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Abstract 
The main characteristic of current expert systems is the 

separation of a knowledge base that may be changed from one 

application to another from the inference engine that still remains 

the same across applications. The delay in the development of 

many expert systems is due to the difficulty in acquiring and 

eliciting knowledge from the human domain experts. The 

concept of inductive expert system is thus been devised to 

overcome such bottleneck by incorporating automatic knowledge 

acquisition module in the system. According to this new concept, 

knowledge can now be induced or learned in an automatic way 

from archived databases that are normally available in most 

organizations. In this paper, we propose an architecture of the 

inductive expert system that includes the knowledge engine part 

to automatically forming expert rules from the stored data. We 

explain the automatic knowledge creation technique through a 

simple running example, then followed by a real application. We 

also provide our Prolog source code in appendices for knowledge 

engineers to apply our technique as a rapid prototyping of their 

own expert systems. 

Keywords: Expert Systems, Intelligent Knowledge Base, 

Machine Learning, Knowledge Engineering. 

1. Introduction 

Since the release of DENDRAL in the 1960s from the 

Stanford Heuristic Programming Project [5] as the first 

practical knowledge-driven program, expert systems have 

enormously proliferated and been applied to all areas of 

computer-based problem solving. The inventors of 

DENDRAL system have introduced the novel and 

important concept of knowledge base separation in that the 

content of knowledge could be added and refined 

independently from the program module, called the 

inference engine, that interprets and uses that knowledge. 

The loosely coupling of a knowledge base and an 

inference engine is an influential concept to all successor 

rule-based expert systems such as MYCIN [10], 

INTERNIST-1 [6], and many others.  

 

Since the 1980s expert systems, also called knowledge-

based systems, have shifted from the medical and 

scientific application domains to various areas. In 

manufacturing and other engineering applications, rule-

based expert systems are commonly applied to solve 

optimization problems, plan manufacturing scheduling, 

diagnose equipment failures, and use in almost every stage 

of the  manufacturing process [2]. The increasing 

popularity of rule-based expert systems is due to the 

simplicity of the if-then rules that are easy to comprehend 

by humans. Many expert system tools such as Clips and 

Jess are available as a rule engine to facilitate rule 

generation for a knowledge base. These tools help 

facilitating knowledge representation, but knowledge 

acquisition and elicitation are still the labor-intensive tasks 

facing most knowledge engineers. 

 

Modern expert system development process has thus 

moved toward the automating methodology by applying 

intelligent knowledge extraction techniques. Such 

intelligent techniques can be acquired through the machine 

learning and data mining technologies. There have been 

increasing numbers of research work attempting to apply 

learning techniques to automatically extract end elicit 

knowledge [1], [3], [4], [7], [8], [11]. These attempts have 

pushed the current expert system technology to the next 

generation of an inductive expert system in the sense that 

besides the knowledge base and the inference engine, the 

system now includes the learning component. 

 

The research work presented in this paper takes the same 

direction as most researchers in an attempt to automate 

knowledge extraction and elicitation with machine 

learning and data mining techniques. Our work, however, 

is different from others in that not only proposing an 

architecture of the learnable inductive expert system and 

experimenting with some learning algorithms, but we also 

design and develop a full complement of the rule-based 

expert system. The work presented in this paper covers the 

knowledge mining from existing databases, knowledge 

transfer as a set of rules to be stored in the knowledge 

base, and knowledge reasoning through a logic-based 
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inference engine. Program source code for the whole 

process also provided in appendices. 

 

2. A Framework for Automatic Knowledge 

Base Creation 

We design (in Fig. 1) an architecture of the inductive 

expert system to include the knowledge engine facility. 

This part of the system requires a machine learning 

algorithm and a training dataset. The learning algorithm 

used in our work is based on the ID3 algorithm [9] 

because the structure of induced tree is appropriate for 

generating reasoning and explanation in the expert system 

shell. The induced knowledge is to be generated in a 

format of decision rules incorporated with probabilistic 

values. This value is intended to be used as the degree of 

potential applicability of each decision rule. The 

probabilistic values are indeed the coverage values of 

decision rules and can be computed as a proportion of 

(number of instances at leaf nodes) / (total data instances 

in a training dataset). 

