of these programs.

Many large software projects never see the light

of day. They are often abandoned before completion being

unable to meet the demand of ever changing operational

environments in which these softwares were meant to be

deployed. The more complicated these projects are the

more exposed they are to the risk of change. A number of

methodologies are introduced to tackle the complexities of

a software project: objects oriented programming,

modulars base libraries, flexible multi-version supporting

packages, agile development methods, piecewise

deployment, and usage feedback iterative functional

increments [1].

In this paper we are concern with logging planned

and unplanned events from some computer programs

under execution. There are other types of data-loggers for

special purpose data gathering applications such as

weather data of temperature, atmospheric pressure,

humidity and other data pertinent to weather reports. Also,

in computer systems loggers are used for 1) audit, 2)

transaction, 3) intrusion, 4) connection, 5) access, 6)

activity, and 7) alert [2].

Here, we are focused on the type of loggings

closely related to the processes of a software life-cycle.

While the main aims of data-loggers, i.e. weather data, is

to provide better weather predictions, events loggings in

computer programs intent to provide end-users with the

best possible information services.

2. Software Logging and Life-Cycle

What is in common and useful in the phases of a

software life-cycle of 1) Design, 2) Develop and 3)

Deploy, is without doubt logging. A log is meant here as a

unit of timestamped recorded message with relevant

information concerning a specific event, whether planned

or unplanned. Wedge between Design and Develop, and

between Develop and Deploy is Test. Testing is a process

by which we measure the difference between what

actually is achieved and what were the desired goals,

where here a carefully designed logging methodology can

be an invariably useful tool. As such logging is not just

storing and reporting events but more of an awareness tool

through distribution and collaboration, see Fig. 1.

Fig. 1 Design, Develop, Deploy

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 88

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

A designer team, in collaboration with

applications operational managers, can make use of

applications logs about usage and errors of previous or

similar programs to design a newer and better version of

programs to meet new emerging requirements. A group of

developers working with designers can use logs to check at

the early stage the correctness of assumptions about

constrains and protocols in the specifications. Operational

managers and working with the developers now acting as

maintainers use logs for bug fixes and capacity planning.

As the operational environments are dynamically

changing, logs can be used to record exceptions due to

changes outside the control of application operational

managers.

A software has several distinctive stages; 1)

design, 2) development, 3) testing, 4) deployment, and 5)

retirement. The degree of involvement of different stake-

holders depends on stages on which the software is

currently in. Ideally at stage 4), the software is at a steady

state of)(= EQPS . The solutions S provide

balance nicely to the problems Q the program P was

designed and developed for within its operational

environment E . In reality E is not static but dynamically

changing, reacting to outer and greater environments

encompassing it.

Stages 1), 2) and 3) can have many iterations,

driven by issues found in 4). In stage 4) provision of

pertinence information needs to be provided for feedback

to 2) for error-corrections and feedback to 1) for value

added amendments to its functions. These feedbacks must

be found in the loggs. With these views in mind, logging

has to be proactive in its modeling and reactive in its

operative planning.

Even if the solutions S are fixed in direct

relation to the problems Q , the programs P must

necessarily change with changing environments E . When

we look at different minor versions of a software we see its

time progression as

)]()...(),([= 2211 tntntttt EQPEQPEQPS

Major versions software releases R introduce

new solutions tmS to new problems tmQ within the same

environment or an extended operational environment tmE ;

]...,[= 21 tntt SSSR . A software is in passive state when

there are no new major releases, and not supported when

there is no minor releases. After a certain period of

inactivity the software will not be considered as useful and

enter the retirement stage and eventually no longer be in

deployment. A program is considered useful as long as it is

in stage 4). There are many reasons why a program can not

forever be in stage 4), one common reason is that the

program had become to complicated to be maintained. The

central tenet of usefulness is simplicity.

2.1 Data and Events-Loggers

The main difference between a special purpose

data-loggers and computer application events-logger is

that the former has definite units of data to collect with

fixed format, while for the later no such presumptions can

be arrogated. Computer programs or application events-

loggers at best can be said as planned chaos, since there is

no standard; 1) format, 2) schema, 3) taxonomy, 4)

transport and 5) API (application programming interface).

