
 

A Novel Low Complexity Combinational RNS Multiplier Using 
Parallel Prefix Adder  

Mohammad R. Reshadinezhad1, Farshad Kabiri Samani2  
 

 1 Department of Computer engineering, University of Isfahan,  
Isfahan, Isfahan 8174673440, Iran 

 
2 Department of Electrical and Computer engineering, Lenjan Branch, Islamic Azad University, 

       Isfahan, Iran 
 
 

Abstract 
Modular multiplication plays an important role in 
encryption. One of the encryption methods which need 
fast modular multiplication is RSA where large numbers 
are needed to empower large modules. In such methods, 
in order to show numbers, RNS is usually used with 
multiplication as the core. Modulo 2n+1 multipliers are 
the primitive computational logic components widely used 
in residue arithmetic, digital signal processing, fault-
tolerant and cryptography. Here, two residue number 
system multipliers are introduced, both based on 
classifications of couples or triplets of input operands, 
which results in a low complexity RNS multiplier. The 
first modular multiplier is a combinational circuit which 
enables parallel prefix adder application in modulo 2n+1. 
The second modulo 2n+1 multiplier uses n+1 partial 
product, each with $n$ bit width, constructed by utilizing 
an inverted end-around-carry, carry save adder (CSA) tree 
and a parallel adder at the end. The performance and 
efficiently of the proposed multipliers are evaluated and 
compared with that of the earlier fastest modulo 2n+1 
multipliers. The proposed multipliers are considerably 
faster and more compact than that of the hardware 
implementations, which make them a viable option for 
efficient designs. 
Keywords: Modular multiplier, residue number systems (RNS), 
modulo 2n+1 multiplier, parallel prefix adders, low complexity 
RNS multiplier.  

1. Introduction 

A Residue number system is a non-weight numeric system 
[1] which has gained importance during the last decade, 
because some of the mathematical operations can be 
divided into categories of sub-operations based on RNS 
[2]. Addition, subtraction and multiplication are 
performed in parallel on the residues in distinct design 
units (often called channels), avoiding carry propagation 

among residues [3]. Therefore, arithmetic operations such 
as, addition, subtraction and multiplication can be carried 
out more efficiently in RNS than in conventional two's 
complement systems. That makes RNS a good candidate 
for implementing variety of applications [4] such as: 
digital Signal Processing (DSP) for filtering, convolutions, 
FFT computation [5] [6], fault-tolerant computer systems 
[1] [6] [7], communication [8] and cryptography [9]. 
A residue number system is a represented by k integer 
modules mk-1, … , m1 m0.  An integer encrypts a number 
in a remainders set with respect to the prime numbers 
module. An integer variable             is uniquely 
represented by    (xk-1, … ,x1,x0) where, xi=x mod  mi for 
0≤ i ≤ k-1, and [α,β] is the dynamic range of residue 
number, the cardinality of which is M=β-α+1. The 
modules are chosen to be pair-wise prime to each other in 
order to maximize the cardinality, such that                 
M= mk-1, … ,m1,m0. In RNS, mathematical operations are 
performed on some small integers concurrently. Here an 
obvious advantage is that the carry does not pass through 
modules. To compute a mathematical operation on x and 
y in residue number system, we use a notation x⊙ y, 

where ⊙  could be one of the operations like, addition, 
subtraction or multiplication represented by Eq. (1): 
   

(1) 
 

One of the easiest ways to perform residue multiplication 
is to use a pure table look-up structure where, each 
modulo mi multiplier can be implemented through 
ROM's. Designs adopting ROM approaches are based on 
look up table, which are excellent for smaller modules 
multipliers; however,  they occupy vast area as the 
number of bits gets larger, therefore, the ROM size 
increases exponentially as the number of bits in each 
operand increases [10] [11] [12] [13]. 
Another approach in designing RNS multipliers is to use 
adder-based multiplier architectures, which have been 

1 0 1 1 01 k

0

x y  (x ,· · ·, x ,  x ) (y ,· · ·, y ,  y )    

   z  (z ,· · ·,z ,  z ) and,  z | (x y ) |11 m
k

i i ik i




 


 


,x    

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 430

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

i
i i m

x y

proposed in [14] [15] [16] [17]. Hiasat introduced an 
efficient modular multiplier which is suitable for different 
module sizes, medium and large size module particularly 
[14]. DiClaudio et al. presented the pseudo-RNS 
representation [15].  Wrzyszcz et al. have introduced an 
architecture tailored to fixed coefficient [16]. Stouraitis et 
al. [17] presented full adder based single modulus 
architecture for RNS multiplier and accumulator. The 
multipliers presented by Zimmerman [24] allow the use of 
Wallac-tree addition and Booth recoding of partial 
products for speed-up. They also used parallel prefix 
adders to implement their fast and simple end-around 
carry adder for modulo 2n±1. The diminished-1 modulo 
2n+1 multiplier proposed by Efstathiou et al. [25] uses an 
n×n partial-product array together with a CSA tree. They 
needed n+3 partial products and treatment of zero 
operands was not discussed. Vergos et al. [26] introduced 
a new modulo 2n +1 multiplier architecture for operands 
in weighted representation. Their proposed multiplier 
utilizes a total of n+1 partial product. They used an 
inverted end-around-carry (ECA), carry-save adder tree 
and a final parallel adder. In 2007 another RNS multiplier 
by Vergos et al. was introduced. The analytical and 
experimental results presented in [27] show that the 
multipliers proposed, outperform the earlier solutions of 
[24] [25] [26]. 
In this article a background on RNS multipliers is 
reviewed in section 2. In section 3, the bases of RNS 
adders used in RNS multiplier architecture are discussed 
[3] [14] [15] [16] [17] [18]. The proposed multiplier 
architectures are presented in section 4. Subsequently, in 
section 5, the obtained operational result is compared to 
the available results, and finally the conclusions are 
drawn in section 6. 