 

The steps graphically shown in Fig.2 are the process to 

generate decision rules to be stored in the knowledge base. 

These rules are to be used by the inference engine for 

giving recommendation to users. Consulting rules are for 

reasoning and giving explanation when requested by the 

users. 
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Fig. 1  Architecture of the inductive expert system. 

 

Fig. 2  Automatic knowledge engineering process. 

3. Running Example 

3.1 Training Data for Building a Tree Model 

To explain the idea proposed in the previous section, we 

provide a running example through a simple training 

dataset as illustrated in Fig. 3. The given data contain 

information regarding color and shape of three objects and 

their classified class as either yes (the right object), or no 

(the wrong one). Our objective is to learn a decision model 

from this small dataset and extract a model in a form of a 

decision tree that to be helpful in identifying objects in the 

future with unknown class. The first step is converting 

data format to fit the program. Most data in the databases 

are represented as table. Appropriate format as required by 

our Prolog program is the one shown below the table in 

Fig.3. This converted data has been saved in a file 

‘shape.pl’, and is to be used as a training dataset in the 

next step. 
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color shape class 

red round yes 

blue polygon yes 

green square no 

attribute(color,   [red,  green, blue]). 
attribute(shape,  [round, polygon, square]). 
attribute(class,    [yes, no]). 

instance(1,   class=yes,  [color=red,      shape=round]). 
instance(2,   class=yes,  [color=blue,    shape=polygon]). 
instance(3,   class=no,   [color=green,  shape=square]). 

Fig. 3  A sample shape dataset that contains three instances. 

3.2 Tree Model and a Transformed Knowledge Base 

Rule 

Once the training dataset has been prepared, the next step 

is to build a tree model from the data. This can be done 

through invoking the program ‘id3menu.pl.’ A small 

dialog box will be popped up (as shown in Fig. 4) to ask 

the file name of training data. The parameter ‘MinProb’ is 

for pruning a tree model. The more the value, the shorten 

the tree model. Default value of this parameter is 0.001, 

which should be small enough for most moderate size 

data. 

 

When user clicks the ‘Enter’ button, the dialog box 

disappears and the program starts building a tree model. 

This model is actually a data structure of nodes and edges 

(as illustrated in Fig.5). User will then be asked to input 

the file name to store the model. In this example, we store 

a model in the file named ‘shape.knb’. Content of this file 

(displayed in Fig.6) is automatically created by the 

‘id3menu.pl’ program. The program traverses the tree 

model and converts the structures of nodes and edges into 

rules. The created file, ‘shape.knb’, is a knowledge base 

induced from the training data and can be consulted by the 

inference engine of the expert system shell. 

 

 

Fig. 4  A snapshot of parameter setting and output of the program 

id3menu.pl. 
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Fig. 5  A tree model in a form of node and edge structures (left) and its 

interpretation in a graphical form (right). 

 

Fig. 6  A knowledge base ‘shape.knb’ that is automatically generated 

from a tree model. 

3.3 Knowledge Consulting Through the Expert 

System 

To consult a knowledge base, user needs a second 

program named ‘expertshell.pl’. After running this 

program (by double-clicking at the file name), the prompt 

sign ‘1 ?’ will appear on the screen. User can now start 

commanding the expert system by typing ‘expertshell.’ 

and press enter. The system will greet with simple advice 

(as in Fig.7). This expert shell can work with any 

knowledge base. Therefore, user has to specify the file 

name of the knowledge base. It is ‘shape.knb’ in this 

example. Once the knowledge base has been loaded, user 

may start the consulting process by typing the command 

‘solve.’ (Note that every command in Prolog ends with a 

full-stop.) 
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Fig. 7  An interaction with the expert system shell using a knowledge 

base ‘shape.knb’. 

 

The expert shell starts asking questions as suggested by 

information stored in the knowledge base. Thus, the order 

and content of questions can vary according to the 

knowledge base currently applicable to the expert shell. 

After the system provides appropriate answer, user may 

ask for explanation by typing a command ‘why.’ 