Developers are free to choose whatever works on the base

that there is no; 1) standard logging guidance, and 2)

common knowledge of what and how to log. Logging

frameworks are here to mitigate the chaos or at least try to

introduce some of the elements of best practice in logging.

Unix/Linux Syslog system, was developed in the

1980s by Eric Allman as part of the Sendmail project [3],

providing us with some standard logging guidance on how

to manage OS (Operating System) properly by leveraging

logging of events. Units of log (or logging massages) refer

to a facility; 1) auth, 2) authpriv, 3) daemon, 4) cron, 5)

ftp, 6) lpr, 7) kern, 8) mail, 9) news, 10) syslog, 11)

user, 12) uucp, and are assigned a severity; 1)

Emergency, 2) Alert, 3) Critical, 4) Error, 5) Warning,

6) Notice, 7) Info or 8) Debug, in descending order. The

logs are stored; 1) locally in files under /var/log/ or 2)

sent to a remote syslog daemons of a central logs

repository.

2.2 Logging Frameworks

The Apache Logging Services Project [4] created

their first logging framework log4j [5] back in 1996. The

log4j, a popular logging framework for Java, comes to

influence other logging frameworks for other

programming languages; 1) log4php for PHP, 2) log4net

for C# .NET, 3) log4cxx for C++, all developed and

maintain under the umbrella of Apache Logging Services

Project, while different independent developers had ported

log4j to the C, Perl, Python, Ruby, and Eiffel languages.

The log4j and its different incarnations are by far the most

widely used logging frameworks as computer application

events-logger today.

The popularity of log4j could be due to its

designed decisions by separating logging into three basic

components of; 1) Categories, 2) Appenders, and 3)

Layouts. The three components are designed to be used

together in computer programs such as to enable

developers to log messages according to message type and

priority (Categories), and to control at runtime how these

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 89

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

messages are formatted (Layouts) and where they are

reported (Appenders). By choosing different mixes of

these three logging components (Categories, Appenders,

Layouts), developers can install flexible logging schemes

for any degree of detail in any applications.

To the rest of this paper the discussion on logging

will be based on the use of Python logging module which

is a part of Python Standard Library since Python 2.3

version of the language. The logging module (heavily

influenced by java.util.logging package and log4j was

first developed in 2002 [6].

2.3 Python logging module

 The concept of hierarchy is important in logging,

it provides structure and precedence of what were logged.

Thus, by their attributes of structures and precedences,

logs can be successfully analyzed and effectively used by

different stake-holders at the different phases of a software

life-cycle.

Python logger is used in a program by importing

the logging module; import logging. The classes and

corresponding methods defined by the logging module, are

listed below:

1. Logger objects are instantiated by getLogger(),

which exposes the logging interface to be used

by applications.

logger = logging.getLogger()

2. Handlers send the log records to the appropriate

destination.

handler = logging.FileHandler(’app.log’)

3. Formatters associated with handles define the

layout of log records.

handler.setFormatter(logging.Formatter(’%(name

)-12s: %(levelname)-8s %(message)s’))

4. Filters provide a finer grained facility for

determining which log to be recorded or not.

logger.addFilter(filter_func())

5. Loggers are ready to be used when handles are

attached to them.

logger.addHandler(handler)

A call to getLogger() will create a logger object

with a default name of root. Multiple calls to

getLogger(’zoo’) return a reference to the same (in this

example, zoo) logger object. getLogger() supports

category hierarchy naming, where getLogger(’zoo’) is a

parent to getLogger(’zoo.fish’) and ancestor to

getLogger(’zoo.fish.herring’).

The instance property propagate (default value

is True) controls the propagation logging messages upward

(if logger.propagate == True) from child loggers to the

higher level (ancestor) loggers, i.e. zoo will also handle a

message happened in zoo.fish.herring. Where for instance,

zoo.fish.herring concerns with local logging while zoo

handles a central logging process, see Fig. 2.