2. Background of RNS Multipliers 

As mentioned in the introduction, a variety of RNS 
multipliers are designed, like table look-up multipliers, 
index transform multipliers, quarter square multipliers, 
and array multipliers. Each modulo mi multiplier can be 
implemented by ROM's, which employs look-up table and 
is excellent for smaller modulo multiplier, or an array of 
full adders cells is used to implement the multiplier, 
which has a linear delay in respect to the number of bits 
in each operand. The concepts of RNS multiplication is to      
evaluate         and eliminate the i subscript in 
the analysis and interpret each residue bit in its binary 
form, through expressions for X and Y as equations: 
 

(2)  
   

The modular multiplication of numbers X and Y can be 
carried out through equation (3). 

  
(3) 

 
where, X, Y, and R are n-bit residues modulo M, and    
xi,yj   {0,1} represents the ith and jth bit of X and Y, 
respectively. In this article a novel VLSI implementation 
for calculation of residue multiplication is introduced that 
allow the computation of the result by equation (4). 
 

(4)  
Modular multiplications are categorized into two methods. 
In the First method, the multiplication of operands takes 
place completely and then a reduction takes place on the 
final result. This method is called Reduction after 
multiplication (RAM). In the second method, the 
reduction is applied during the multiplication steps, and is 
called Reduction During Multiplication (RDM). Both 
methods can be divided into three different classes based 
on the hardware implementation method used. 

Class One: these methods use some popular modules 
like: 2n, 2n+1, or 2n-1   where n is either small or big. To 
implement these kinds of methods, logical circuits are 
often used instead of ROMs. As a result, these methods 
are limited to specific modules [3] [11] [14] [19]. 

Class Two: these kinds of Implementations are 
capable of working with any modules but there backbone 
structure is based on ROM and usually the logical circuits 
are not applied in such methods. The memory size 
increases rapidly with an increase in n. Consequently, this 
method is not a good choice for large modules [10] [12] 
[13].  

Class three: these types of architectures are 
employed for average and large modules, which are 
usually hybrid and use binary adders and multipliers 
together with some ROMs in small size and logical 
elements [14]. 
In this article, we focus on class one and chose modulo 
2n+1 to do the multiplication and reduction. The 
multiplier inputs are categorized as that of the Vassilis et 
al. paper [11]. To get the final result we use adder 
introduced in [18] in order to optimize time and area. 

2.1 Vassilis’s Multiplier 

The organization of this part is based on the residue 
computing units of the previous reports [11] [17] [20] [21]. 
Let us consider a modulo-5 multiplier with the bit length 
of 3 using equation (3). According to the sources above, 
the first stage of the residue multiplier represents the 
nested addition of equation (3), whereas the second and 
the third part, is the reduction which takes place on the 

2 , 2i i

i iX x and Y y  

( )2 i j

i jM M M
R x y x y    

i
i i i m

R X Y 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 431

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

outer module of the right side of equation (3). Specifically, 
the second stage alternatively converts its input to a 
number with a residue the same as modulo, m, that of 5, 
and word length of n=3. Finally, in the last stage, maps 
its inputs to find residue via a conditional addition; 
therefore, the third stage is implemented through equation 
(5): 
 

(5) 
 

The first main condition in each step can be presented 
with a set of Zk,i from input bits which participate in the ith 
output bit of a stage or of the cascaded part of the stage, 
called recursions [12]. Here, k=0 shows that the set Zk=0,i 
is related to the first stage of equation (3), while 0< k ≤ r  
points to the kth recursion of the second stage as is evident 
by (3). The outputs bits which are the result of 
multiplication of xi and yj can be identified by            
writing               in binary format as it is shown by (3). 
For instance, for i=1 and j=2, we have: 
 

(6) 
 

As indicated in [11],         implies that x is a binary 
number, and therefore, because of equation (6), the bit 
multiplication of x1y2  points to the output bits of 
weighted positions 21 and 20, as shown in equation (7). 
 

(7) 
 

Consequently, it can be stated that x1y2 are elements of, 
Z0,0 , and Z0,1. This technique is used to compute all Zk,i 
for each of recursions in the second stage. Another way to 
describe each recursion in multiplication  is the use of  
flag bit chain (qi,j,k), where, qi,j,k є{0,1}, and each qi,j,k 
express whether the jth input bit participates in the result 
of  ith bit or not during the  kth  recursion [21]. Then, Zk,,i 
based description is identical to a flag bit sequence, since  
 

(8) 
 

where, yk,j is the input bit of kth recursion of                
weight           replaces  yk, j in equation (8). By defining the 
Zk,i or the flag bit sequence, an architecture including one 
bit full adders (FAs) and half adders (HAs) can be 
implemented using the  methodology used by Vassilis et 
al. [11], knowing sets of Zk,i or the flag bit chain. 
 
The multiplier architecture introduced by Vassilis et al., 
was organized in three stages: in the first and second 
stages they used carry-saved array, and each stage had 
columns of FAs, HAs, and OR gates. They introduced a 
hardware reduction procedure in a way that it reduces the 

number of 1-bit adders in a column by OR gates. First, 
they contemplated the recursion of the second stage such 
that equation (9) is an input to the kth recursion and nk 
represents the word length of the maximum value of Yk, 
which is calculated through simulation. There exist the 
couples (yk,j1,yk,j2) 
 

(9) 
 

or triplets (yk,j1, yk,j2,yk,j3) from input bits of yk,j є{0,1}, 
such that 0 < j1, j2, j3 < nk, is assigned to the ith column, 
i.e.,  qj1,i,k = qj2,i,k =1 or qj1,i,k = qj2,i,k = qj3,i,k=1, the 
summation of which does not generate a carry for any                            
Yk є Ik={0,1,…,Ymax,k-1}. Said otherwise, for the triplets it 
holds 