4. Experimentation  

The experimentation with real data is to confirm the 

efficiency of the proposed automatic knowledge base 

creation method. For the purpose of demonstration, we use 

a car evaluation data set obtain from the UCI repository 

(http://archive.ics.uci.edu/ml). In this dataset, each car is 

to be evaluated as acceptable or unacceptable based on the 

buying price, price of maintenance, number of doors, 

capacity in terms of persons to carry, the size of luggage 

boot, and the estimated safety of the car. The data set has 

been formatted as Prolog clauses and saved in a file named 

‘car.pl’. The created knowledge base is illustrated in Fig. 

8, and consulting this knowledge base through the expert 

system shell is shown in Fig.9.  

 

 

Fig. 8  An automatically created knowledge base ‘car.knb’. 

 

Fig. 9  Consulting ‘car.knb’ through the expert system shell. 
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5. Conclusion 

Artificial intelligence, specifically expert systems, has 

played an important role in solving complex engineering 

and manufacturing problems. Knowledge base and 

inference procedures have been employed to solve the 

problems that require significant human expertise and 

domain-specific knowledge. The required knowledge has 

to be elicited by knowledge engineers. It is a labor-

intensive task, and thus a bottle neck in building intelligent 

systems. We propose to apply data mining technique as a 

major step in a knowledge engine component of the 

inductive expert system to assist the knowledge elicitation 

task. The proposed technique is a novel method for 

automating knowledge acquisition that help supporting 

intelligent manufacturing systems. Knowledge in our tool 

can be discovered from the stored data using the decision 

tree induction algorithm. The learned tree structure is then 

transformed to a rule set that can be integrated into the 

knowledge base. The implementation of our knowledge 

acquisition tool is based on the logic programming scheme 

that has been proven appropriate for inferring and 

reasoning answers and recommendations from the existing 

knowledge base. 

Appendix A. Source Code for Automatic Knowledge 

Base Creation 

The source code provided here is for learning a tree model 

from training data and then transform the model to be a 

rule set to store in the knowledge base. The given ID3 

module is capable of learning model of binary classes such 

as yes/no, true/false, acceptable/unacceptable. For training 

data with multiple classes, the module needs some 

modification. This program should be saved in a single 

file, named “id3menu.pl”. To run the program, user may 

double click at the file name in the directory where it has 

been saved. The knowledge base will be automatically 

created and stored in the same directory with the file name 

such as ‘shape.knb’, and this program can now be closed. 

The created knowledge base will be used later by the 

expert system shell, which is another Prolog program. 

 

/*--------id3menu.pl-------*/ 

id3menu:- 

         new(Dialog,dialog('Create Rules from ID3')), 

         send_list(Dialog, append, 

               [ new(D1, text_item(datafile,'*.pl')), 

                 new(Per,text_item(minProb,'0.001')), 

                 button(cancel, message(Dialog, destroy)), 

                 button(enter, and(message(@prolog,callId3, 

                 D1?selection, Per?selection),message(Dialog,destroy) )) ]), 

                 send(Dialog, open). 

callId3(Dfile,Per) :-  term_to_atom(Per1,Per),  

                                   consult(Dfile), createKB(Per1). 

:-id3menu. 

 

% ----------- Create KB rules ----------------------- 

createKB(Min) :- init(AllAttr,EdgeList), getnode(N), 

          create_edge(N,AllAttr,EdgeList), addAllKnowledge, 

          selectRule(Min,Res), writeln(Res), nl, 

          write('Enter KB file name(ex. ''1.knb''.): '), 

          read(F), tell(F),  writeHeadF, format('~n% Generated 

rules:~n'), 

          maplist(createRule1,Res), nl, 

          format('~n% Generated menu:~n'), 

          writeTailF,  told,  writeln(endProcess). 

writeHeadF :- 

       format('% Knowledge base automatically created for expert 

shell.'), 

       format('~n~n% top_goal is where the inference starts.~n'), 

       format('~ntop_goal(X,V) :- type(X,V).~n'). 

writeTailF :- 

      findall(_,(attribute(S,L), 

      format('~n~w(X):-menuask(~w,X,~w). ',[S,S,L])),_), 

      format('~n~n% end of automatic KB creation'). 

transform1([X=V],[Res]) :-  

          atomic_list_concat([X,'(',V,')'],Res1), 

          term_to_atom(Res,Res1),!. 