Fig. 2 Logger Hierarchal Structure

The Python logging module supports a wide

variety of handler; 1) StreamHandler, 2) FileHandler, 3)

WatchedFileHandle, 4) RotatingFileHandler, 5)

TimedRotatingFileHandler, 6) SocketHandler, 7)

DatagramHandler, 8) HTTPHandler, 9) SysLogHandler,

10) NTEventLogHandler, 11) SMTPHandler, 12)

BufferingHandler, and 13) NullHandler. Normally 1)

sends logging messages to console via stderr output

stream. Logging reports are sent and stored in files by 2),

3), 4) and 5). Logging reports are sent to network servers

to be appropriately handled at the servers by 6), 7) and 8).

Logs are handled by standard OS (Operating System) 9)

Unix/Linux or 10) Windows. Logs can also be sent via

email to system administrators by 11). Logs can be

temporarily buffered in core memory before being flashed

to other handlers by 12). Furthermore, developers can

provide costume handler whenever needed, for instance,

saving logging reports to databases.

Beside %(message)s, logging.Formatter() take

a variety of predefined attributes; 1) asctime, 2) created, 3)

filename, 4) funcName, 5) levelname, 6) levelno, 7)

lineno, 8) module, 9) msecs, 10) name, 11) pathname, 12)

process, 13) processName, 14) relativeCreated, 15) thread,

and 16) threadName. One singularly important attribute

here is name, where the value is the string parameter of

getLogger() instantiator, but of course to be useful a log

must contain the minimum information of 1) asctime, 5)

levelname, 10) name, and message.

All logging messages are associated with level of

severity. The Python logging module defines these

severity levels; 1) DEBUG, 2) INFO, 3) WARNING, 4)

ERROR, 5) CRITICAL, ordered in increasing severity. To

each logger object, a logger logging level can be set by

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 90

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

e.g. logger.setLevel(logging.DEBUG). The default root

logger has logging level set at DEBUG. In addition, one

can also define logging level in handler by e.g.

error_hander.setLevel(logging.ERROR). Note that a

logger object can have multiple handlers.

The DEBUG defined the low-water mark in

severity. A logger set to DEBUG will handle all logs at all

levels of severity. Only critical events will be logged if

the logger is set to CRITICAL, all the rest of logging

messages will be ignored. This mechanism gives a

convenient way to developer in planning logging i relation

to software life-cycle; 1) DEBUG during Development, 2)

INFO or WARNING during Testing, and 3) ERROR in

Deployment. This logging level can be conveniently

changed in global configuration file of an application.

3 Implementation

Fig. 3 Unix/Linux stdin, stdout, stderr

Traditionally in Unix/Linux OS, program

interface with its operational environment through 1) stdin

for input, 2) stdout for output, and 3) stderr for error, are

defaulted to the console where the program was invoked,

see Fig. 3. Developers use print to statement for

debugging programs under development. While this

practice is sufficient (barely), but not belonging to good

practices, for very small programs, it should be avoided for

large applications.

3.1 Programs, Errors, Logging

Logging has to be taken seriously. It should be an

integral part of the application and not being left as an

afterthought. Logging as security must be designed and

implemented in parallel with and in relation to business

logic of the application. Time and resources need to be

provided under design and development for 1) business

logic, 2) security, and 3) logging. Access to logs must be

provided to all stake-holders in deployment.

An application under execution reads input X

from its input interface, processes the inputs in accordance

to the predetermined logic I defined within its program

whereby its internal states V are changed accordingly,

producing output Y to be written to its output interface,

nn VXIVY),(=),(1 . Each iteration will produce new

internal state.

There are a number of sources for error; 1) input

failures, 2) logic errors, 3) inconsistence internal states, 4)

output failures. In order to mitigate risk of errors for higher

execution stability and increase application robustness in

relation to changes in its operating environment, a good

mechanism for catching these exceptions [7] and logging

such events must be implemented in the application. It is

not uncommon that an application constitutes of many

cooperating sub-programs sharing some part of

applications internal states in persistence storage of

multiple databases. Therefore, a multifaceted and

multileveled logging strategy, Fig. 4, is necessary when

deploying such a distributed application.