(10) 
 

whereas, for the couples it is: 
(11) 

 
where, Ik is the set of valid input values. 
In order to minimize the number of bits added to a 
column, the largest number of separate couples or triplets, 
produced by bits composed in each of the Zk,i set, that 
satisfy the terms of equations (10) and (11), respectively. 
The number of bits to be added in a column is minimized 
when the number of bits included in a specific couples or 
triplets is maximized. Thus, the input bits are grouped 
into appropriate sets of couples and triplets by dictating 
equations (10) and (11). The design procedure introduced 
by [11] uses equation (10), (11), and the couples (x,y) or 
triplets (x,y,z) of x,y,z є Zk,i  and categorize them into sets 
of         and         .    Also, bits of Zk,i are categorized into 
set of disjoint triplets or couples, for each column i, 
called        , and a set such that collects the remainder      
of the bits that are not member of any of the             
triples or couples, called       From the number of                  
possible            and       sets that can shape the sets of      

       and         , and minimize the summation          
result        of  input bits added in the ith column given as 
 

(12) 
 

are pinpointed and ventured in the derivation of the 
architecture of  residue multiplier [11]. 
In order to clarify the design procedure the authors gave 
an example of a modulo-5 residue multiplier, Fig. (1). 
The multiplication operands were chosen to be A and B, 
and the digit positions to which the input bit product aibj 
contribute, are shown in Table (1). Using the third 
column of this table, the corresponding Zk=0,i sets are 
configured and depicted in Table (2). In the first step of  
the   proposed  multiplier, by knowing  the content of Z0,i, 

' '

' '
 =  

ifY Y m
Y ifm Y m

Y


 





3 1 0
25 5

2 2 (011) 2 2i j    

1 0
1 2 1 2 1 25

2 2 2i jx y x y x y  

, , , ,{ | 1}k i k j i j kZ y q 

1

,
0

2
kn

j
k k j

j
Y y




 

1 2 3, , ,  1  k j k j k j k ky y y Y I    

1 2, ,  1  k j k j k ky y Y I   

'c f
i i iS C C 

'
iC

( )t
iC ( )d

iC

.f
iC

'
iC

'
,i minC ,

f
i minC

f
iC

c
iS

2 j

m

2x

5
2 i j

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 432

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

the        and         using corresponding equations in [11] 
are determined. 

 
Fig. 1. Modulo-5 residue multiplier [11] 

 
The second step in this modular design is to construct the 
sets of       and       shown in [11] for corresponding 
column. The final step is to select          and            among 
different sets of        and         . For example, in column 
i=2, the number of bits to be processed is determined 
by                                ,  and                  , where sets 

2 1cS  . 
 
Table 1: Sets of Zk=0,i, for i=0,1,2,... for a modulo-5 residue multiplier [11] 
 

 i              j 
5

2i j
 (

5
2i j

)2 

 0             0 1 001 
 0             1 2 010 
 0             2 4 100 
 1             0 2 010 
 1             1 4 100 
 1             2 3 011 
 2             0 4 100 
 2             1 3 011 
 2             2 1 001 

 
Table 2: Input assignment to digital positions for a modulo-5 residue 

multiplier [11]. 
Z0,2 Z0,1 Z0,0 

a0b2 a0b1 a0b0 
a1b1 a1b0 a1b2 
a2b0 a1b2 a2b1 

 a2b1 a2b2 
 

The organization of each column is defined by creating 
sets of           and           . The bits added at the $i$th 
column are the carry bits from column (i-1)th column 
according to the carry-save paradigm. Input bits of          
set            , and bits created by two or three input OR 

gates. According to definition in [11], an OR gate is 
sufficient to add the bits of the couples or triplets 
of           ; hence, the FAs or HAs can be replaced by OR 
gates. This is feasible since two or more bits cannot be 
defined concurrently and because, carry generation is not 
required and is eliminated. For more details refer to [11]. 

3. Parallel Prefix Adder 

The modulo 2n+1 addition is computed by A=X+Y+2n-1;                                  
where, X and Y are n+1 bit operands in the range of       
[0, 2n], such that, A= an an-1 … a1 a0, X= xn xn-1 ... x1 x0, 
and         Y=ynyn-1 … y1 y0, according to [18] [22] and R is 
defined as (rn rn-1 … r1 r0) and is computed by |X+Y|2n

+1; 
where, A=2n+1. The computation is made by equation 
(13): 
 

(13) 
 

and to calculate R equation (14) is used. 
(14) 

 
In equation (14) S is the summation of bits in ith column 
and C is the abbreviation for carry out of column i-1. This 
addition is illustrated in Fig. (2).  

xn xn-1 … … x1 x0 
yn yn-1 … … y1 y0 

1 … … 1 1 
  sn sn-1 … … s1 s0 

cn cn-1 … … c1 c0 
an-1 an an-1 … a2 a1 a0 

 
Fig. 2 Calculation of A=X+Y+2n-1. 

 
As it is seen in this Fig. (2), the summation of bits in each 
column is computed by                      , except the nth 
column which is given by equation                .             
Carry generation due to the addition of each column is 
transferred to next column and is equal                              
to                      and also carry transfer from nth column is 
computed by replacing index i by n in the last equation. 
To calculate the final result R, the following terms have to 
be calculated.  