transform1([X=V|T],[Res|T1]) :-  

          atomic_list_concat([X,'(',V,')'],Res1), 

          term_to_atom(Res,Res1), transform1(T,T1). 

createRule1(I) :- I = Z>>X>>Y, 

           transform1(X, BodyL), 

           format('~ntype(~w,~w):-', [Y,Z]), 

           myformat(BodyL) , !. 

myformat([X]) :- write(X), write('.'),!. 

myformat([H|T]) :- write(H), write(','), myformat(T). 

addAllKnowledge :- 

          findall([A], pathFromRootToLeaf(A,_), Res), 

          retractall(_>>_>>_),  maplist(apply(assert),Res), 

          write(addToKB), nl.  % add to knowledge base 

selectRule(V,Res) :- 

          findall(N>>X>>Class,(X>>Class>>N,N>=V),Res1), 

          sort(Res1,Res2), reverse(Res2,Res). 

path(A,[H|T],C) :- edge(A,H,B), path(B,T,C). 

path(C,[],C) :- !. 

pathFromRootToLeaf(V>>Class>>Num, C) :- 

          path(1,V,C),   node(C,Value1-Value2), 

          (Value1=[] ; Value2=[]), 

          (Value1=[] -> length(Value2,Numb) ; length(Value1,Numb)), 

           total+Total,    Num is Numb/Total,   hasClass(C1,C2), 

            (Value1=[]->Class=C2;Class=C1).   

 

%-------------- ID3 (work only with data with 2 classes) -------------- 

:- dynamic current_node/1,node/2,edge/3,hasClass/2,type/2. 
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init(AllAttr,[root-nil/PB-NB]) :-   

          writeln(creating_tree_model), retractall(hasClass(_,_)),  

          attribute( class,[ Y1, Y2]),  assert(hasClass(Y1,Y2)),          

          retractall(node(_,_)),   retractall(current_node(_)),  

          retractall(type(_,_)),    retractall(edge(_,_,_)), 

          assert(current_node(0)),   hasClass(C1,C2), 

          findall(X,attribute(X,_),AllAttr1), 

          delete(AllAttr1,class,AllAttr), 

          findall(X2,instance(X2,class=C1,_),PB), 

          findall(X3,instance(X3,class=C2,_),NB), 

          length(PB,N1), length(NB,N2), N is N1+N2,  

          retractall(total+_),  apply(assert,[total+N]). 

getnode(X) :- current_node(X), X1 is X+1, 

         retractall(current_node(_)), 

         assert(current_node(X1)), X1 <4000. % limit at 4000 nodes 

create_edge(_,_,[]) :- !. 

create_edge(_,[],_) :- !. 

create_edge(N, AllAttr, EdgeList) :-  create_nodes(N, AllAttr, 

EdgeList). 

create_nodes(N, AllAttr, [H1-H2/PB-NB|T] ) :- 

           getnode(N1), 

           assert(edge(N,H1=H2,N1)),   assert(node(N1,PB-NB)), 

           append(PB, NB, AllInst), 

           ( (PB\==[], NB\==[]) -> (cand_node(AllAttr, AllInst, AllSplit), 

                                   min_cand(AllSplit, [V, MinAttr, Split]), 

                                   delete(AllAttr,MinAttr,Attr2), 

                                   create_edge(N1,Attr2,Split))  ;  true ), 

           create_nodes(N,AllAttr,T). 

create_nodes(_,_,[]) :- !. 

create_nodes(_,[],_) :- !. 

min_cand([H|T], Min) :- min_cand(T, H, Min). 

min_cand([], Min, Min). 

min_cand([H|T], Min0, Min) :-  H = [V,_,_], Min0 = [V0,_,_], 

 ( V<V0 -> Min1=H ; Min1=Min0), 

 min_cand(T, Min1, Min). 

cand_node([H|T], CurInstL, [[Val, H, SplitL] | OtherAttr]) :- 

 info(H, CurInstL, Val, SplitL), 

 cand_node(T, CurInstL, OtherAttr). 

cand_node([],_,[]) :- !. 

cand_node(_,[],[]). 

info(A,CurInstL,R,Split) :-  attribute(A,L), 

 maplist(concat3(A,=), L, L1),   

                   suminfo(L1, CurInstL, R, Split).   