3.2 Challenges

Hallmarks of enterprise-wide services are

centralized storage and repositories, together with a single

point of access services. What this means is that

enterprise-wide logging services need to consolidate

logging messages from diverse sources into one central

storage wich supports and facilitates easy and secure

access to graded logging information. For such a system, a

centralized database can be established to store all logging

messages from logging clients, while a corresponding

Web-based server can be deployed for anywhere and

anytime access to stored logging information, Fig. 5.

Fig. 4 Multifaceted and Multileveled Logging Scheme

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 91

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 5 Enterprise-Wide Logging System

Considering that applications logs can contain

sensitive information, access control to logging reports is a

matter important. Local file-based logging storages

(directories and files) are easy to make secure using

security provisions provided by the OS, in the form of

ownership, group-ownership and others together with

theirs permissions on these file resources. A centralized

storage access control mechanism can be a security

challenge, groups and memberships, role and permissions,

have to be managed on the enterprise scale [8].

3.4 A Case Study

In this section we provide examples with simple

Python codes with the supports of the appropriate Python

modules (Standard libraries) on how to implement a

multifaceted and multileveled logging subsystem in any

application as shown schematically in Fig. 4 using 1)

SocketServer and 2) sqlite3 on the server side and 3)

logging and 4) logging.handlers on the client side. The

diagram in Fig. 4 shows two logging subsystems

implemented in two independently executing applications

sending logging messages over the TCP/IP (Transmission

Control Protocol/Internet Protocol) network to a single

logging processing server, as well as storing logging

messages into theirs local log files for local copies.

In Appendix A, we provide a simple working

example of a logging processing server. The

multithreading TCP/IP socket server, LogReceiver, using

Python SocketServer. ThreadingTCPServer module, will

listen on port 8888 for request from clients. A new thread

is created when a request is detected by select.select and

the request will be handled by LogHandler. The handler

which is a SocketServer.StreamRequestHandler will

collect all logging message block and process it into

Python dictionary logging message object. Some of the

selected values of this dictionary object are then save into

a database, in this case a SQLite file-based database.

Since a request is handled in its own thread, each

handling process needs to create an sqlite3 connection

instance. The logging message data is packed using

pickle by the logger on the client before it was sent over

the net to the server. The pickle.loads unpacked the data

block into a dictionary typed variable. The logging data

provides these information; 1) msecs, 2) args, 3) name,

4) thread, 5) created, 6) process, 7) threadName, 8)

module, 9) filename, 10) levelno, 11) processName,

12) pathname, 13) lineno, 14) exc_text, 15) exc_info,

16) funcName, 17) relativeCreated, 18) levelname, and

19) msg.

Developers can choose which ever of these value

to be stored in to the database, e.g. the exc_text contains

error messages originating form an exception, should this

be considered as an important piece of information. Our

example in Appendix A only created, levelname,

name, filename, pathname, and msg are stored into the

database.

In Appendix B, we provide simple client codes as

examples. These codes are meant to be useful beyond the

point of showing the usage patterns of logging client. The

example codes also show hierarchal structure of Python

logging module. Here, the top most logging object is

created by rootLogger = logging.getLogger(), and this

logger object will have a default name root. We then

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 92

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

created two subordinate logger objects aLogger =

logging.getLogger(myapp.area1) and bLogger =

logging.getLogger(myapp.area2). They are subordinate

objects in the sense that logging message assigned to them

will also propagate upward in the hierarchy. The

propagation of logging messages is controlled by the

logger propagate attribute (set to True by default).

The handler of rootLogger is set to TCP/IP

socket handler by rootLogger.addHandler(socketHandler)

where socketHandler =

logging.handlers.SocketHandler(serv, port). All logging

messages to the root logger will be sent to our logging

processing server (129.177.9.71:8888) as shown in

Appendix A. A logging.FileHandler() will be used to

store local copies of logging messages, where the handler

will write logs to a specific log-file, in this case here,

log_cln_2.log. Associated with the handler is a formatter,

logging.Formatter(), in the example of Appendix B, these

information will be saved; 1) created, 2) name, 3)

levelname, and 4) msg + exc_text.

Since propagate attribute to aLogger and

bLogger were set to True and

rootLogger.setLevel(logging.DEBUG) all logging

messages written to these logger will be sent to

rootLogger and be saved in a log database at the central

logging processing server. If we have

rootLogger.setLevel(logging.ERROR) instead then

logging messages at lower severity, i.e. 1) DEBUG, 2)

INFO, and 3) WARNING will not be processed by the

server.