0 0 1 0 ,1n n nr a a s c G


      
where Gn,1 is the carry out of  nth column while 
calculating A. For 1≤ i ≤ n-1, ri and rn are equated by: 

( )t
iC ( )d

iC

'
iC f

iC
'
2,minC 2,

f
minC

'
2C 2

fC
'

2 0 2 1 1 2 0( , , )C a b a b a b
2, 0f

minC 

'
,i minC ,

f
i minC

'
,i minC

'
,i minC

1 1 0 1 2 1
| (2 1) | n

n
n n nR a a a a a  

  

2 1nA X Y S C     

i i is x y 
n n ns x y 

i i ic x y 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 433

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

* *
1,1 1 1,1

*
1 1 1,1

i i i i i i

n n n n n

r a G s c G

r s c a G
  

  

    

   
 

where,            is the carry into position i, in the        
addition                                         . The n-bit addition in 
Fig. (2) where S is being added to C can be computed 
using any carry-accelerate adder scheme like: carry look 
ahead adders [23], parallel prefix adders, end-round-carry, 
etc. [3] [18] [24] [25] [26] [27]. Technically, we can 
postpone the calculation of Cin (carry that enter into last 
significant bit position) to the final (last) stage of 
positional carry triggering. So, it is prevented from one 
new precursor calculation of carry. Ci is the carry going to 
position i when C0= Cin=0, and P and G are variables that 
represent, generate and propagate expressions based on 
position of generation and propagation signal. The final 
carry into ith position is  used  in  calculating                . 
The two variables Pi and Gi are depend on all the gj and   
pj-1 signals where (0≤ j ≤ i). These recursive computations 
can be evaluated through precursor carry look-ahead 
operations cells or parallels prefix adders [23] as: 

1 1 2 1 1

1 1 1 1

, ( )

, ( )
i i i i i i i i i

i i i i i i i i

G g P G g x y x y

P P p P x y x y
    

   

    

    
 

The end-around-carry is                              , where both 
Gn and xnyn cannot be equal to one. Computation            
of and can be obtained directly                                        
by                   and                   .  Hence, it is not necessary 
to calculate                             and                          [18]. 
Efestathiou's adder is one of the fastest modulo addition 
introduced so far. This adder is shown in Fig. (3) which 
can be used to perform the modular multiplication of our 
concern. Refer to [18] for more detail derivations of the 
parallel prefix adder. In next section the novel modulo 
2n+1 residue multiplier is introduced. 

4. Proposed Modulo 2n+1 Multiplication 

A general block diagram for modulo M multiplier is 
illustrated in Fig. (4). The first block is a partial product 
generator. The second block refers to pre-processing of 
partial products according to [11]. The third block 
represents an n-bit binary long adder, using one of the 
adders like ripple-carry adder, carry accelerate adder, 
parallel prefix adder, carry skip adder, end-around-carry 
adder, and etc. [3] [18] [24] [27]. 
Two approaches can be adopted for the proposed 
multiplier architecture. The first approach is applied in 
lower modules like 5, 7 and 9, where by using truth table, 
a simplified design is obtained. This approach is called 
design method I and is presented in details in the 
following section. The second approach is for preforming  

Fig. 3 Parallel prefix adder [18]. 
 
Multiplications  in  higher  modules, based on  reduction 
of partial products in a given module. In  this  proposed 
architecture   the   reduction    of   partial   products   are  

Fig. 4 General block diagram of proposed RNS multiplier. 
 
according to definitions in [11]. Hence, the XOR gates in 
[26] and OR gates in [27], conventionally employed to 
generate sum digit are replaced by wired or gates which 
have no delays. The gates shown by a dot inside them are 
considered as wired OR gate. Wired OR gate is a gate 
where only and only one of its inputs has a value of one 
and the rest are zeros. In the second part we use carry 
save adders and finally an end-around-carry parallel 
prefix adder is used. This approach is referred to as 
design method II.    

4.1 Design Method I 

Design method I is suitable for lower modules like 
modulo 5, 7 and 9. The following new modulo 2n+1 
multiplier is a twofold structure formed through a low 
complexity combinational RNS multiplier [11], reduction 
combinational circuit and fast parallel prefix 2n+1 adders 
[10] [17] [18]. The main concern in here is to figure out a 

*

1,1iG


1 2 1 0 ,1n n n na a a a c G
 

 

*
i i is p c 

1n n n n
a G x y


 

*
ic

*

i i i
S P C 

*

n n i
PS C 
i i ia p c 

1n n ns a a 

is

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 434

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

way to use parallel prefix structure in order to add up the 
outputs of the first stage of residue binary number 
multiplier of Fig. (1). Using modulo-5 for illustrating 
modulo multiplier by [11] is used in this study. 
Considering that the operands A and B are the inputs to 
the first block of the modular multiplier, the partial 
products are classified into couple and triplets. The 
classification of couples and triplets are managed in a way 
that the HAs and FAs in the ith column are replaced by 
wired OR gates instead of conventional OR gates which 
were used in [11]. Consequently, the first stage of this 
newly proposed multiplier is same as [11] and it is 
illustrated in Fig. (5). In order to obtain desired result, the 
outputs of the first stage must be in the range of modulo-5 
in order to use in the Efstathiou's parallel prefix adder. 
Unfortunately, the results are not in modulo range. In 
order to use parallel prefix adder instead of the adder used 
in [11], the outputs of Fig. (5) have to be converted into 
modulo range. Therefore, for all the combinations of 
inputs, the input-output truth table shown in Table (3) is 
tabulated. 
According to Table (3), for only three different input sets 
the outputs are not in the residue range and exceed 
modulo-5. The corresponding combinations of inputs are 
shown in   bold faces in Table (3).  

Fig. 5 First stage of RNS multiplier in modulo-5. 
 

The identification of these states contribute to the 
proposed combinational circuit which makes the use of 
parallel prefix adder lieu of adders used in [11] possible. 
The combinational designed circuit is the second stage    
of RNS multiplier used in proposed design                        
(see Fig. (6)). This combinational circuit is designed to 
keep all the sets of input values in modulo range.  
According to the truth table shown in Table (3), the 
outputs of all the input sets for A2A1A0 and B2B1B0 are 
within the modulo range. After adding the second stage to 
the first that, the outputs will never go beyond the residue 
range is assured. Therefore, the Efstathiou's parallel 
prefix adder is used to perform addition and produce the 
final result of the RNS multiplier (see Fig. (7)). 

As an example, it is assumed that a2a1a0 and b2b1b0 in     
Fig. (7) are 011 and 100, respectively. The                      
outputs             and             of the first stage for these sets 
of inputs are equal to 111 and 000, accordingly. 
 

Table 3: Truth table for possible combination of inputs in modulo-5 

 

Fig. 6 Proposed reduction circuit in modulo-5. 
 