concat3(A,B,C,R) :- atom_concat(A,B,R1), atom_concat(R1,C,R). 

suminfo([H|T], CurInstL, R, [Split | ST]) :- 

          AllBag = CurInstL,  hasClass(C1,C2), 

          term_to_atom(H1,H), 

          findall(X1,(instance(X1,_,L1),member(X1,CurInstL), 

                                member(H1,L1)), BagGro), 

          findall(X2,(instance(X2,class=C1,L2), 

                                member(X2,CurInstL), member(H1,L2)), BagPos), 

          findall(X3,(instance(X3,class=C2,L3),member(X3,CurInstL), 

                                member(H1,L3)), BagNeg), 

          (H11=H22) = H1, 

          length(AllBag,Nall), length(BagGro,NGro),  

          length(BagPos,NPos), length(BagNeg,NNeg), 

          Split = H11-H22/BagPos-BagNeg, 

          suminfo(T,CurInstL,R1,ST), 

          ( NPos is 0 *->L1 = 0; L1 is (log(NPos/NGro)/log(2)) ), 

          ( 0 is NNeg *->L2 = 0; L2 is (log(NNeg/NGro)/log(2)) ), 

          ( NGro is 0 -> R = 999;  

               R is (NGro/Nall)*(-(NPos/NGro)*L1-(NNeg/NGro)*L2)+R1 )  . 

suminfo([],_,0,[]). 
% ------------------------------ End of KB Creation Process --------------  

Appendix B. Expert System Shell in Prolog 

% -------- expertshell.pl ------------- 

%  To run this program call ‘expertshell.’ 

%       then call ‘load.’ and input a file name such as 'file.knb'. 

%       Start consulting the expert system with the command ‘solve.’ 

:-dynamic known/1, answer/2. 

expertshell :- 

          greeting, repeat, nl, write('expert-shell> '), read(X), do(X), 

          X == quit,  writeln('>>>>Goodbye, see you later<<<<'), !. 

greeting :-  

          write('This is the Easy Expert System shell.'), nl, 

           native_help. 

do(help) :- native_help, !. 

do(load) :- load_kb, !. 

do(solve) :- solve, !. 

do(why) :- why, !. 

do(quit).  

do(X) :- write(X), write(' is not a legal command.'), nl, fail. 

native_help :- write('Type  help.   load.   solve.   why.    quit.'), 

          nl, write('at the prompt.'), nl. 

load_kb :- write('Enter file name in single quotes (ex. ''1.knb''.): '), 

          read(F),  reconsult(F). 

solve :-  retractall(known( _) ),retractall(answer(_,_)), 

          top_goal(X,V), 

          format('The answer is __~w__ with probability ~w',[X,V]), 

          assert(answer(X,V)), nl. 

solve :- write('No answer found.'), nl. 

menuask(Pred,Value,Menu) :-  

           menuask(Pred,Menu), 

atomic_list_concat([Pred,'(',Value,')'],X), 

           term_to_atom(T,X),  known(T),!. 

menuask(Pred,_) :-  

           atomic_list_concat([Pred,'(','_',')'],X),   

           term_to_atom(T,X),  known(T), !.  

menuask(Attribute,Menu):- 

          nl, write('What is the value for '), write(Attribute), write('?'),  

          nl,  addchoice(Menu,MenuRes), writeln(MenuRes), nl, 

          write('Enter the  choice> '), read(C), nl,   

          member(C-V,MenuRes), 

          atomic_list_concat([Attribute,'(',V,')'],X), 
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          term_to_atom(T,X),  asserta(known(T)) . 

 

why :- answer(A,V), 

          format('~nThe answer is ...~w... with probability =  

                        ~w.~n',[A,V]), 

          findall( X , known(X),Result), 

          writeln('The known storage are'), writeln(Result). 

 

addchoice(X,Res) :- length(X,Len),  

          numlist(1,Len,NumL), map(NumL,X,Res). 

 

map([],[],[]). 

map([H|T], [X|TT], [H-X|T1]) :- map(T, TT, T1). 

 
% ---------------------- END OF EXPERT SYSTEM SHELL ----------- 
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