Appendix C shows a listing of logging messages

get logged in local log-file log_cln_2.log and at central

logging database logs.db. The listing form log-file shows

line format corresponding to the format declared in

logging.Formatter(). Lines listed form database were raw

data rows as defined. Be aware that exc_text is not

recoded in the database since it is not defined in the data

model.

Through a software life-cycle many stake-holders

are collaborating to archive preset goals. Sharing logging

reports within an organization and across organizational

boundaries within a cooperative framework will give

invaluable informational asset in working toward the

goals. The best way to share logging rapports stored in

multiple databases would be coupling them with a Web-

based logging distribution services or applications as

shown in Fig 5. Any numbers of databases can be exposed

to the Web server. A flexible scheme of access controls

could be implemented both for users within the

organization and collaborators from outside of

organization, where the Web server will act as a portal to

all logging processing servers.

4. Conclusions

All developers had in one way or anther done

logging during development process. Any piece of

program is sprinkled with some print statements, as a

way to diagnose the program under development, these

will print diagnostic massages to console (i.e. stdout).

When a program becomes large and complicated these

practice will become difficult to manage. One can see

diagnostic print statements for development purposes left

in the release version of the program that can create

intermittent problems which are difficult to trace and fix

under deployment.

It is probably best with logger.setLevel

(logging.DEBUG) during development and adjust the

logging level to, e.g. logger.setLevel(logging.ERROR)

for deployment. We can still have logger.debug(msg) or

logger.info(msg) in the code, but need worrying the effect

of streaming massages to stdout during deployment since

with logging level set to ERROR, logger.debug(msg) or

logger.info(msg) will be silently filter out by the logging

module. When unknown errors occur during deployment

and detail diagnostic is needed the logging level can then

be set back to DEBUG with eventually some new

logger.debug(msg) statements.

Software logging concerns with; 1) What (notes,

records, massages), 2) Where (function, module, host,

process), 3) Why (info, errors, exceptions), and 4) When

(timestamps). To do useful logging one needs to ask and

answer these questions; 1) What happened?, 2) When did

it happen?, 3) Where did it happen?, 4) Why did it happen,

and 5) How important is it? The Python logging module

implements a logging framework with all those in mind,

and employing logging library in one program will help

to manage logging effectively. By coupling logging to

databases with a Web-based distribution application, a

complete, flexible, effective, and manageable enterprise-

wide logging can be accomplished.

Appendix A

 Python Logging Server Example

1import SocketServer
2
3class LogHandler(SocketServer.StreamRequestHandler):
4
5 def handle(self):
6 import struct
7 import pickle
8 import sqlite3
9 while True:
10 chunk = self.connection.recv(4)
11 if len(chunk) < 4:
12 break

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 93

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

13 slen = struct.unpack('>L', chunk)[0]
14 chunk = self.connection.recv(slen)
15 while len(chunk) < slen:
16 chunk = chunk + self.connection.recv(slen - len(chunk))
17 obj = pickle.loads(chunk) # unpickle
18 con = sqlite3.connect('logs.db')
19 with con:
20 cur = con.cursor()
21 cur.execute("INSERT INTO Logs\
22 (ts, level , name , filename , pathname , msg) VALUES \
23 (:ts, :level , :name , :filename , :pathname , :msg)", \
24 {"ts": obj['created'], "level":obj['levelname'], \
25 "name":obj['name'], \
26 "filename":obj['filename'], "pathname":obj['pathname'], \
27 "msg":obj['msg'] }
28)
29 con.commit()
30 con.close()
31
32class LogReceiver(SocketServer.ThreadingTCPServer):
33
34 def __init__(self , host='0.0.0.0', port=8888,
35 handler=LogHandler):
36 SocketServer.ThreadingTCPServer.__init__(self , (host
, port), handler)
37 self.abort = 0
38 self.timeout = 1
39 self.logname = None
40
41 def processLog(self):
42 import select
43 abort = 0
44 while not abort:
45 rd, wr, ex = select.select([self.socket.fileno()],
46 [], [],
47 self.timeout)
48 if rd:
49 self.handle_request()
50 abort = self.abort
51
52def main():
53 server = LogReceiver()
54 server.processLog()
55
56if __name__ == '__main__':
57 main()