It is noticeable that the outputs exceeded the residue range, 
modulo-5. The outputs of the first stage are the inputs to 
the second stage. That is the proposed combinational 
circuit introduced.  Using these sets of inputs, the outputs 
A2A1A0 and B2B1B0 are evaluated as 011 and 100, 
respectively. Now, the set of outputs calculated are in 
modulo-5 range. Hence, these outputs are the inputs to the 
Efstathiou's parallel prefix adder in order to calculate the 
multiplication result. 

4.1 Design Method II 

The design method I has a good performance regarding 
delay and area of the hardware for lower modules like 5 to 
9. Hence, another design is introduced which is 
comparable to state-of-the-art structures like that of the 
[24] [25] [26] [27]. Here, the proposed architecture 
consists of three parts. First part corresponds to 
generation of partial products and reduction of the partial 

' ' '

2 1 0A A A ' ' '

2 1 0B B B

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 435

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

products to the give module range. To reduce the partial 
products within the range of module set, in some parts the 
idea introduced by Vassilis et al. [11] and for some other 
parts the Efetathiou and Vergos's algorithm is applied. 
Next the attempt is made to reduce the partial products to 
rows of sum and carry operands using carry save adders. 
Finally to obtain the multiplication result an addition is 
performed to add the two operands from previous stage.  

Fig. 7 Proposed modulo-5 RNS multiplier. 
 
The n × n is partial product matrix is derived from the 
initial partial product matrix in Fig. (8), based on several 
observations. First observation is, the initial partial 
product matrix can be divided into five groups of A, B, C, 
D and E as it is shown in Fig. (8). 
 

 
Fig. 8 Initial partial product matrix. 

 
Next, For each term of pi,j belonging to groups B and         
D, |Pi,j |2n

+1 is calculated and according to its weight it is 
scattered among the columns with the weights of 20 to     
2n-1 in group A. Since |22n |2n

+1=1, the term pn,n is moved 
to column with weight of 20. Finally, each partial product 

of the group E is inverted and repositioned at the          
(i+j-n) column. This repositioning takes place based on 
equation 15. This equation shows that repositioning of  
 
 

(15) 
 

   
 

each bit needs a correction factor of 2 2 ni jn  . In the first 
partial product vector, there is only one such bit and in 
the second partial product vector two bits must be 
transferred and so on. Hence, the correction factor for 
repositioning the partial product matrix is given by 
equation 16.   
 

(16)  
 
The partial products of the group A in fig. (8) along with 
equation 16, results in n+1 operands. By using carry save 
adders (CSA), reduction of the partial products into final 
summands Sum array and Carry array becomes possible. 
Assuming that the carry out of $i$th stage of CSA is ci 
with weight of 2n, this carry array can be reduced to: 

2 12 1 2 1
2 2nn n

n n
i i ic c c

 
     

Hence, the output carry array at the most significant bit 
position of each stage is used as input carry array to the 
next stage. Since in an n-1 stage (CSA) array, there exists 
n-1 carry out bits therefore there is a need for a second 
correction factor. This correction factor needed for the 
inverted (ECAs) and is presented by equation [17]. 
 

(17)  
The final correction factor is computed by adding 
equations 16 and 17 in order to find the total correction 
given by equation 18. 
 
 

(18) 
 

 
After all the partial products are transferred from position 
2n to 22n into group A of Fig. (8), the reduction procedure 
introduced by [11] becomes possible. According to 
definition in [11], to minimize the number of bits added 
in each column of group A, an OR gate is sufficient to add 
the bits of the couples or triplets of         .  After 
performing partial product reduction, n-bit Sum vector (S) 
and n-bit Carry vector (C) are ready to be added in a final 
stage addition module. According to Zimmerman [24] 
where 

2 2
1 2 (2(1 2 2 2 ) ( 1)

2 (2 1)

n n

n n

COR n

n

      

  



2 2 1
2 ( 1) n

nCOR n


 

1 2

2 1

2 1

2 ( 1) 2 (2 1)

2 (2 2) 3

n

n

n n n

n n

COR COR COR

n n




 

    

  

2 1 2 1

2 1

2 1

2 2

(2 1 )2

2 2 2

n n

n

n n
n

i ji j
i j i j n

i jn
i j n

i j i jn
i j

a b a b

a b

a b



 





 



 

  

 

'
,i minC

“0”

a0b0
a1b1

0A

a0a1
b1+b2

a0b0
a1b2

a2b1
a2b2

a1b2
a0b1

a1b0
a2b1

'
0A

'
0B
'
1A

'
1B

1A

2A

0B

1B

2B

'
2B

HA 

HA 

HA
a2b0
a1b1

a0b2

'
2A

0S

0C

1S

1C

2S

2C

HA 

a
b

sc


ia
ib

ipig


ip 1ic 

ir

1p

2 2, )( pg



ns

nn cg 

ng

nc

np

1nc  , )( x xpg , )( y ypg

, )( x xpg , )( y ypg

0r

1r

2r

2 1 2
1 n noutS C S C C


    

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 436

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

Table 5: n by n Partial-product matrix in modulo-17 multiplication 
 
 
 
 
 
 
 
 
 
the constant '1' in the above equation can be obtained 
from equation 18 which is the constant '3'. Hence the new 
final partial product is the constant '2' which will be 
added to the rest of the partial products. 

 
 
 
 
 

As an example, let’s consider modulo-17 multiplier for 
the proposed architecture here: First, the partial products 
of the columns 24 to 28 are transferred into appropriate 
positions according to what is explained above. Table (4) 
shows the partial products transfer into matrix A. 
 

Table 4: Transfer of partial products to appropriate positions 

23 22 21 20 

a3b0 
a2b1 
a1b2 
a0b3 
a4b3 
a3b4 
a4b2 
a2b4 
a4b1 
a1b4 
 

a2b0 
a1b1 
a0b2 
a4b2 
a2b4 
a4b1 
a1b4 

(a3b3)’ 
 

a1b0 
a0b1 
a4b1 
a1b4 

(a3b2)’ 

(a2b3)’ 

 
 
 

a0b0 
a4b4 
a4b3 
a3b4 
a4b2 
a2b4 
a4b1 
a1b4 

(a3b1)’ 
(a2b2)’ 

(a1b3+ a4b0+ a0b4)’ 

 
The next step is the reduction of partial products shown in 
Table (4) into four rows. At this point, the objective is to 
identify the largest possible number of disjoint couples or 
triplets, formed by bits contained in each of the Zk,i sets, 
which satisfy conditions of the equations 10 or 11, 
respectively. By maximizing the number of bits in the 
particular couples or triples, the number of bits to be 
added in a column is minimized [11]. For example in 
position 20 the partial products of a0b0, a4b4, a3b4 and a4b2 
satisfy the conditions of equations 10 or 11; therefore, 
they are wired OR together and since only and only one of 
the participated partial products could have value of 1, 
hence, the wired OR gate is used instead of conventional 
OR gate in order to perform logical OR of the inputs. As 
it was mentioned previously, a wired OR is an OR gate 
with a dot inside of it. Another example: in position 24 the 
partial products of a4b0,  a0b4, and a1b3 satisfy the 
conditions in equation 10 or 11: therefore,  
 

Fig. 9 The proposed architecture for modulo-17 multiplier. 
 

they are wired OR together and then inverted and 
transferred to position 20. And yet in another example 
where the partial products a2b4 and a4b1 in position 20 
satisfy equation (11), they can be added by the partial 
product        in the same column. After doing the required 
manipulations,                            is obtained as sum     
and                as carry which goes to next position is 
calculated. This approach is repeated for all the columns 
until the n×n partial product matrix is derived (see Table 
(5)). The block diagram of Table (5) is presented in Fig. 
(9). As it is shown in the figure partial products are 
implemented either by wired OR gates or with wired NOR 
gates. It is evident that the proposed multiplier out 
performs the previous multiplier designs and it is well 
suited for VLSI implementation.       

5. Area-Delay analysis and comparisons 

In the following section the area and time complexity of 
the proposed multipliers are analyzed. The two design 
methods are introduced and design method I is explained 
in order to be used for lower modulo sets like 5, 7 and 9. 
Design method II is a more general multiplier and can be 
employed for higher modulo sets.  
 

23 22 21 20 

pp0=a3b0+ a2b4+ a4b1 
pp1=a2b1+ a1b4+ a4b1 
pp2=a1b2+ ab2 
pp3=a0b3+ a4b3+ a3b4 
pp4=0 

a2b0+ a4b1+ a1b4 
a1b1+ a4b4+ a1b4+ a4b3 
a0b2+ a4b2 
(a2b4+ a4b1+ a3b3)’ 

0 

a1b0+ a4b1 
a0b1+a1b4 
(a2b4+ a4b1+ a3b2)’ 

(a1b4+ a4b3+ a2b3)’ 

1 

a0b0+a4b4+ a3b4+ a4b2 
(a2b4+ a4b1+ a2b2)’ 

(a1b4+a4b3+ a3b1)’ 

(a1b3+ a4b0+ a0b4)’ 

0 

2 4 4 1 2 2a b a b a b 
2 4 4 1a b a b

2 2a b

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 437

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

 
Table 6: Comparison of the proposed multiplier against [17] and [11] 

 
In both methods I and II, complexity reduction [11] is 
applied by input classification into pair and triple groups, 
so that the maximum sum of the elements of every group 
does not overshoot. In both design methods introduced 
here, it was shown that, one can use OR gate to replace a 
more complex half adders or full adders. This substitution 
is possible because, two or more bits cannot be 
simultaneously asserted, therefore, due to the definition, 
carry generation is omitted [11]. In this article we have 
done exactly the same and replaced half adders and full 
adders by OR gates. In design method I a combinational 
circuit added to keep the elements of each column in the 
residual range which allowed the parallel prefix adder 
used to compute the RNS multiplier result. The 
performance of the proposed RNS multiplier with respect 
to delay and area is compared to [17] and [11] as 
presented in Table (6). The comparison of different 
modules are computed and the results indicate that the 
proposed architecture is more optimized compared to that 
of the [17], [11] and [27]. 

Fig. 10 Time comparison of proposed multiplier against [17] and [11]. 
 
In order to quantify the area complexity of the 
architecture, it is assumed that FA, HA, two input OR 
gate and three input OR gate each have complexity of 28, 
12, 6 and 8 transistors, respectively [11]. The time and 
area comparison between that of the proposed structure 
and [17] and [11] are shown in Fig. (10) and Fig. (11), 
each in the order of modulo sets given.  The preformed 

comparisons indicate that the proposed design method I 
has time and area optimization against [17] and [11]. For 
Modulo sets like 5, 7 and 9 proposed in design I is also 
superior to Vergos et al. [27]. They used unit gate model 
for qualitative comparisons: considered all 2-input 
monotonic gates count as one, 2-input XOR/XNOR gate 
count as two equivalents for both area and delay [27]. 
Using the same qualitative comparison in lower modulo-5, 
the delay and area calculated from [27] is 17 and 35 logic 
gates count respectively, whereas the delay and area for 
the newly proposed design method I is 13 and 35 logic 
counts. Area is estimated in number of required 
transistors, while time is expressed in gate delays.  
As emphasized, design method II is general proposed 
multiplier for any modulo sets. Employing the same 
strategy adopted by [27] for computing delay and area, the 
area calculation is apportioned into three modules. The 
first module is to calculate the area needed for forming 
partial products. To produce the partial products of Fig. 
(8), there is a need for n2+1 AND (NAND) gates and 
since the wired OR gates are used in this proposed in 
design therefore the total area required to produce partial 
products is given by equation (19). 
 

(19) 
 

 
Fig. 11 Area comparison of proposed multiplier against [17] and [11]. 