Appendix B

 Python Logging Client Example

1import logging , logging.handlers
2
3rootLogger = logging.getLogger('')
4rootLogger.setLevel(logging.DEBUG)
5socketHandler =
logging.handlers.SocketHandler('129.177.9.71', 8888)
6
7# don't bother with a formatter , since a socket handler
sends the event as

8# an unformatted pickle
9rootLogger.addHandler(socketHandler)
10
11# Now, we can log to the root logger , or any other
logger. First the root...
12logging.info('Start testing client.')
13
14# Now, define a couple of other loggers which might
represent areas in your
15# application:
16
17aLogger = logging.getLogger('myapp.area1')
18bLogger = logging.getLogger('myapp.area2')
19hndl = logging.FileHandler('log_cln_2.log')
20fmtr = logging.Formatter('%(asctime)s - %(name)s -
%(levelname)s : %(message)s')
21hndl.setFormatter(fmtr)
22
23aLogger.addHandler(hndl)
24bLogger.addHandler(hndl)
25
26aLogger.propagate = True # not need all
logger.propagate have True as default
27#bLogger.propagate = True
28
29aLogger.critical('Someone is doing bad thing to the
system !!!')
30
31man = {}
32try:
33 pos = man['John']
34except:
35 bLogger.exception("Who's John?")

Appendix C

Logger reports

% cat log cln 2.log
2012-11-26 20:53:26,425 - myapp.area1 - CRITICAL :
Someone is doing bad thing to the system !!!
2012-11-26 20:53:26,425 - myapp.area2 - ERROR : Who's
John?
Traceback (most recent call last):
File "log cln 2.py", line 35, in <module>
pos = man['John']
KeyError: 'John'
% logs.db
(1353959815.184912, 'INFO', 'root', 'log cln 2.py', 'log cln
2.py', 'Start testing client.')
(1353959815.185161, 'CRITICAL', 'myapp.area1', 'log cln
2.py', 'log cln 2.py', 'Someone is
doing bad thing to the system !!!')

(1353959815.185283, 'ERROR', 'myapp.area2',
'log cln 2.py', 'log cln 2.py', "Who_s John?")

References
[1] B. W. Boehm, “A Spiral Model of Software Development

and Enhancement”. 3rd ed. IEEE Computer, May 1988.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 94

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

[2] A. A. Chuvakin, “What Every Organization Should Log and

Monitor”. http://www.slideshare.net/anton chuvakin/what-

every-organizationshould-log-and-monitor (last accessed

2012/11/01) Wikipedia Syslog.

http://en.wikipedia.org/wiki/Syslog (last accessed

2012/11/01)

[3] Apache Software Foundation, Apache Logging Services

Project. http://logging.apache.org/ (last accessed

2012/11/02)

[4] Ceki Gulcu, Log4j. http://www.javaworld.com/jw-11-

2000/jw-1122-log4j.html (last accessed 2012/11/02)

[5] S. Vinay (red-dove.com) and Trent Mick (activestate.com),

PEP282. http://www.python.org/dev/peps/pep-0282/ (last

accessed 2012/11/02)

[6] S. Tumin and S. Encheva, “Building Robust Web-based

Systems by Managing Exceptions Through Logging,

Reporting and Analysis”. International Conference on Data

Networks, Communications, Computers, pp. 73-78, 2010

[7] S. Tumin and S. Encheva, “Simplifying enterprise wide

authorization management through distribution of concerns

and responsibilities”. WSEAS Transactions on Information

Science and Applications Volum 7.(6) pp. 830-83, 2010.

Sharil Tumin is chief engineer at IT Dept., University of Bergen.
His research interests are within data security, artificial
intelligence, and automation.

Sylvia Encheva is professor in mathematics and informatics at
Stord/Haugesund University College. Her research interests are
within decision support systems, non-classical logics, and fuzzy
systems.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 95

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