 
The second module consists of CSA tree, and considering 
that each HA and FA has area of 3 and 7 respectively. 

  Stouraitis's RNS  multiplier [17] Vassilis's RNS    multiplier [11]    Proposed RNS  multiplier 

           Time   Area          Time             Area  Time Area 
 Modulo gate delay (ns)  Transistors gate delay (ns)  Transistors gate delay (ns) Transistors 

5 32 0.8750 16.5 0.6702 10 0.4300 
9 74 0.8450 39.4 0.6430 22 0.3900 

17 112 0.8790 56.5 0.6512 32.45 0.4200 
33 132.43 0.7344 65 0.5458 38.32 0.3038 
129 168.08 0.6834 90.3 0.5581 51.71 0.2903 
257 212.2 0.8870 112 0.6705 61.33 0.4240 

2 1partialA n 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 438

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

Looking at figure (8) and Table (5), in the first row of 
design method II there is 3n number of HAs; therefore, 
the area is 3n. The remaining rows have n(n2) FAs hence, 
the area is 7n(n-2). The total equivalent gate required for 
partial products is given by equation (20). 
 

(20)  
The last module is the end-around carry which was 
computed in [27] and is equal to equation (21). 
 

(21) 
 

Adding equations (19), (20) and (21), would yield the 
total area equivalent gates occupied by the proposed 
multiplier and can be computed by equation (22). 
 

(22) 
 

whereas, the area of the proposed multiplier by  [27] is 
given by equation (23). 
 

(23) 
 

As it is evident the proposed design has a better 
performance regarding area occupation of the hardware 
compared to [27]. Table (7) shows the saving in area 
offered by proposed multipliers for different operand sizes. 
 

Table 7: Area comparisons 

n 4 8 12 16 20 24 28 32 
A Proposed 129 543 1227 2176 3386 4858 6591 8583 
A [27] 147 577 1229 2241 3529 5001 6729 8713 
Percent Saving 12.2 5.9 5.6 2.9 4.1 2.9 2.1 1.5 
 
Computation of delay is based on three stages, namely, 
the contraction delay of partial products, the delay 
reduction of partial product via CAS adders and finally 
the delay of inverted EAC adder. The delay of partial 
product formation in this proposed design is one time unit, 
and in a worst case situation another time unit is the delay 
of wired or gates. Therefore, the delay here has the same 
derivation as [27], the only difference is that the delay for 
partial products here is 2 time unit when n+1 is a number 
of Dadda sequence (6, 9, 13, 19, 28, 42, 63,…). and 1 
time unit otherwise. The delay of CSA parallel adders 
here is the same as [27]. At last, the time delay of inverted 
EAC adder is given                           by                              
which is same as that of the [27]. Adding up the time 
delay of three stages of the proposed multiplier would give 
the total delay as: 

 

 

18 if  n=4

if n+1 is a number
Y= 4D(n+1)+2 logn +5

 of Dadda sequence.

4D(n+1) +2 logn +4 otherwise







 

The only difference between this time delay and that of 
the [27] is when n+1 is a number of Dadda sequence and 
that is because in this design wired OR gates are used. 
Table (8) shows the delay comparison between the 
proposed design and that of [27].   
 

Table 8: Time Comparisons 
n 4 8 12 16 20 24 28 32 
T Proposed 18 27 33 36 42 42 46 46 
T [27] 18 28 34 36 42 42 46 46 

 

6. Conclusion 

Two novel low complexity combinational 2n+1 RNS 
multipliers Using Parallel Prefix Adders are proposed in 
this article. The proposed designs use a suitable grouping 
of inputs into couples or triplets in a way that, the 
maximum sum of element does not exceed the unity. In 
order to be able to do the modular addition in parallel, a 
new proposed implementation is proposed. Comparisons 
against the state-of-the-arts modular multiplier 
architectures show that: the proposed multiplier I is more 
compact and offers a higher speed for lower modules and 
design method II is more compact and has a comparable 
delay. The proposed RNS multiplier can be applied more 
efficiently in practical approaches specially, in DSP 
systems where residue number systems are the main 
course. 
 
References 
[1]  A. Omondi, and B. Premkumar, Residue Number Systems 

Theory and implementation, College Press page 523-541, 
Chap. 01 2007. 

[2]  M. A. Soderstrand, W. K. Jenkins, G. A. Jullien, and F. J. 
Tayor, “Residue Number System Arithmetic: Modern 
Applications in Digital Signal Processing”,  IEEE Press, 
New York 1986.  

[3]  S.Timarchi, and K. Navi: “A Novel Modolo 2n+1 Adder 
Scheme”, computer Society of Iran Computer Conference 
2007(CSICC'07), Shahid Beheshti University, Tehran, Iran 
2007.  

[4]  N. Szabo, and R. Tanak, Residue Arithmetic and its 
Application to Computer Technology, New York, LCCCN: 
66-15186, McGraw-Hill Book Company 1967.   

[5]  R. Conway and J. Nelson: “Improved RNS FIR Filter 
Architectures”, IEEE Trans. On Circuit and Systems-II: 
Express Briefs, Vol. 51, No. 1, Jan. 2004.  

3 7 ( 2)CSAA n n n  

2

9 1
6

2 2
adderA n log n n   

2
2

21 9
8 7

2 2proposedA n n n log n     

2
2[27]

21 9
8 11

2 2
A n n n log n     

 2
3adderT log n 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 439

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

[6]  K. c. Posch, R. Posch: “Modulo Reduction in Residue 
Number Systems,” IEEE Transaction On Parallel And 
Distributed Systems, Vol. 6 No.5, May 1995.   

[7]  L. Yang and L. Hanzo, “Redundant Residue Number System 
Based ERROR Correction Codes”, IEEE 54th on Vehicular 
Technology Conference, Vol. 3, pp. 1472-1776, Oct. 2001.    

[8]  J. Ramirez, et al., “Fast RNS FPL-based Communications 
Receiver Design and implementation”,  Proc. 12th Int. Conf. 
Field Programmable logic, pp. 472-481, 2002.    

[9]  R. Rivest, A. Shamir, and l. Adleman, “A Method for 
Obtaining Digital Signatures and Public Key 
Cryptosystems”, Comm. ACM, Vol. 21, no.2,  pp. 120-126, 
Feb. 1978.  

[10]G. A. Jullien, “Implementation of Multiplication, Modulo a 
Prime Number, with Application to Theoretic Transforms”, 
IEEE Transaction on Computers, Vol.29,No.10, pp.899-905, 
Oct. 1980.    

[11]Vassilis Paliouras, Konstantina Karagianni and Thanos 
Stouraitis, “A Low-Complexity Combinatorial RNS 
Multiplier”, IEEE Tran. Circuit and system-II: Analog and  
Digital Signal Processing, VOL.48, NO. 7, pp. 675-683 
JUL. 2001.  

[12]M. Soderstand and Cvernia, “A High Speed Low-Cost 
Modulo P Multiplier with RNS Arithmatic Application” 
,Proc. IEEE,Vol 68, pp.529-532,Apr. 1980.  

[13]D. Radhakrishnan, and Y. Yuan, “A Fast RNS Galois Field 
Multiplier”, IEEE Transactions on Circuits and Systems, pp. 
2909-2912, 1990. 

[14]A. A. Hiasat, “New Efficient Structure for a Modular 
Multiplier for RNS”, IEEE Transaction on Computers, Vol. 
49, pp.170-174, Feb. 2000. 

[15]E. D. DiClaudio, F. Piazza, and G. Orlandi, “Fast 
Combinatorial RNS Processors for DSP Applications”, IEEE 
Trans. Comput. Vol. 44, pp. 624-633, May 1995. 

[16]A. Wrzyszcz, D. Milford, and E. Dagless, “A New Approach 
to Fixed-Coefficient Inner Product Computation over Finite 
Rings”, IEEE Trans. Computers, vol. 45, no. 12, pp. 1345-
1355, Dec. 1996. 

[17]T. Stouraitis, S. W. Kim, and A. Skavantzos, “Full Adder-
based Arithmetic Units for Finite Integer Rings”, IEEE 
Trans. Circuits Syst. II, vol.40, pp. 740-744, Nov. 1993. 

[18]C. Efstathiou, HT. Vergos, D. Nikolos, “Fast Parallel-Prefix 
Modulo 2n+1 Adders” IEEE TRANSACTIONS ON 
COMPUTERS, VOL. 53, NO. 9, Sep. 2004. 

[19]J. l. beuchat, “A Family of Modulo 2n+1 Multiplier”, sep. 
2004. 

[20]D. J. Soudris, V. Paliouras, T. Stouraitis, and C. E. Goutis, 
“A VLSI Design Methodology for RNS Full Adder-based 
Inner Product Architectures”, IEEE Trans. Circuits Syst. II, 
vol. 44, pp. 315-318, Apr. 1997. 

[21]V. Paliouras and T. Stouraitis, “Multifunction Architectures 
for RNS Processors”, IEEE Trans. Circuits Syst. II, vol. 46, 
pp. 1041-1054, Aug. 1999. 

[22]S. Timarchi, K. Navi, and M. Hosseinzade, “New Design of 
RNS Subtractor for modulo 2n+1”, 2nd IEEE International 
Conference on Information and Communication 
Technologies: From Theory to Application, pp. 24-28 Apr. 
2006. 

[19] P. M. Kogge, and H. S. Stone, “A Parallel Algorithms for 
the Efficient Solution of a General Class of Recurrence 
Equations” IEEE Trans. Computers, Vol. 22, No. 8, pp. 783-
791, Aug. 1973.  

[24]R. Zimmerman, “Efficient VLSI Implementation of Modulo 
2n ± 1 Addition and Multiplication”,  In Proc. of the 14th 
IEEE Symposium on Computer Arithmetic, pp. 158–167, 
April 1999.   

[25] C. Efstathiou, H. T. Vergos,  G. Dimitrakopoulos, and D. 
Nikolos,  “Efficient diminished-1 modulo 2n + 1 ultipliers”, 
IEEE Trans. Comput., Vol. 54, No. 4, pp. 491–496, 2005.  

[26] H. T. Vergos, C. Efstathiou, “Novel Modulo 2n+1 
Multiplier“, 9th EUROMICRO Conference on Digital 
System Design, pp. 168-175, 2006.  

[27] H. T. Vergos, C. Efstathiou, “Design of efficient modulo 
2n+1 multipliers”, IET Comput. Digit. Tech.,Vol. 1, No. 1, 
pp. 49-57, 2007.  

 
 

Mohammad R. Reshadinezhad  He 
was born in Isfahan, Iran, in 1959.He 
received his B.S. and M.S. degree from 
the Electrical Engineering Department of 
University of Wisconsin, Milwaukee, USA 
in 1982 and 1985,respectively. He has 
been in position of lecturer as faculty of 
computer engineering in University of 
Isfahan since 1991. He also received the 
Ph.D Deggree in computer architecture 

from Shahid Beheshti University, Tehran, Iran, in 2012. He is 
currently Assistant Professor in Faculty of computer Engineering of 
Isfahan University. His research interests are digital arithmetic, 
Nanotechnology concerning CNFET, VLSI implementation, logic 
circuits designs and Cryptography. 

 
Farshad Kabiri Samani He received his 
B.S. and M.S. degree in computer 
engineering (hardware) from University 
of Najaf Abad, Iran and University of 
Arak, Iran in 2007 and 2010 respectively. 
He is currently working as a lecturer and 
researcher in Faculty of electrical and 
computer engineering department of 
Lenjan University, Lenjan, Iran. His 
research interests mainly focus on 

computer arithmetic algorithms and circuits, microprocessor 
architecture, and VLSI hardware designing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 440

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.




